ue Insect collection and identification : techniques for the field and laboratory By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Gibb, Timothy J., author.Callnumber: OnlineISBN: 9780128165713 (ePub ebook) Full Article
ue Health issues and care system for the elderly By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9789811317620 (electronic bk.) Full Article
ue Health consequences of microbial interactions with hydrocarbons, oils, and lipids By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783319724737 (electronic bk.) Full Article
ue Green food processing techniques : preservation, transformation and extraction By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9780128153536 Full Article
ue Genetic and metabolic engineering for improved biofuel production from lignocellulosic biomass By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9780128179543 (electronic bk.) Full Article
ue Consequences of microbial interactions with hydrocarbons, oils, and lipids : biodegradation and bioremediation By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783319445359 (electronic bk.) Full Article
ue Computational processing of the Portuguese language : 14th International Conference, PROPOR 2020, Evora, Portugal, March 2-4, 2020, Proceedings By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: PROPOR (Conference) (14th : 2020 : Evora, Portugal)Callnumber: OnlineISBN: 9783030415051 (electronic bk.) Full Article
ue Almost sure uniqueness of a global minimum without convexity By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Gregory Cox. Source: The Annals of Statistics, Volume 48, Number 1, 584--606.Abstract: This paper establishes the argmin of a random objective function to be unique almost surely. This paper first formulates a general result that proves almost sure uniqueness without convexity of the objective function. The general result is then applied to a variety of applications in statistics. Four applications are discussed, including uniqueness of M-estimators, both classical likelihood and penalized likelihood estimators, and two applications of the argmin theorem, threshold regression and weak identification. Full Article
ue Asymptotic genealogies of interacting particle systems with an application to sequential Monte Carlo By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Jere Koskela, Paul A. Jenkins, Adam M. Johansen, Dario Spanò. Source: The Annals of Statistics, Volume 48, Number 1, 560--583.Abstract: We study weighted particle systems in which new generations are resampled from current particles with probabilities proportional to their weights. This covers a broad class of sequential Monte Carlo (SMC) methods, widely-used in applied statistics and cognate disciplines. We consider the genealogical tree embedded into such particle systems, and identify conditions, as well as an appropriate time-scaling, under which they converge to the Kingman $n$-coalescent in the infinite system size limit in the sense of finite-dimensional distributions. Thus, the tractable $n$-coalescent can be used to predict the shape and size of SMC genealogies, as we illustrate by characterising the limiting mean and variance of the tree height. SMC genealogies are known to be connected to algorithm performance, so that our results are likely to have applications in the design of new methods as well. Our conditions for convergence are strong, but we show by simulation that they do not appear to be necessary. Full Article
ue New $G$-formula for the sequential causal effect and blip effect of treatment in sequential causal inference By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Xiaoqin Wang, Li Yin. Source: The Annals of Statistics, Volume 48, Number 1, 138--160.Abstract: In sequential causal inference, two types of causal effects are of practical interest, namely, the causal effect of the treatment regime (called the sequential causal effect) and the blip effect of treatment on the potential outcome after the last treatment. The well-known $G$-formula expresses these causal effects in terms of the standard parameters. In this article, we obtain a new $G$-formula that expresses these causal effects in terms of the point observable effects of treatments similar to treatment in the framework of single-point causal inference. Based on the new $G$-formula, we estimate these causal effects by maximum likelihood via point observable effects with methods extended from single-point causal inference. We are able to increase precision of the estimation without introducing biases by an unsaturated model imposing constraints on the point observable effects. We are also able to reduce the number of point observable effects in the estimation by treatment assignment conditions. Full Article
ue Eigenvalue distributions of variance components estimators in high-dimensional random effects models By projecteuclid.org Published On :: Fri, 02 Aug 2019 22:04 EDT Zhou Fan, Iain M. Johnstone. Source: The Annals of Statistics, Volume 47, Number 5, 2855--2886.Abstract: We study the spectra of MANOVA estimators for variance component covariance matrices in multivariate random effects models. When the dimensionality of the observations is large and comparable to the number of realizations of each random effect, we show that the empirical spectra of such estimators are well approximated by deterministic laws. The Stieltjes transforms of these laws are characterized by systems of fixed-point equations, which are numerically solvable by a simple iterative procedure. Our proof uses operator-valued free probability theory, and we establish a general asymptotic freeness result for families of rectangular orthogonally invariant random matrices, which is of independent interest. Our work is motivated in part by the estimation of components of covariance between multiple phenotypic traits in quantitative genetics, and we specialize our results to common experimental designs that arise in this application. Full Article
ue TFisher: A powerful truncation and weighting procedure for combining $p$-values By projecteuclid.org Published On :: Wed, 15 Apr 2020 22:05 EDT Hong Zhang, Tiejun Tong, John Landers, Zheyang Wu. Source: The Annals of Applied Statistics, Volume 14, Number 1, 178--201.Abstract: The $p$-value combination approach is an important statistical strategy for testing global hypotheses with broad applications in signal detection, meta-analysis, data integration, etc. In this paper we extend the classic Fisher’s combination method to a unified family of statistics, called TFisher, which allows a general truncation-and-weighting scheme of input $p$-values. TFisher can significantly improve statistical power over the Fisher and related truncation-only methods for detecting both rare and dense “signals.” To address wide applications, analytical calculations for TFisher’s size and power are deduced under any two continuous distributions in the null and the alternative hypotheses. The corresponding omnibus test (oTFisher) and its size calculation are also provided for data-adaptive analysis. We study the asymptotic optimal parameters of truncation and weighting based on Bahadur efficiency (BE). A new asymptotic measure, called the asymptotic power efficiency (APE), is also proposed for better reflecting the statistics’ performance in real data analysis. Interestingly, under the Gaussian mixture model in the signal detection problem, both BE and APE indicate that the soft-thresholding scheme is the best, the truncation and weighting parameters should be equal. By simulations of various signal patterns, we systematically compare the power of statistics within TFisher family as well as some rare-signal-optimal tests. We illustrate the use of TFisher in an exome-sequencing analysis for detecting novel genes of amyotrophic lateral sclerosis. Relevant computation has been implemented into an R package TFisher published on the Comprehensive R Archive Network to cater for applications. Full Article
ue Efficient real-time monitoring of an emerging influenza pandemic: How feasible? By projecteuclid.org Published On :: Wed, 15 Apr 2020 22:05 EDT Paul J. Birrell, Lorenz Wernisch, Brian D. M. Tom, Leonhard Held, Gareth O. Roberts, Richard G. Pebody, Daniela De Angelis. Source: The Annals of Applied Statistics, Volume 14, Number 1, 74--93.Abstract: A prompt public health response to a new epidemic relies on the ability to monitor and predict its evolution in real time as data accumulate. The 2009 A/H1N1 outbreak in the UK revealed pandemic data as noisy, contaminated, potentially biased and originating from multiple sources. This seriously challenges the capacity for real-time monitoring. Here, we assess the feasibility of real-time inference based on such data by constructing an analytic tool combining an age-stratified SEIR transmission model with various observation models describing the data generation mechanisms. As batches of data become available, a sequential Monte Carlo (SMC) algorithm is developed to synthesise multiple imperfect data streams, iterate epidemic inferences and assess model adequacy amidst a rapidly evolving epidemic environment, substantially reducing computation time in comparison to standard MCMC, to ensure timely delivery of real-time epidemic assessments. In application to simulated data designed to mimic the 2009 A/H1N1 epidemic, SMC is shown to have additional benefits in terms of assessing predictive performance and coping with parameter nonidentifiability. Full Article
ue Empirical Bayes analysis of RNA sequencing experiments with auxiliary information By projecteuclid.org Published On :: Wed, 27 Nov 2019 22:01 EST Kun Liang. Source: The Annals of Applied Statistics, Volume 13, Number 4, 2452--2482.Abstract: Finding differentially expressed genes is a common task in high-throughput transcriptome studies. While traditional statistical methods rank the genes by their test statistics alone, we analyze an RNA sequencing dataset using the auxiliary information of gene length and the test statistics from a related microarray study. Given the auxiliary information, we propose a novel nonparametric empirical Bayes procedure to estimate the posterior probability of differential expression for each gene. We demonstrate the advantage of our procedure in extensive simulation studies and a psoriasis RNA sequencing study. The companion R package calm is available at Bioconductor. Full Article
ue Outline analyses of the called strike zone in Major League Baseball By projecteuclid.org Published On :: Wed, 27 Nov 2019 22:01 EST Dale L. Zimmerman, Jun Tang, Rui Huang. Source: The Annals of Applied Statistics, Volume 13, Number 4, 2416--2451.Abstract: We extend statistical shape analytic methods known as outline analysis for application to the strike zone, a central feature of the game of baseball. Although the strike zone is rigorously defined by Major League Baseball’s official rules, umpires make mistakes in calling pitches as strikes (and balls) and may even adhere to a strike zone somewhat different than that prescribed by the rule book. Our methods yield inference on geometric attributes (centroid, dimensions, orientation and shape) of this “called strike zone” (CSZ) and on the effects that years, umpires, player attributes, game situation factors and their interactions have on those attributes. The methodology consists of first using kernel discriminant analysis to determine a noisy outline representing the CSZ corresponding to each factor combination, then fitting existing elliptic Fourier and new generalized superelliptic models for closed curves to that outline and finally analyzing the fitted model coefficients using standard methods of regression analysis, factorial analysis of variance and variance component estimation. We apply these methods to PITCHf/x data comprising more than three million called pitches from the 2008–2016 Major League Baseball seasons to address numerous questions about the CSZ. We find that all geometric attributes of the CSZ, except its size, became significantly more like those of the rule-book strike zone from 2008–2016 and that several player attribute/game situation factors had statistically and practically significant effects on many of them. We also establish that the variation in the horizontal center, width and area of an individual umpire’s CSZ from pitch to pitch is smaller than their variation among CSZs from different umpires. Full Article
ue Oblique random survival forests By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Byron C. Jaeger, D. Leann Long, Dustin M. Long, Mario Sims, Jeff M. Szychowski, Yuan-I Min, Leslie A. Mcclure, George Howard, Noah Simon. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1847--1883.Abstract: We introduce and evaluate the oblique random survival forest (ORSF). The ORSF is an ensemble method for right-censored survival data that uses linear combinations of input variables to recursively partition a set of training data. Regularized Cox proportional hazard models are used to identify linear combinations of input variables in each recursive partitioning step. Benchmark results using simulated and real data indicate that the ORSF’s predicted risk function has high prognostic value in comparison to random survival forests, conditional inference forests, regression and boosting. In an application to data from the Jackson Heart Study, we demonstrate variable and partial dependence using the ORSF and highlight characteristics of its ten-year predicted risk function for atherosclerotic cardiovascular disease events (ASCVD; stroke, coronary heart disease). We present visualizations comparing variable and partial effect estimation according to the ORSF, the conditional inference forest, and the Pooled Cohort Risk equations. The obliqueRSF R package, which provides functions to fit the ORSF and create variable and partial dependence plots, is available on the comprehensive R archive network (CRAN). Full Article
ue A hierarchical Bayesian model for single-cell clustering using RNA-sequencing data By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Yiyi Liu, Joshua L. Warren, Hongyu Zhao. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1733--1752.Abstract: Understanding the heterogeneity of cells is an important biological question. The development of single-cell RNA-sequencing (scRNA-seq) technology provides high resolution data for such inquiry. A key challenge in scRNA-seq analysis is the high variability of measured RNA expression levels and frequent dropouts (missing values) due to limited input RNA compared to bulk RNA-seq measurement. Existing clustering methods do not perform well for these noisy and zero-inflated scRNA-seq data. In this manuscript we propose a Bayesian hierarchical model, called BasClu, to appropriately characterize important features of scRNA-seq data in order to more accurately cluster cells. We demonstrate the effectiveness of our method with extensive simulation studies and applications to three real scRNA-seq datasets. Full Article
ue Sequential decision model for inference and prediction on nonuniform hypergraphs with application to knot matching from computational forestry By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Seong-Hwan Jun, Samuel W. K. Wong, James V. Zidek, Alexandre Bouchard-Côté. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1678--1707.Abstract: In this paper, we consider the knot-matching problem arising in computational forestry. The knot-matching problem is an important problem that needs to be solved to advance the state of the art in automatic strength prediction of lumber. We show that this problem can be formulated as a quadripartite matching problem and develop a sequential decision model that admits efficient parameter estimation along with a sequential Monte Carlo sampler on graph matching that can be utilized for rapid sampling of graph matching. We demonstrate the effectiveness of our methods on 30 manually annotated boards and present findings from various simulation studies to provide further evidence supporting the efficacy of our methods. Full Article
ue Identifying multiple changes for a functional data sequence with application to freeway traffic segmentation By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Jeng-Min Chiou, Yu-Ting Chen, Tailen Hsing. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1430--1463.Abstract: Motivated by the study of road segmentation partitioned by shifts in traffic conditions along a freeway, we introduce a two-stage procedure, Dynamic Segmentation and Backward Elimination (DSBE), for identifying multiple changes in the mean functions for a sequence of functional data. The Dynamic Segmentation procedure searches for all possible changepoints using the derived global optimality criterion coupled with the local strategy of at-most-one-changepoint by dividing the entire sequence into individual subsequences that are recursively adjusted until convergence. Then, the Backward Elimination procedure verifies these changepoints by iteratively testing the unlikely changes to ensure their significance until no more changepoints can be removed. By combining the local strategy with the global optimal changepoint criterion, the DSBE algorithm is conceptually simple and easy to implement and performs better than the binary segmentation-based approach at detecting small multiple changes. The consistency property of the changepoint estimators and the convergence of the algorithm are proved. We apply DSBE to detect changes in traffic streams through real freeway traffic data. The practical performance of DSBE is also investigated through intensive simulation studies for various scenarios. Full Article
ue Frequency domain theory for functional time series: Variance decomposition and an invariance principle By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Piotr Kokoszka, Neda Mohammadi Jouzdani. Source: Bernoulli, Volume 26, Number 3, 2383--2399.Abstract: This paper is concerned with frequency domain theory for functional time series, which are temporally dependent sequences of functions in a Hilbert space. We consider a variance decomposition, which is more suitable for such a data structure than the variance decomposition based on the Karhunen–Loéve expansion. The decomposition we study uses eigenvalues of spectral density operators, which are functional analogs of the spectral density of a stationary scalar time series. We propose estimators of the variance components and derive convergence rates for their mean square error as well as their asymptotic normality. The latter is derived from a frequency domain invariance principle for the estimators of the spectral density operators. This principle is established for a broad class of linear time series models. It is a main contribution of the paper. Full Article
ue Noncommutative Lebesgue decomposition and contiguity with applications in quantum statistics By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Akio Fujiwara, Koichi Yamagata. Source: Bernoulli, Volume 26, Number 3, 2105--2142.Abstract: We herein develop a theory of contiguity in the quantum domain based upon a novel quantum analogue of the Lebesgue decomposition. The theory thus formulated is pertinent to the weak quantum local asymptotic normality introduced in the previous paper [Yamagata, Fujiwara, and Gill, Ann. Statist. 41 (2013) 2197–2217], yielding substantial enlargement of the scope of quantum statistics. Full Article
ue Matching strings in encoded sequences By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Adriana Coutinho, Rodrigo Lambert, Jérôme Rousseau. Source: Bernoulli, Volume 26, Number 3, 2021--2050.Abstract: We investigate the length of the longest common substring for encoded sequences and its asymptotic behaviour. The main result is a strong law of large numbers for a re-scaled version of this quantity, which presents an explicit relation with the Rényi entropy of the source. We apply this result to the zero-inflated contamination model and the stochastic scrabble. In the case of dynamical systems, this problem is equivalent to the shortest distance between two observed orbits and its limiting relationship with the correlation dimension of the pushforward measure. An extension to the shortest distance between orbits for random dynamical systems is also provided. Full Article
ue Influence of the seed in affine preferential attachment trees By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT David Corlin Marchand, Ioan Manolescu. Source: Bernoulli, Volume 26, Number 3, 1665--1705.Abstract: We study randomly growing trees governed by the affine preferential attachment rule. Starting with a seed tree $S$, vertices are attached one by one, each linked by an edge to a random vertex of the current tree, chosen with a probability proportional to an affine function of its degree. This yields a one-parameter family of preferential attachment trees $(T_{n}^{S})_{ngeq |S|}$, of which the linear model is a particular case. Depending on the choice of the parameter, the power-laws governing the degrees in $T_{n}^{S}$ have different exponents. We study the problem of the asymptotic influence of the seed $S$ on the law of $T_{n}^{S}$. We show that, for any two distinct seeds $S$ and $S'$, the laws of $T_{n}^{S}$ and $T_{n}^{S'}$ remain at uniformly positive total-variation distance as $n$ increases. This is a continuation of Curien et al. ( J. Éc. Polytech. Math. 2 (2015) 1–34), which in turn was inspired by a conjecture of Bubeck et al. ( IEEE Trans. Netw. Sci. Eng. 2 (2015) 30–39). The technique developed here is more robust than previous ones and is likely to help in the study of more general attachment mechanisms. Full Article
ue On frequentist coverage errors of Bayesian credible sets in moderately high dimensions By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Keisuke Yano, Kengo Kato. Source: Bernoulli, Volume 26, Number 1, 616--641.Abstract: In this paper, we study frequentist coverage errors of Bayesian credible sets for an approximately linear regression model with (moderately) high dimensional regressors, where the dimension of the regressors may increase with but is smaller than the sample size. Specifically, we consider quasi-Bayesian inference on the slope vector under the quasi-likelihood with Gaussian error distribution. Under this setup, we derive finite sample bounds on frequentist coverage errors of Bayesian credible rectangles. Derivation of those bounds builds on a novel Berry–Esseen type bound on quasi-posterior distributions and recent results on high-dimensional CLT on hyperrectangles. We use this general result to quantify coverage errors of Castillo–Nickl and $L^{infty}$-credible bands for Gaussian white noise models, linear inverse problems, and (possibly non-Gaussian) nonparametric regression models. In particular, we show that Bayesian credible bands for those nonparametric models have coverage errors decaying polynomially fast in the sample size, implying advantages of Bayesian credible bands over confidence bands based on extreme value theory. Full Article
ue Cliques in rank-1 random graphs: The role of inhomogeneity By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Kay Bogerd, Rui M. Castro, Remco van der Hofstad. Source: Bernoulli, Volume 26, Number 1, 253--285.Abstract: We study the asymptotic behavior of the clique number in rank-1 inhomogeneous random graphs, where edge probabilities between vertices are roughly proportional to the product of their vertex weights. We show that the clique number is concentrated on at most two consecutive integers, for which we provide an expression. Interestingly, the order of the clique number is primarily determined by the overall edge density, with the inhomogeneity only affecting multiplicative constants or adding at most a $log log (n)$ multiplicative factor. For sparse enough graphs the clique number is always bounded and the effect of inhomogeneity completely vanishes. Full Article
ue Needles and straw in a haystack: Robust confidence for possibly sparse sequences By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Eduard Belitser, Nurzhan Nurushev. Source: Bernoulli, Volume 26, Number 1, 191--225.Abstract: In the general signal$+$noise (allowing non-normal, non-independent observations) model, we construct an empirical Bayes posterior which we then use for uncertainty quantification for the unknown, possibly sparse, signal. We introduce a novel excessive bias restriction (EBR) condition, which gives rise to a new slicing of the entire space that is suitable for uncertainty quantification. Under EBR and some mild exchangeable exponential moment condition on the noise, we establish the local (oracle) optimality of the proposed confidence ball. Without EBR, we propose another confidence ball of full coverage, but its radius contains an additional $sigma n^{1/4}$-term. In passing, we also get the local optimal results for estimation , posterior contraction problems, and the problem of weak recovery of sparsity structure . Adaptive minimax results (also for the estimation and posterior contraction problems) over various sparsity classes follow from our local results. Full Article
ue The Klemm family : descendants of Johann Gottfried Klemm and Anna Louise Klemm : these forebears are honoured and remembered at a reunion at Gruenberg, Moculta 11th-12th March 1995. By www.catalog.slsa.sa.gov.au Published On :: Klemm (Family) Full Article
ue The Kuerschner story : 1848 - 1999 / compiled by Gerald Kuerschner. By www.catalog.slsa.sa.gov.au Published On :: Kuerschner (Family) Full Article
ue Economists Expect Huge Future Earnings Loss for Students Missing School Due to COVID-19 By marketbrief.edweek.org Published On :: Mon, 04 May 2020 14:47:10 +0000 Members of the future American workforce could see losses of earnings that add up to trillions of dollars, depending on how long coronavirus-related school closures persist. The post Economists Expect Huge Future Earnings Loss for Students Missing School Due to COVID-19 appeared first on Market Brief. Full Article Marketplace K-12 Academic Research Career / College Readiness COVID-19 Data Federal / State Policy Research/Evaluation
ue Anarchy in Venezuela's jails laid bare by massacre over food By news.yahoo.com Published On :: Fri, 08 May 2020 13:27:04 -0400 Three weeks before he was shot dead, Miguel Calderon, an inmate in the lawless Los Llanos jail on Venezuela's central plains, sent a voice message to his father. Like many of the prisoners in Venezuela's overcrowded and violent penitentiaries, Los Llanos's 4,000 inmates normally subsist on food relatives bring them. The guards, desperate themselves amid national shortages, began stealing the little food getting behind bars, inmates said, forcing some prisoners to turn to eating stray animals. Full Article
ue Chaffetz: I don't understand why Adam Schiff continues to have a security clearance By news.yahoo.com Published On :: Fri, 08 May 2020 14:43:30 -0400 Fox News contributor Jason Chaffetz and Andy McCarthy react to House Intelligence transcripts on Russia probe. Full Article
ue New Zealand says it backs Taiwan's role in WHO due to success with coronavirus By news.yahoo.com Published On :: Thu, 07 May 2020 23:20:43 -0400 Full Article
ue The accusation against Joe Biden has Democrats rediscovering the value of due process By news.yahoo.com Published On :: Sat, 09 May 2020 08:37:00 -0400 Some Democrats took "Believe Women" literally until Joe Biden was accused. Now they're relearning that guilt-by-accusation doesn't serve justice. Full Article
ue Sequential Monte Carlo Samplers with Independent Markov Chain Monte Carlo Proposals By projecteuclid.org Published On :: Tue, 11 Jun 2019 04:00 EDT L. F. South, A. N. Pettitt, C. C. Drovandi. Source: Bayesian Analysis, Volume 14, Number 3, 773--796.Abstract: Sequential Monte Carlo (SMC) methods for sampling from the posterior of static Bayesian models are flexible, parallelisable and capable of handling complex targets. However, it is common practice to adopt a Markov chain Monte Carlo (MCMC) kernel with a multivariate normal random walk (RW) proposal in the move step, which can be both inefficient and detrimental for exploring challenging posterior distributions. We develop new SMC methods with independent proposals which allow recycling of all candidates generated in the SMC process and are embarrassingly parallelisable. A novel evidence estimator that is easily computed from the output of our independent SMC is proposed. Our independent proposals are constructed via flexible copula-type models calibrated with the population of SMC particles. We demonstrate through several examples that more precise estimates of posterior expectations and the marginal likelihood can be obtained using fewer likelihood evaluations than the more standard RW approach. Full Article
ue Control of Type I Error Rates in Bayesian Sequential Designs By projecteuclid.org Published On :: Wed, 13 Mar 2019 22:00 EDT Haolun Shi, Guosheng Yin. Source: Bayesian Analysis, Volume 14, Number 2, 399--425.Abstract: Bayesian approaches to phase II clinical trial designs are usually based on the posterior distribution of the parameter of interest and calibration of certain threshold for decision making. If the posterior probability is computed and assessed in a sequential manner, the design may involve the problem of multiplicity, which, however, is often a neglected aspect in Bayesian trial designs. To effectively maintain the overall type I error rate, we propose solutions to the problem of multiplicity for Bayesian sequential designs and, in particular, the determination of the cutoff boundaries for the posterior probabilities. We present both theoretical and numerical methods for finding the optimal posterior probability boundaries with $alpha$ -spending functions that mimic those of the frequentist group sequential designs. The theoretical approach is based on the asymptotic properties of the posterior probability, which establishes a connection between the Bayesian trial design and the frequentist group sequential method. The numerical approach uses a sandwich-type searching algorithm, which immensely reduces the computational burden. We apply least-square fitting to find the $alpha$ -spending function closest to the target. We discuss the application of our method to single-arm and double-arm cases with binary and normal endpoints, respectively, and provide a real trial example for each case. Full Article
ue Data Denoising and Post-Denoising Corrections in Single Cell RNA Sequencing By projecteuclid.org Published On :: Tue, 03 Mar 2020 04:00 EST Divyansh Agarwal, Jingshu Wang, Nancy R. Zhang. Source: Statistical Science, Volume 35, Number 1, 112--128.Abstract: Single cell sequencing technologies are transforming biomedical research. However, due to the inherent nature of the data, single cell RNA sequencing analysis poses new computational and statistical challenges. We begin with a survey of a selection of topics in this field, with a gentle introduction to the biology and a more detailed exploration of the technical noise. We consider in detail the problem of single cell data denoising, sometimes referred to as “imputation” in the relevant literature. We discuss why this is not a typical statistical imputation problem, and review current approaches to this problem. We then explore why the use of denoised values in downstream analyses invites novel statistical insights, and how denoising uncertainty should be accounted for to yield valid statistical inference. The utilization of denoised or imputed matrices in statistical inference is not unique to single cell genomics, and arises in many other fields. We describe the challenges in this type of analysis, discuss some preliminary solutions, and highlight unresolved issues. Full Article
ue Some Statistical Issues in Climate Science By projecteuclid.org Published On :: Tue, 03 Mar 2020 04:00 EST Michael L. Stein. Source: Statistical Science, Volume 35, Number 1, 31--41.Abstract: Climate science is a field that is arguably both data-rich and data-poor. Data rich in that huge and quickly increasing amounts of data about the state of the climate are collected every day. Data poor in that important aspects of the climate are still undersampled, such as the deep oceans and some characteristics of the upper atmosphere. Data rich in that modern climate models can produce climatological quantities over long time periods with global coverage, including quantities that are difficult to measure and under conditions for which there is no data presently. Data poor in that the correspondence between climate model output to the actual climate, especially for future climate change due to human activities, is difficult to assess. The scope for fruitful interactions between climate scientists and statisticians is great, but requires serious commitments from researchers in both disciplines to understand the scientific and statistical nuances arising from the complex relationships between the data and the real-world problems. This paper describes a small fraction of some of the intellectual challenges that occur at the interface between climate science and statistics, including inferences for extremes for processes with seasonality and long-term trends, the use of climate model ensembles for studying extremes, the scope for using new data sources for studying space-time characteristics of environmental processes and a discussion of non-Gaussian space-time process models for climate variables. The paper concludes with a call to the statistical community to become more engaged in one of the great scientific and policy issues of our time, anthropogenic climate change and its impacts. Full Article
ue Introduction to the Special Issue By projecteuclid.org Published On :: Tue, 03 Mar 2020 04:00 EST Source: Statistical Science, Volume 35, Number 1, 1--1. Full Article
ue Comment: “Models as Approximations I: Consequences Illustrated with Linear Regression” by A. Buja, R. Berk, L. Brown, E. George, E. Pitkin, L. Zhan and K. Zhang By projecteuclid.org Published On :: Wed, 08 Jan 2020 04:00 EST Roderick J. Little. Source: Statistical Science, Volume 34, Number 4, 580--583. Full Article
ue Models as Approximations I: Consequences Illustrated with Linear Regression By projecteuclid.org Published On :: Wed, 08 Jan 2020 04:00 EST Andreas Buja, Lawrence Brown, Richard Berk, Edward George, Emil Pitkin, Mikhail Traskin, Kai Zhang, Linda Zhao. Source: Statistical Science, Volume 34, Number 4, 523--544.Abstract: In the early 1980s, Halbert White inaugurated a “model-robust” form of statistical inference based on the “sandwich estimator” of standard error. This estimator is known to be “heteroskedasticity-consistent,” but it is less well known to be “nonlinearity-consistent” as well. Nonlinearity, however, raises fundamental issues because in its presence regressors are not ancillary, hence cannot be treated as fixed. The consequences are deep: (1) population slopes need to be reinterpreted as statistical functionals obtained from OLS fits to largely arbitrary joint ${x extrm{-}y}$ distributions; (2) the meaning of slope parameters needs to be rethought; (3) the regressor distribution affects the slope parameters; (4) randomness of the regressors becomes a source of sampling variability in slope estimates of order $1/sqrt{N}$; (5) inference needs to be based on model-robust standard errors, including sandwich estimators or the ${x extrm{-}y}$ bootstrap. In theory, model-robust and model-trusting standard errors can deviate by arbitrary magnitudes either way. In practice, significant deviations between them can be detected with a diagnostic test. Full Article
ue [Silhouette of a pregant woman smoking with death skull inside womb, 29 January 1994] / design: Biman Mullick. By search.wellcomelibrary.org Published On :: London, [29 January 1994] Full Article
ue Karachi Plague Committee in 1897. Album of photographs. By search.wellcomelibrary.org Published On :: 1897. Full Article
ue Fingolimod Rescues Demyelination in a Mouse Model of Krabbe's Disease By www.jneurosci.org Published On :: 2020-04-08 Sibylle BéchetApr 8, 2020; 40:3104-3118Neurobiology of Disease Full Article
ue An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and Vascular Cells of the Cerebral Cortex By www.jneurosci.org Published On :: 2014-09-03 Ye ZhangSep 3, 2014; 34:11929-11947Cellular Full Article
ue Correction: Sequerra, Goyal et al., "NMDA Receptor Signaling Is Important for Neural Tube Formation and for Preventing Antiepileptic Drug-Induced Neural Tube Defects" By www.jneurosci.org Published On :: 2018-11-28T09:30:21-08:00 Full Article
ue Neural Mechanisms of Visual Working Memory in Prefrontal Cortex of the Macaque By www.jneurosci.org Published On :: 1996-08-15 Earl K. MillerAug 15, 1996; 16:5154-5167Articles Full Article
ue Effects of Attention on Orientation-Tuning Functions of Single Neurons in Macaque Cortical Area V4 By www.jneurosci.org Published On :: 1999-01-01 Carrie J. McAdamsJan 1, 1999; 19:431-441Articles Full Article
ue Pax6, Tbr2, and Tbr1 Are Expressed Sequentially by Radial Glia, Intermediate Progenitor Cells, and Postmitotic Neurons in Developing Neocortex By www.jneurosci.org Published On :: 2005-01-05 Chris EnglundJan 5, 2005; 25:247-251BRIEF COMMUNICATION Full Article
ue Linearity and Normalization in Simple Cells of the Macaque Primary Visual Cortex By www.jneurosci.org Published On :: 1997-11-01 Matteo CarandiniNov 1, 1997; 17:8621-8644Articles Full Article
ue High-Level Neuronal Expression of A{beta}1-42 in Wild-Type Human Amyloid Protein Precursor Transgenic Mice: Synaptotoxicity without Plaque Formation By www.jneurosci.org Published On :: 2000-06-01 Lennart MuckeJun 1, 2000; 20:4050-4058Cellular Full Article