cr

Create the Change You Seek with Jonah Berger

Jonah Berger is a marketing professor at the Wharton School at the University of Pennsylvania and internationally bestselling author of Contagious, Invisible Influence, and The Catalyst. Dr. Berger is a world-renowned expert on change, word of mouth, influence, consumer behavior, and how products, ideas, and behaviors catch on. He has published over 50 articles in top‐tier academic journals, teaches Wharton’s highest rated online course, and popular outlets like The New York Times and Harvard Business Review often cover his work. He’s keynoted hundred of events, and often consults for organizations like Google, Apple, Nike, and the Gates Foundation. Enjoy! FOLLOW JONAH: instagram | twitter | website Listen to the Podcast Subscribe   Watch the Episode This podcast is brought to you by CreativeLive. CreativeLive is the world’s largest hub for online creative education in photo/video, art/design, music/audio, craft/maker, money/life and the ability to make a living in any of those disciplines. They are high quality, highly curated classes taught by the world’s top experts — Pulitzer, Oscar, Grammy Award winners, New York Times best selling authors and the best entrepreneurs of our times.

The post Create the Change You Seek with Jonah Berger appeared first on Chase Jarvis Photography.




cr

TrailBuddy: Using AI to Create a Predictive Trail Conditions App

Viget is full of outdoor enthusiasts and, of course, technologists. For this year's Pointless Weekend, we brought these passions together to build TrailBuddy. This app aims to solve that eternal question: Is my favorite trail dry so I can go hike/run/ride?

While getting muddy might rekindle fond childhood memories for some, exposing your gear to the elements isn’t great – it’s bad for your equipment and can cause long-term, and potentially expensive, damage to the trail.

There are some trail apps out there but we wanted one that would focus on current conditions. Currently, our favorites trail apps, like mtbproject.com, trailrunproject.com, and hikingproject.com -- all owned by REI, rely on user-reported conditions. While this can be effective, the reports are frequently unreliable, as condition reports can become outdated in just a few days.

Our goal was to solve this problem by building an app that brought together location, soil type, and weather history data to create on-demand condition predictions for any trail in the US.

We built an initial version of TrailBuddy by tapping into several readily-available APIs, then running the combined data through a machine learning algorithm. (Oh, and also by bringing together a bunch of smart and motivated people and combining them with pizza and some of the magic that is our Pointless Weekends. We'll share the other Pointless Project, Scurry, with you soon.)

The quest for data.

We knew from the start this app would require data from a number of sources. As previously mentioned, we used REI’s APIs (i.e. https://www.hikingproject.com/data) as the source for basic trail information. We used the trails’ latitude and longitude coordinates as well as its elevation to query weather and soil type. We also found data points such as a trail’s total distance to be relevant to our app users and decided to include that on the front-end, too. Since we wanted to go beyond relying solely on user-reported metrics, which is how REI’s current MTB project works, we came up with a list of factors that could affect the trail for that day.

First on that list was weather.

We not only considered the impacts of the current forecast, but we also looked at the previous day’s forecast. For example, it’s safe to assume that if it’s currently raining or had been raining over the last several days, it would likely lead to muddy and unfavorable conditions for that trail. We utilized the DarkSky API (https://darksky.net/dev) to get the weather forecasts for that day, as well as the records for previous days. This included expected information, like temperature and precipitation chance. It also included some interesting data points that we realized may be factors, like precipitation intensity, cloud cover, and UV index. 

But weather alone can’t predict how muddy or dry a trail will be. To determine that for sure, we also wanted to use soil data to help predict how well a trail’s unique soil composition recovers after precipitation. Similar amounts of rain on trails of very different soil types could lead to vastly different trail conditions. A more clay-based soil would hold water much longer, and therefore be much more unfavorable, than loamy soil. Finding a reliable source for soil type and soil drainage proved incredibly difficult. After many hours, we finally found a source through the USDA that we could use. As a side note—the USDA keeps track of lots of data points on soil information that’s actually pretty interesting! We can’t say we’re soil experts but, we felt like we got pretty close.

We used Whimsical to build our initial wireframes.

Putting our design hats on.

From the very first pitch for this app, TrailBuddy’s main differentiator to peer trail resources is its ability to surface real-time information, reliably, and simply. For as complicated as the technology needed to collect and interpret information, the front-end app design needed to be clean and unencumbered.

We thought about how users would naturally look for information when setting out to find a trail and what factors they’d think about when doing so. We posed questions like:

  • How easy or difficult of a trail are they looking for?
  • How long is this trail?
  • What does the trail look like?
  • How far away is the trail in relation to my location?
  • For what activity am I needing a trail for?
  • Is this a trail I’d want to come back to in the future?

By putting ourselves in our users’ shoes we quickly identified key features TrailBuddy needed to have to be relevant and useful. First, we needed filtering, so users could filter between difficulty and distance to narrow down their results to fit the activity level. Next, we needed a way to look up trails by activity type—mountain biking, hiking, and running are all types of activities REI’s MTB API tracks already so those made sense as a starting point. And lastly, we needed a way for the app to find trails based on your location; or at the very least the ability to find a trail within a certain distance of your current location.

We used Figma to design, prototype, and gather feedback on TrailBuddy.

Using machine learning to predict trail conditions.

As stated earlier, none of us are actual soil or data scientists. So, in order to achieve the real-time conditions reporting TrailBuddy promised, we’d decided to leverage machine learning to make predictions for us. Digging into the utility of machine learning was a first for all of us on this team. Luckily, there was an excellent tutorial that laid out the basics of building an ML model in Python. Provided a CSV file with inputs in the left columns, and the desired output on the right, the script we generated was able to test out multiple different model strategies, and output the effectiveness of each in predicting results, shown below.

We assembled all of the historical weather and soil data we could find for a given latitude/longitude coordinate, compiled a 1000 * 100 sized CSV, ran it through the Python evaluator, and found that the CART and SVM models consistently outranked the others in terms of predicting trail status. In other words, we found a working model for which to run our data through and get (hopefully) reliable predictions from. The next step was to figure out which data fields were actually critical in predicting the trail status. The more we could refine our data set, the faster and smarter our predictive model could become.

We pulled in some Ruby code to take the original (and quite massive) CSV, and output smaller versions to test with. Now again, we’re no data scientists here but, we were able to cull out a good majority of the data and still get a model that performed at 95% accuracy.

With our trained model in hand, we could serialize that to into a model.pkl file (pkl stands for “pickle”, as in we’ve “pickled” the model), move that file into our Rails app along with it a python script to deserialize it, pass in a dynamic set of data, and generate real-time predictions. At the end of the day, our model has a propensity to predict fantastic trail conditions (about 99% of the time in fact…). Just one of those optimistic machine learning models we guess.

Where we go from here.

It was clear that after two days, our team still wanted to do more. As a first refinement, we’d love to work more with our data set and ML model. Something that was quite surprising during the weekend was that we found we could remove all but two days worth of weather data, and all of the soil data we worked so hard to dig up, and still hit 95% accuracy. Which … doesn’t make a ton of sense. Perhaps the data we chose to predict trail conditions just isn’t a great empirical predictor of trail status. While these are questions too big to solve in just a single weekend, we'd love to spend more time digging into this in a future iteration.



  • News & Culture

cr

Pursuing A Professional Certification In Scrum

Professional certifications have become increasingly popular in this age of career switchers and the freelance gig economy. A certification can be a useful way to advance your skill set quickly or make your resume stand out, which can be especially important for those trying to break into a new industry or attract business while self-employed. Whatever your reason may be for pursuing a professional certificate, there is one question only you can answer for yourself: is it worth it?

Finding first-hand experiences from professionals with similar career goals and passions was the most helpful research I used to answer that question for myself. So, here’s mine; why I decided to get Scrum certified, how I evaluated my options, and if it was really worth it.

A shift in mindset

My background originates in brand strategy where it’s typical for work to follow a predictable order, each step informing the next. This made linear techniques like water-fall timelines, completing one phase of work in its entirety before moving onto the next, and documenting granular tasks weeks in advance helpful and easy to implement. When I made the move to more digitally focused work, tasks followed a much looser set of ‘typical’ milestones. While the general outline remained the same (strategy, design, development, launch) there was a lot more overlap with how tasks informed each other, and would keep informing and re-informing as an iterative workflow would encourage.

Trying to fit a very fluid process into my very stiff linear approach to project planning didn’t work so well. I didn’t have the right strategies to manage risks in a productive way without feeling like the whole project was off track; with the habit of account for granular details all the time, I struggled to lean on others to help define what we should work on and when, and being okay if that changed once, or twice, or three times. Everything I learned about the process of product development came from learning on the job and making a ton of mistakes—and I knew I wanted to get better.

Photo by Christin Hume on Unsplash

I was fortunate enough to work with a group of developers who were looking to make a change, too. Being ‘agile’-enthusiasts, this group of developers were desperately looking for ways to infuse our approach to product work with agile-minded principles (the broad definition of ‘agile’ comes from ‘The Agile Manifesto’, which has influenced frameworks for organizing people and information, often applied in product development). This not only applied to how I worked with them, but how they worked with each other, and the way we all onboarded clients to these new expectations. This was a huge eye opener to me. Soon enough, I started applying these agile strategies to my day-to-day— running stand-ups, setting up backlogs, and reorganizing the way I thought about work output. It’s from this experience that I decided it may be worth learning these principles more formally.

The choice to get certified

There is a lot of literature out there about agile methodologies and a lot to be learned from casual research. This benefitted me for a while until I started to work on more complicated projects, or projects with more ambitious feature requests. My decision to ultimately pursue a formal agile certification really came down to three things:

  1. An increased use of agile methods across my team. Within my day-to-day I would encounter more team members who were familiar with these tactics and wanted to use them to structure the projects they worked on.
  2. The need for a clear definition of what processes to follow. I needed to grasp a real understanding of how to implement agile processes and stay consistent with using them to be an effective champion of these principles.
  3. Being able to diversify my experience. Finding ways to differentiate my resume from others with similar experience would be an added benefit to getting a certification. If nothing else, it would demonstrate that I’m curious-minded and proactive about my career.

To achieve these things, I gravitated towards a more foundational education in a specific agile-methodology. This made Scrum the most logical choice given it’s the basis for many of the agile strategies out there and its dominance in the field.

Evaluating all the options

For Scrum education and certification, there are really two major players to consider.

  1. Scrum Alliance - Probably the most well known Scrum organization is Scrum Alliance. They are a highly recognizable organization that does a lot to further the broader understanding of Scrum as a practice.
  2. Scrum.org - Led by the original co-founder of Scrum, Ken Schwaber, Scrum.org is well-respected and touted for its authority in the industry.

Each has their own approach to teaching and awarding certifications as well as differences in price point and course style that are important to be aware of.

SCRUM ALLIANCE

Pros

  • Strong name recognition and leaders in the Scrum field
  • Offers both in-person and online courses
  • Hosts in-person events, webinars, and global conferences
  • Provides robust amounts of educational resources for its members
  • Has specialization tracks for folks looking to apply Scrum to their specific discipline
  • Members are required to keep their skills up to date by earning educational credits throughout the year to retain their certification
  • Consistent information across all course administrators ensuring you'll be set up to succeed when taking your certification test.

Cons

  • High cost creates a significant barrier to entry (we’re talking in the thousands of dollars here)
  • Courses are required to take the certification test
  • Certification expires after two years, requiring additional investment in time and/or money to retain credentials
  • Difficult to find sample course material ahead of committing to a course
  • Courses are several days long which may mean taking time away from a day job to complete them

SCRUM.ORG

Pros

  • Strong clout due to its founder, Ken Schwaber, who is the originator of Scrum
  • Offers in-person classes and self-paced options
  • Hosts in-person events and meetups around the world
  • Provides free resources and materials to the public, including practice tests
  • Has specialization tracks for folks looking to apply Scrum to their specific discipline
  • Minimum score on certification test required to pass; certification lasts for life
  • Lower cost for certification when compared to peers

Cons

  • Much lesser known to the general public, as compared to its counterpart
  • Less sophisticated educational resources (mostly confined to PDFs or online forums) making digesting the material challenging
  • Practice tests are slightly out of date making them less effective as a study tool
  • Self-paced education is not structured and therefore can’t ensure you’re learning everything you need to know for the test
  • Lack of active and engaging community will leave something to be desired

Before coming to a decision, it was helpful to me to weigh these pros and cons against a set of criteria. Here’s a helpful scorecard I used to compare the two institutions.

Scrum Alliance Scrum.org
Affordability ⚪⚪⚪
Rigor⚪⚪⚪⚪⚪
Reputation⚪⚪⚪⚪⚪
Recognition⚪⚪⚪
Community⚪⚪⚪
Access⚪⚪⚪⚪⚪
Flexibility⚪⚪⚪
Specialization⚪⚪⚪⚪⚪⚪
Requirements⚪⚪⚪
Longevity⚪⚪⚪

For me, the four areas that were most important to me were:

  • Affordability - I’d be self-funding this certificate so the investment of cost would need to be manageable.
  • Self-paced - Not having a lot of time to devote in one sitting, the ability to chip away at coursework was appealing to me.
  • Reputation - Having a certificate backed by a well-respected institution was important to me if I was going to put in the time to achieve this credential.
  • Access - Because I wanted to be a champion for this framework for others in my organization, having access to resources and materials would help me do that more effectively.

Ultimately, I decided upon a Professional Scrum Master certification from Scrum.org! The price and flexibility of learning course content were most important to me. I found a ton of free materials on Scrum.org that I could study myself and their practice tests gave me a good idea of how well I was progressing before I committed to the cost of actually taking the test. And, the pedigree of certification felt comparable to that of Scrum Alliance, especially considering that the founder of Scrum himself ran the organization.

Putting a certificate to good use

I don’t work in a formal Agile company, and not everyone I work with knows the ins and outs of Scrum. I didn’t use my certification to leverage a career change or new job title. So after all that time, money, and energy, was it worth it?

I think so. I feel like I use my certification every day and employ many of the principles of Scrum in my day-to-day management of projects and people.

  • Self-organizing teams is really important when fostering trust and collaboration among project members. This means leaning on each other’s past experiences and lessons learned to inform our own approach to work. It also means taking a step back as a project manager to recognize the strengths on your team and trust their lead.
  • Approaching things in bite size pieces is also a best practice I use every day. Even when there isn't a mandated sprint rhythm, breaking things down into effort level, goals, and requirements is an excellent way to approach work confidently and avoid getting too overwhelmed.
  • Retrospectives and stand ups are also absolute musts for Scrum practices, and these can be modified to work for companies and project teams of all shapes and sizes. Keeping a practice of collective communication and reflection will keep a team humming and provides a safe space to vent and improve.
Photo by Gautam Lakum on Unsplash

Parting advice

I think furthering your understanding of industry standards and keeping yourself open to new ways of working will always benefit you as a professional. Professional certifications are readily available and may be more relevant than ever.

If you’re on this path, good luck! And here are some things to consider:

  • Do your research – With so many educational institutions out there, you can definitely find the right one for you, with the level of rigor you’re looking for.
  • Look for company credits or incentives – some companies cover part or all of the cost for continuing education.
  • Get started ASAP – You don’t need a full certification to start implementing small tactics to your workflows. Implementing learnings gradually will help you determine if it’s really something you want to pursue more formally.





cr

Non-associative Frobenius algebras for simply laced Chevalley groups. (arXiv:2005.02625v1 [math.RA] CROSS LISTED)

We provide an explicit construction for a class of commutative, non-associative algebras for each of the simple Chevalley groups of simply laced type. Moreover, we equip these algebras with an associating bilinear form, which turns them into Frobenius algebras. This class includes a 3876-dimensional algebra on which the Chevalley group of type E8 acts by automorphisms. We also prove that these algebras admit the structure of (axial) decomposition algebras.




cr

The entropy of holomorphic correspondences: exact computations and rational semigroups. (arXiv:2004.13691v1 [math.DS] CROSS LISTED)

We study two notions of topological entropy of correspondences introduced by Friedland and Dinh-Sibony. Upper bounds are known for both. We identify a class of holomorphic correspondences whose entropy in the sense of Dinh-Sibony equals the known upper bound. This provides an exact computation of the entropy for rational semigroups. We also explore a connection between these two notions of entropy.




cr

Convergent normal forms for five dimensional totally nondegenerate CR manifolds in C^4. (arXiv:2004.11251v2 [math.CV] UPDATED)

Applying the equivariant moving frames method, we construct convergent normal forms for real-analytic 5-dimensional totally nondegenerate CR submanifolds of C^4. These CR manifolds are divided into several biholomorphically inequivalent subclasses, each of which has its own complete normal form. Moreover it is shown that, biholomorphically, Beloshapka's cubic model is the unique member of this class with the maximum possible dimension seven of the corresponding algebra of infinitesimal CR automorphisms. Our results are also useful in the study of biholomorphic equivalence problem between CR manifolds, in question.




cr

Groups up to congruence relation and from categorical groups to c-crossed modules. (arXiv:2005.03601v1 [math.CT])

We introduce a notion of c-group, which is a group up to congruence relation and consider the corresponding category. Extensions, actions and crossed modules (c-crossed modules) are defined in this category and the semi-direct product is constructed. We prove that each categorical group gives rise to c-groups and to a c-crossed module, which is a connected, special and strict c-crossed module in the sense defined by us. The results obtained here will be applied in the proof of an equivalence of the categories of categorical groups and connected, special and strict c-crossed modules.




cr

$k$-Critical Graphs in $P_5$-Free Graphs. (arXiv:2005.03441v1 [math.CO])

Given two graphs $H_1$ and $H_2$, a graph $G$ is $(H_1,H_2)$-free if it contains no induced subgraph isomorphic to $H_1$ or $H_2$. Let $P_t$ be the path on $t$ vertices. A graph $G$ is $k$-vertex-critical if $G$ has chromatic number $k$ but every proper induced subgraph of $G$ has chromatic number less than $k$. The study of $k$-vertex-critical graphs for graph classes is an important topic in algorithmic graph theory because if the number of such graphs that are in a given hereditary graph class is finite, then there is a polynomial-time algorithm to decide if a graph in the class is $(k-1)$-colorable.

In this paper, we initiate a systematic study of the finiteness of $k$-vertex-critical graphs in subclasses of $P_5$-free graphs. Our main result is a complete classification of the finiteness of $k$-vertex-critical graphs in the class of $(P_5,H)$-free graphs for all graphs $H$ on 4 vertices. To obtain the complete dichotomy, we prove the finiteness for four new graphs $H$ using various techniques -- such as Ramsey-type arguments and the dual of Dilworth's Theorem -- that may be of independent interest.




cr

A regularity criterion of the 3D MHD equations involving one velocity and one current density component in Lorentz. (arXiv:2005.03377v1 [math.AP])

In this paper, we study the regularity criterion of weak solutions to the three-dimensional (3D) MHD equations. It is proved that the solution $(u,b)$ becomes regular provided that one velocity and one current density component of the solution satisfy% egin{equation} u_{3}in L^{frac{30alpha }{7alpha -45}}left( 0,T;L^{alpha ,infty }left( mathbb{R}^{3} ight) ight) ext{ with }frac{45}{7}% leq alpha leq infty , label{eq01} end{equation}% and egin{equation} j_{3}in L^{frac{2eta }{2eta -3}}left( 0,T;L^{eta ,infty }left( mathbb{R}^{3} ight) ight) ext{ with }frac{3}{2}leq eta leq infty , label{eq02} end{equation}% which generalize some known results.




cr

Pointwise densities of homogeneous Cantor measure and critical values. (arXiv:2005.03269v1 [math.DS])

Let $Nge 2$ and $ hoin(0,1/N^2]$. The homogenous Cantor set $E$ is the self-similar set generated by the iterated function system

[

left{f_i(x)= ho x+frac{i(1- ho)}{N-1}: i=0,1,ldots, N-1 ight}.

]

Let $s=dim_H E$ be the Hausdorff dimension of $E$, and let $mu=mathcal H^s|_E$ be the $s$-dimensional Hausdorff measure restricted to $E$. In this paper we describe, for each $xin E$, the pointwise lower $s$-density $Theta_*^s(mu,x)$ and upper $s$-density $Theta^{*s}(mu, x)$ of $mu$ at $x$. This extends some early results of Feng et al. (2000). Furthermore, we determine two critical values $a_c$ and $b_c$ for the sets

[

E_*(a)=left{xin E: Theta_*^s(mu, x)ge a ight}quad extrm{and}quad E^*(b)=left{xin E: Theta^{*s}(mu, x)le b ight}

] respectively, such that $dim_H E_*(a)>0$ if and only if $a<a_c$, and that $dim_H E^*(b)>0$ if and only if $b>b_c$. We emphasize that both values $a_c$ and $b_c$ are related to the Thue-Morse type sequences, and our strategy to find them relies on ideas from open dynamics and techniques from combinatorics on words.




cr

A Chance Constraint Predictive Control and Estimation Framework for Spacecraft Descent with Field Of View Constraints. (arXiv:2005.03245v1 [math.OC])

Recent studies of optimization methods and GNC of spacecraft near small bodies focusing on descent, landing, rendezvous, etc., with key safety constraints such as line-of-sight conic zones and soft landings have shown promising results; this paper considers descent missions to an asteroid surface with a constraint that consists of an onboard camera and asteroid surface markers while using a stochastic convex MPC law. An undermodeled asteroid gravity and spacecraft technology inspired measurement model is established to develop the constraint. Then a computationally light stochastic Linear Quadratic MPC strategy is presented to keep the spacecraft in satisfactory field of view of the surface markers while trajectory tracking, employing chance based constraints and up-to-date estimation uncertainty from navigation. The estimation uncertainty giving rise to the tightened constraints is particularly addressed. Results suggest robust tracking performance across a variety of trajectories.




cr

GraphBLAST: A High-Performance Linear Algebra-based Graph Framework on the GPU. (arXiv:1908.01407v3 [cs.DC] CROSS LISTED)

High-performance implementations of graph algorithms are challenging to implement on new parallel hardware such as GPUs, because of three challenges: (1) difficulty of coming up with graph building blocks, (2) load imbalance on parallel hardware, and (3) graph problems having low arithmetic intensity. To address these challenges, GraphBLAS is an innovative, on-going effort by the graph analytics community to propose building blocks based in sparse linear algebra, which will allow graph algorithms to be expressed in a performant, succinct, composable and portable manner. In this paper, we examine the performance challenges of a linear algebra-based approach to building graph frameworks and describe new design principles for overcoming these bottlenecks. Among the new design principles is exploiting input sparsity, which allows users to write graph algorithms without specifying push and pull direction. Exploiting output sparsity allows users to tell the backend which values of the output in a single vectorized computation they do not want computed. Load-balancing is an important feature for balancing work amongst parallel workers. We describe the important load-balancing features for handling graphs with different characteristics. The design principles described in this paper have been implemented in "GraphBLAST", the first open-source linear algebra-based graph framework on GPU targeting high-performance computing. The results show that on a single GPU, GraphBLAST has on average at least an order of magnitude speedup over previous GraphBLAS implementations SuiteSparse and GBTL, comparable performance to the fastest GPU hardwired primitives and shared-memory graph frameworks Ligra and Gunrock, and better performance than any other GPU graph framework, while offering a simpler and more concise programming model.




cr

Towards Embodied Scene Description. (arXiv:2004.14638v2 [cs.RO] UPDATED)

Embodiment is an important characteristic for all intelligent agents (creatures and robots), while existing scene description tasks mainly focus on analyzing images passively and the semantic understanding of the scenario is separated from the interaction between the agent and the environment. In this work, we propose the Embodied Scene Description, which exploits the embodiment ability of the agent to find an optimal viewpoint in its environment for scene description tasks. A learning framework with the paradigms of imitation learning and reinforcement learning is established to teach the intelligent agent to generate corresponding sensorimotor activities. The proposed framework is tested on both the AI2Thor dataset and a real world robotic platform demonstrating the effectiveness and extendability of the developed method.




cr

Self-Attention with Cross-Lingual Position Representation. (arXiv:2004.13310v2 [cs.CL] UPDATED)

Position encoding (PE), an essential part of self-attention networks (SANs), is used to preserve the word order information for natural language processing tasks, generating fixed position indices for input sequences. However, in cross-lingual scenarios, e.g. machine translation, the PEs of source and target sentences are modeled independently. Due to word order divergences in different languages, modeling the cross-lingual positional relationships might help SANs tackle this problem. In this paper, we augment SANs with emph{cross-lingual position representations} to model the bilingually aware latent structure for the input sentence. Specifically, we utilize bracketing transduction grammar (BTG)-based reordering information to encourage SANs to learn bilingual diagonal alignments. Experimental results on WMT'14 English$Rightarrow$German, WAT'17 Japanese$Rightarrow$English, and WMT'17 Chinese$Leftrightarrow$English translation tasks demonstrate that our approach significantly and consistently improves translation quality over strong baselines. Extensive analyses confirm that the performance gains come from the cross-lingual information.




cr

Cross-Lingual Semantic Role Labeling with High-Quality Translated Training Corpus. (arXiv:2004.06295v2 [cs.CL] UPDATED)

Many efforts of research are devoted to semantic role labeling (SRL) which is crucial for natural language understanding. Supervised approaches have achieved impressing performances when large-scale corpora are available for resource-rich languages such as English. While for the low-resource languages with no annotated SRL dataset, it is still challenging to obtain competitive performances. Cross-lingual SRL is one promising way to address the problem, which has achieved great advances with the help of model transferring and annotation projection. In this paper, we propose a novel alternative based on corpus translation, constructing high-quality training datasets for the target languages from the source gold-standard SRL annotations. Experimental results on Universal Proposition Bank show that the translation-based method is highly effective, and the automatic pseudo datasets can improve the target-language SRL performances significantly.




cr

PACT: Privacy Sensitive Protocols and Mechanisms for Mobile Contact Tracing. (arXiv:2004.03544v4 [cs.CR] UPDATED)

The global health threat from COVID-19 has been controlled in a number of instances by large-scale testing and contact tracing efforts. We created this document to suggest three functionalities on how we might best harness computing technologies to supporting the goals of public health organizations in minimizing morbidity and mortality associated with the spread of COVID-19, while protecting the civil liberties of individuals. In particular, this work advocates for a third-party free approach to assisted mobile contact tracing, because such an approach mitigates the security and privacy risks of requiring a trusted third party. We also explicitly consider the inferential risks involved in any contract tracing system, where any alert to a user could itself give rise to de-anonymizing information.

More generally, we hope to participate in bringing together colleagues in industry, academia, and civil society to discuss and converge on ideas around a critical issue rising with attempts to mitigate the COVID-19 pandemic.




cr

Toward Improving the Evaluation of Visual Attention Models: a Crowdsourcing Approach. (arXiv:2002.04407v2 [cs.CV] UPDATED)

Human visual attention is a complex phenomenon. A computational modeling of this phenomenon must take into account where people look in order to evaluate which are the salient locations (spatial distribution of the fixations), when they look in those locations to understand the temporal development of the exploration (temporal order of the fixations), and how they move from one location to another with respect to the dynamics of the scene and the mechanics of the eyes (dynamics). State-of-the-art models focus on learning saliency maps from human data, a process that only takes into account the spatial component of the phenomenon and ignore its temporal and dynamical counterparts. In this work we focus on the evaluation methodology of models of human visual attention. We underline the limits of the current metrics for saliency prediction and scanpath similarity, and we introduce a statistical measure for the evaluation of the dynamics of the simulated eye movements. While deep learning models achieve astonishing performance in saliency prediction, our analysis shows their limitations in capturing the dynamics of the process. We find that unsupervised gravitational models, despite of their simplicity, outperform all competitors. Finally, exploiting a crowd-sourcing platform, we present a study aimed at evaluating how strongly the scanpaths generated with the unsupervised gravitational models appear plausible to naive and expert human observers.




cr

Provenance for the Description Logic ELHr. (arXiv:2001.07541v2 [cs.LO] UPDATED)

We address the problem of handling provenance information in ELHr ontologies. We consider a setting recently introduced for ontology-based data access, based on semirings and extending classical data provenance, in which ontology axioms are annotated with provenance tokens. A consequence inherits the provenance of the axioms involved in deriving it, yielding a provenance polynomial as an annotation. We analyse the semantics for the ELHr case and show that the presence of conjunctions poses various difficulties for handling provenance, some of which are mitigated by assuming multiplicative idempotency of the semiring. Under this assumption, we study three problems: ontology completion with provenance, computing the set of relevant axioms for a consequence, and query answering.




cr

Intra-Variable Handwriting Inspection Reinforced with Idiosyncrasy Analysis. (arXiv:1912.12168v2 [cs.CV] UPDATED)

In this paper, we work on intra-variable handwriting, where the writing samples of an individual can vary significantly. Such within-writer variation throws a challenge for automatic writer inspection, where the state-of-the-art methods do not perform well. To deal with intra-variability, we analyze the idiosyncrasy in individual handwriting. We identify/verify the writer from highly idiosyncratic text-patches. Such patches are detected using a deep recurrent reinforcement learning-based architecture. An idiosyncratic score is assigned to every patch, which is predicted by employing deep regression analysis. For writer identification, we propose a deep neural architecture, which makes the final decision by the idiosyncratic score-induced weighted average of patch-based decisions. For writer verification, we propose two algorithms for patch-fed deep feature aggregation, which assist in authentication using a triplet network. The experiments were performed on two databases, where we obtained encouraging results.




cr

A Fast and Accurate Algorithm for Spherical Harmonic Analysis on HEALPix Grids with Applications to the Cosmic Microwave Background Radiation. (arXiv:1904.10514v4 [math.NA] UPDATED)

The Hierarchical Equal Area isoLatitude Pixelation (HEALPix) scheme is used extensively in astrophysics for data collection and analysis on the sphere. The scheme was originally designed for studying the Cosmic Microwave Background (CMB) radiation, which represents the first light to travel during the early stages of the universe's development and gives the strongest evidence for the Big Bang theory to date. Refined analysis of the CMB angular power spectrum can lead to revolutionary developments in understanding the nature of dark matter and dark energy. In this paper, we present a new method for performing spherical harmonic analysis for HEALPix data, which is a central component to computing and analyzing the angular power spectrum of the massive CMB data sets. The method uses a novel combination of a non-uniform fast Fourier transform, the double Fourier sphere method, and Slevinsky's fast spherical harmonic transform (Slevinsky, 2019). For a HEALPix grid with $N$ pixels (points), the computational complexity of the method is $mathcal{O}(Nlog^2 N)$, with an initial set-up cost of $mathcal{O}(N^{3/2}log N)$. This compares favorably with $mathcal{O}(N^{3/2})$ runtime complexity of the current methods available in the HEALPix software when multiple maps need to be analyzed at the same time. Using numerical experiments, we demonstrate that the new method also appears to provide better accuracy over the entire angular power spectrum of synthetic data when compared to the current methods, with a convergence rate at least two times higher.




cr

Fast Cross-validation in Harmonic Approximation. (arXiv:1903.10206v3 [math.NA] UPDATED)

Finding a good regularization parameter for Tikhonov regularization problems is a though yet often asked question. One approach is to use leave-one-out cross-validation scores to indicate the goodness of fit. This utilizes only the noisy function values but, on the downside, comes with a high computational cost. In this paper we present a general approach to shift the main computations from the function in question to the node distribution and, making use of FFT and FFT-like algorithms, even reduce this cost tremendously to the cost of the Tikhonov regularization problem itself. We apply this technique in different settings on the torus, the unit interval, and the two-dimensional sphere. Given that the sampling points satisfy a quadrature rule our algorithm computes the cross-validations scores in floating-point precision. In the cases of arbitrarily scattered nodes we propose an approximating algorithm with the same complexity. Numerical experiments indicate the applicability of our algorithms.




cr

Asymptotic expansions of eigenvalues by both the Crouzeix-Raviart and enriched Crouzeix-Raviart elements. (arXiv:1902.09524v2 [math.NA] UPDATED)

Asymptotic expansions are derived for eigenvalues produced by both the Crouzeix-Raviart element and the enriched Crouzeix--Raviart element. The expansions are optimal in the sense that extrapolation eigenvalues based on them admit a fourth order convergence provided that exact eigenfunctions are smooth enough. The major challenge in establishing the expansions comes from the fact that the canonical interpolation of both nonconforming elements lacks a crucial superclose property, and the nonconformity of both elements. The main idea is to employ the relation between the lowest-order mixed Raviart--Thomas element and the two nonconforming elements, and consequently make use of the superclose property of the canonical interpolation of the lowest-order mixed Raviart--Thomas element. To overcome the difficulty caused by the nonconformity, the commuting property of the canonical interpolation operators of both nonconforming elements is further used, which turns the consistency error problem into an interpolation error problem. Then, a series of new results are obtained to show the final expansions.




cr

ZebraLancer: Decentralized Crowdsourcing of Human Knowledge atop Open Blockchain. (arXiv:1803.01256v5 [cs.HC] UPDATED)

We design and implement the first private and anonymous decentralized crowdsourcing system ZebraLancer, and overcome two fundamental challenges of decentralizing crowdsourcing, i.e., data leakage and identity breach.

First, our outsource-then-prove methodology resolves the tension between the blockchain transparency and the data confidentiality to guarantee the basic utilities/fairness requirements of data crowdsourcing, thus ensuring: (i) a requester will not pay more than what data deserve, according to a policy announced when her task is published via the blockchain; (ii) each worker indeed gets a payment based on the policy, if he submits data to the blockchain; (iii) the above properties are realized not only without a central arbiter, but also without leaking the data to the open blockchain. Second, the transparency of blockchain allows one to infer private information about workers and requesters through their participation history. Simply enabling anonymity is seemingly attempting but will allow malicious workers to submit multiple times to reap rewards. ZebraLancer also overcomes this problem by allowing anonymous requests/submissions without sacrificing accountability. The idea behind is a subtle linkability: if a worker submits twice to a task, anyone can link the submissions, or else he stays anonymous and unlinkable across tasks. To realize this delicate linkability, we put forward a novel cryptographic concept, i.e., the common-prefix-linkable anonymous authentication. We remark the new anonymous authentication scheme might be of independent interest. Finally, we implement our protocol for a common image annotation task and deploy it in a test net of Ethereum. The experiment results show the applicability of our protocol atop the existing real-world blockchain.




cr

Defending Hardware-based Malware Detectors against Adversarial Attacks. (arXiv:2005.03644v1 [cs.CR])

In the era of Internet of Things (IoT), Malware has been proliferating exponentially over the past decade. Traditional anti-virus software are ineffective against modern complex Malware. In order to address this challenge, researchers have proposed Hardware-assisted Malware Detection (HMD) using Hardware Performance Counters (HPCs). The HPCs are used to train a set of Machine learning (ML) classifiers, which in turn, are used to distinguish benign programs from Malware. Recently, adversarial attacks have been designed by introducing perturbations in the HPC traces using an adversarial sample predictor to misclassify a program for specific HPCs. These attacks are designed with the basic assumption that the attacker is aware of the HPCs being used to detect Malware. Since modern processors consist of hundreds of HPCs, restricting to only a few of them for Malware detection aids the attacker. In this paper, we propose a Moving target defense (MTD) for this adversarial attack by designing multiple ML classifiers trained on different sets of HPCs. The MTD randomly selects a classifier; thus, confusing the attacker about the HPCs or the number of classifiers applied. We have developed an analytical model which proves that the probability of an attacker to guess the perfect HPC-classifier combination for MTD is extremely low (in the range of $10^{-1864}$ for a system with 20 HPCs). Our experimental results prove that the proposed defense is able to improve the classification accuracy of HPC traces that have been modified through an adversarial sample generator by up to 31.5%, for a near perfect (99.4%) restoration of the original accuracy.




cr

COVID-19 Contact-tracing Apps: A Survey on the Global Deployment and Challenges. (arXiv:2005.03599v1 [cs.CR])

In response to the coronavirus disease (COVID-19) outbreak, there is an ever-increasing number of national governments that are rolling out contact-tracing Apps to aid the containment of the virus. The first hugely contentious issue facing the Apps is the deployment framework, i.e. centralised or decentralised. Based on this, the debate branches out to the corresponding technologies that underpin these architectures, i.e. GPS, QR codes, and Bluetooth. This work conducts a pioneering review of the above scenarios and contributes a geolocation mapping of the current deployment. The vulnerabilities and the directions of research are identified, with a special focus on the Bluetooth-based decentralised scheme.




cr

QuickSync: A Quickly Synchronizing PoS-Based Blockchain Protocol. (arXiv:2005.03564v1 [cs.CR])

To implement a blockchain, we need a blockchain protocol for all the nodes to follow. To design a blockchain protocol, we need a block publisher selection mechanism and a chain selection rule. In Proof-of-Stake (PoS) based blockchain protocols, block publisher selection mechanism selects the node to publish the next block based on the relative stake held by the node. However, PoS protocols may face vulnerability to fully adaptive corruptions. In literature, researchers address this issue at the cost of performance.

In this paper, we propose a novel PoS-based blockchain protocol, QuickSync, to achieve security against fully adaptive corruptions without compromising on performance. We propose a metric called block power, a value defined for each block, derived from the output of the verifiable random function based on the digital signature of the block publisher. With this metric, we compute chain power, the sum of block powers of all the blocks comprising the chain, for all the valid chains. These metrics are a function of the block publisher's stake to enable the PoS aspect of the protocol. The chain selection rule selects the chain with the highest chain power as the one to extend. This chain selection rule hence determines the selected block publisher of the previous block. When we use metrics to define the chain selection rule, it may lead to vulnerabilities against Sybil attacks. QuickSync uses a Sybil attack resistant function implemented using histogram matching. We prove that QuickSync satisfies common prefix, chain growth, and chain quality properties and hence it is secure. We also show that it is resilient to different types of adversarial attack strategies. Our analysis demonstrates that QuickSync performs better than Bitcoin by an order of magnitude on both transactions per second and time to finality, and better than Ouroboros v1 by a factor of three on time to finality.




cr

Credulous Users and Fake News: a Real Case Study on the Propagation in Twitter. (arXiv:2005.03550v1 [cs.SI])

Recent studies have confirmed a growing trend, especially among youngsters, of using Online Social Media as favourite information platform at the expense of traditional mass media. Indeed, they can easily reach a wide audience at a high speed; but exactly because of this they are the preferred medium for influencing public opinion via so-called fake news. Moreover, there is a general agreement that the main vehicle of fakes news are malicious software robots (bots) that automatically interact with human users. In previous work we have considered the problem of tagging human users in Online Social Networks as credulous users. Specifically, we have considered credulous those users with relatively high number of bot friends when compared to total number of their social friends. We consider this group of users worth of attention because they might have a higher exposure to malicious activities and they may contribute to the spreading of fake information by sharing dubious content. In this work, starting from a dataset of fake news, we investigate the behaviour and the degree of involvement of credulous users in fake news diffusion. The study aims to: (i) fight fake news by considering the content diffused by credulous users; (ii) highlight the relationship between credulous users and fake news spreading; (iii) target fake news detection by focusing on the analysis of specific accounts more exposed to malicious activities of bots. Our first results demonstrate a strong involvement of credulous users in fake news diffusion. This findings are calling for tools that, by performing data streaming on credulous' users actions, enables us to perform targeted fact-checking.




cr

Collaborative Deanonymization. (arXiv:2005.03535v1 [cs.CR])

We propose protocols to resolve the tension between anonymity and accountability in a peer-to-peer manner. Law enforcement can adopt this approach to solve crimes involving cryptocurrency and anonymization techniques. We illustrate how the protocols could apply to Monero rings and CoinJoin transactions in Bitcoin.




cr

Computing with bricks and mortar: Classification of waveforms with a doped concrete blocks. (arXiv:2005.03498v1 [cs.ET])

We present results showing the capability of concrete-based information processing substrate in the signal classification task in accordance with in materio computing paradigm. As the Reservoir Computing is a suitable model for describing embedded in materio computation, we propose that this type of presented basic construction unit can be used as a source for "reservoir of states" necessary for simple tuning of the readout layer. In that perspective, buildings constructed from computing concrete could function as a highly parallel information processor for smart architecture. We present an electrical characterization of the set of samples with different additive concentrations followed by a dynamical analysis of selected specimens showing fingerprints of memfractive properties. Moreover, on the basis of obtained parameters, classification of the signal waveform shapes can be performed in scenarios explicitly tuned for a given device terminal.




cr

Fine-Grained Analysis of Cross-Linguistic Syntactic Divergences. (arXiv:2005.03436v1 [cs.CL])

The patterns in which the syntax of different languages converges and diverges are often used to inform work on cross-lingual transfer. Nevertheless, little empirical work has been done on quantifying the prevalence of different syntactic divergences across language pairs. We propose a framework for extracting divergence patterns for any language pair from a parallel corpus, building on Universal Dependencies. We show that our framework provides a detailed picture of cross-language divergences, generalizes previous approaches, and lends itself to full automation. We further present a novel dataset, a manually word-aligned subset of the Parallel UD corpus in five languages, and use it to perform a detailed corpus study. We demonstrate the usefulness of the resulting analysis by showing that it can help account for performance patterns of a cross-lingual parser.




cr

WSMN: An optimized multipurpose blind watermarking in Shearlet domain using MLP and NSGA-II. (arXiv:2005.03382v1 [cs.CR])

Digital watermarking is a remarkable issue in the field of information security to avoid the misuse of images in multimedia networks. Although access to unauthorized persons can be prevented through cryptography, it cannot be simultaneously used for copyright protection or content authentication with the preservation of image integrity. Hence, this paper presents an optimized multipurpose blind watermarking in Shearlet domain with the help of smart algorithms including MLP and NSGA-II. In this method, four copies of the robust copyright logo are embedded in the approximate coefficients of Shearlet by using an effective quantization technique. Furthermore, an embedded random sequence as a semi-fragile authentication mark is effectively extracted from details by the neural network. Due to performing an effective optimization algorithm for selecting optimum embedding thresholds, and also distinguishing the texture of blocks, the imperceptibility and robustness have been preserved. The experimental results reveal the superiority of the scheme with regard to the quality of watermarked images and robustness against hybrid attacks over other state-of-the-art schemes. The average PSNR and SSIM of the dual watermarked images are 38 dB and 0.95, respectively; Besides, it can effectively extract the copyright logo and locates forgery regions under severe attacks with satisfactory accuracy.




cr

2kenize: Tying Subword Sequences for Chinese Script Conversion. (arXiv:2005.03375v1 [cs.CL])

Simplified Chinese to Traditional Chinese character conversion is a common preprocessing step in Chinese NLP. Despite this, current approaches have poor performance because they do not take into account that a simplified Chinese character can correspond to multiple traditional characters. Here, we propose a model that can disambiguate between mappings and convert between the two scripts. The model is based on subword segmentation, two language models, as well as a method for mapping between subword sequences. We further construct benchmark datasets for topic classification and script conversion. Our proposed method outperforms previous Chinese Character conversion approaches by 6 points in accuracy. These results are further confirmed in a downstream application, where 2kenize is used to convert pretraining dataset for topic classification. An error analysis reveals that our method's particular strengths are in dealing with code-mixing and named entities.




cr

Playing Minecraft with Behavioural Cloning. (arXiv:2005.03374v1 [cs.AI])

MineRL 2019 competition challenged participants to train sample-efficient agents to play Minecraft, by using a dataset of human gameplay and a limit number of steps the environment. We approached this task with behavioural cloning by predicting what actions human players would take, and reached fifth place in the final ranking. Despite being a simple algorithm, we observed the performance of such an approach can vary significantly, based on when the training is stopped. In this paper, we detail our submission to the competition, run further experiments to study how performance varied over training and study how different engineering decisions affected these results.




cr

Scoring Root Necrosis in Cassava Using Semantic Segmentation. (arXiv:2005.03367v1 [eess.IV])

Cassava a major food crop in many parts of Africa, has majorly been affected by Cassava Brown Streak Disease (CBSD). The disease affects tuberous roots and presents symptoms that include a yellow/brown, dry, corky necrosis within the starch-bearing tissues. Cassava breeders currently depend on visual inspection to score necrosis in roots based on a qualitative score which is quite subjective. In this paper we present an approach to automate root necrosis scoring using deep convolutional neural networks with semantic segmentation. Our experiments show that the UNet model performs this task with high accuracy achieving a mean Intersection over Union (IoU) of 0.90 on the test set. This method provides a means to use a quantitative measure for necrosis scoring on root cross-sections. This is done by segmentation and classifying the necrotized and non-necrotized pixels of cassava root cross-sections without any additional feature engineering.




cr

Regression Forest-Based Atlas Localization and Direction Specific Atlas Generation for Pancreas Segmentation. (arXiv:2005.03345v1 [cs.CV])

This paper proposes a fully automated atlas-based pancreas segmentation method from CT volumes utilizing atlas localization by regression forest and atlas generation using blood vessel information. Previous probabilistic atlas-based pancreas segmentation methods cannot deal with spatial variations that are commonly found in the pancreas well. Also, shape variations are not represented by an averaged atlas. We propose a fully automated pancreas segmentation method that deals with two types of variations mentioned above. The position and size of the pancreas is estimated using a regression forest technique. After localization, a patient-specific probabilistic atlas is generated based on a new image similarity that reflects the blood vessel position and direction information around the pancreas. We segment it using the EM algorithm with the atlas as prior followed by the graph-cut. In evaluation results using 147 CT volumes, the Jaccard index and the Dice overlap of the proposed method were 62.1% and 75.1%, respectively. Although we automated all of the segmentation processes, segmentation results were superior to the other state-of-the-art methods in the Dice overlap.




cr

Crop Aggregating for short utterances speaker verification using raw waveforms. (arXiv:2005.03329v1 [eess.AS])

Most studies on speaker verification systems focus on long-duration utterances, which are composed of sufficient phonetic information. However, the performances of these systems are known to degrade when short-duration utterances are inputted due to the lack of phonetic information as compared to the long utterances. In this paper, we propose a method that compensates for the performance degradation of speaker verification for short utterances, referred to as "crop aggregating". The proposed method adopts an ensemble-based design to improve the stability and accuracy of speaker verification systems. The proposed method segments an input utterance into several short utterances and then aggregates the segment embeddings extracted from the segmented inputs to compose a speaker embedding. Then, this method simultaneously trains the segment embeddings and the aggregated speaker embedding. In addition, we also modified the teacher-student learning method for the proposed method. Experimental results on different input duration using the VoxCeleb1 test set demonstrate that the proposed technique improves speaker verification performance by about 45.37% relatively compared to the baseline system with 1-second test utterance condition.




cr

Database Traffic Interception for Graybox Detection of Stored and Context-Sensitive XSS. (arXiv:2005.03322v1 [cs.CR])

XSS is a security vulnerability that permits injecting malicious code into the client side of a web application. In the simplest situations, XSS vulnerabilities arise when a web application includes the user input in the web output without due sanitization. Such simple XSS vulnerabilities can be detected fairly reliably with blackbox scanners, which inject malicious payload into sensitive parts of HTTP requests and look for the reflected values in the web output.

Contemporary blackbox scanners are not effective against stored XSS vulnerabilities, where the malicious payload in an HTTP response originates from the database storage of the web application, rather than from the associated HTTP request. Similarly, many blackbox scanners do not systematically handle context-sensitive XSS vulnerabilities, where the user input is included in the web output after a transformation that prevents the scanner from recognizing the original value, but does not sanitize the value sufficiently. Among the combination of two basic data sources (stored vs reflected) and two basic vulnerability patterns (context sensitive vs not so), only one is therefore tested systematically by state-of-the-art blackbox scanners.

Our work focuses on systematic coverage of the three remaining combinations. We present a graybox mechanism that extends a general purpose database to cooperate with our XSS scanner, reporting and injecting the test inputs at the boundary between the database and the web application. Furthermore, we design a mechanism for identifying the injected inputs in the web output even after encoding by the web application, and check whether the encoding sanitizes the injected inputs correctly in the respective browser context. We evaluate our approach on eight mature and technologically diverse web applications, discovering previously unknown and exploitable XSS flaws in each of those applications.




cr

Nakdan: Professional Hebrew Diacritizer. (arXiv:2005.03312v1 [cs.CL])

We present a system for automatic diacritization of Hebrew text. The system combines modern neural models with carefully curated declarative linguistic knowledge and comprehensive manually constructed tables and dictionaries. Besides providing state of the art diacritization accuracy, the system also supports an interface for manual editing and correction of the automatic output, and has several features which make it particularly useful for preparation of scientific editions of Hebrew texts. The system supports Modern Hebrew, Rabbinic Hebrew and Poetic Hebrew. The system is freely accessible for all use at this http URL




cr

Cotatron: Transcription-Guided Speech Encoder for Any-to-Many Voice Conversion without Parallel Data. (arXiv:2005.03295v1 [eess.AS])

We propose Cotatron, a transcription-guided speech encoder for speaker-independent linguistic representation. Cotatron is based on the multispeaker TTS architecture and can be trained with conventional TTS datasets. We train a voice conversion system to reconstruct speech with Cotatron features, which is similar to the previous methods based on Phonetic Posteriorgram (PPG). By training and evaluating our system with 108 speakers from the VCTK dataset, we outperform the previous method in terms of both naturalness and speaker similarity. Our system can also convert speech from speakers that are unseen during training, and utilize ASR to automate the transcription with minimal reduction of the performance. Audio samples are available at https://mindslab-ai.github.io/cotatron, and the code with a pre-trained model will be made available soon.




cr

Critique of Boyu Sima's Proof that ${ m P} eq{ m NP}$. (arXiv:2005.03256v1 [cs.CC])

We review and critique Boyu Sima's paper, "A solution of the P versus NP problem based on specific property of clique function," (arXiv:1911.00722) which claims to prove that ${ m P} eq{ m NP}$ by way of removing the gap between the nonmonotone circuit complexity and the monotone circuit complexity of the clique function. We first describe Sima's argument, and then we describe where and why it fails. Finally, we present a simple example that clearly demonstrates the failure.




cr

End-to-End Domain Adaptive Attention Network for Cross-Domain Person Re-Identification. (arXiv:2005.03222v1 [cs.CV])

Person re-identification (re-ID) remains challenging in a real-world scenario, as it requires a trained network to generalise to totally unseen target data in the presence of variations across domains. Recently, generative adversarial models have been widely adopted to enhance the diversity of training data. These approaches, however, often fail to generalise to other domains, as existing generative person re-identification models have a disconnect between the generative component and the discriminative feature learning stage. To address the on-going challenges regarding model generalisation, we propose an end-to-end domain adaptive attention network to jointly translate images between domains and learn discriminative re-id features in a single framework. To address the domain gap challenge, we introduce an attention module for image translation from source to target domains without affecting the identity of a person. More specifically, attention is directed to the background instead of the entire image of the person, ensuring identifying characteristics of the subject are preserved. The proposed joint learning network results in a significant performance improvement over state-of-the-art methods on several benchmark datasets.




cr

Enabling Cross-chain Transactions: A Decentralized Cryptocurrency Exchange Protocol. (arXiv:2005.03199v1 [cs.CR])

Inspired by Bitcoin, many different kinds of cryptocurrencies based on blockchain technology have turned up on the market. Due to the special structure of the blockchain, it has been deemed impossible to directly trade between traditional currencies and cryptocurrencies or between different types of cryptocurrencies. Generally, trading between different currencies is conducted through a centralized third-party platform. However, it has the problem of a single point of failure, which is vulnerable to attacks and thus affects the security of the transactions. In this paper, we propose a distributed cryptocurrency trading scheme to solve the problem of centralized exchanges, which can achieve trading between different types of cryptocurrencies. Our scheme is implemented with smart contracts on the Ethereum blockchain and deployed on the Ethereum test network. We not only implement transactions between individual users, but also allow transactions between multiple users. The experimental result proves that the cost of our scheme is acceptable.




cr

Lattice-based public key encryption with equality test in standard model, revisited. (arXiv:2005.03178v1 [cs.CR])

Public key encryption with equality test (PKEET) allows testing whether two ciphertexts are generated by the same message or not. PKEET is a potential candidate for many practical applications like efficient data management on encrypted databases. Potential applicability of PKEET leads to intensive research from its first instantiation by Yang et al. (CT-RSA 2010). Most of the followup constructions are secure in the random oracle model. Moreover, the security of all the concrete constructions is based on number-theoretic hardness assumptions which are vulnerable in the post-quantum era. Recently, Lee et al. (ePrint 2016) proposed a generic construction of PKEET schemes in the standard model and hence it is possible to yield the first instantiation of PKEET schemes based on lattices. Their method is to use a $2$-level hierarchical identity-based encryption (HIBE) scheme together with a one-time signature scheme. In this paper, we propose, for the first time, a direct construction of a PKEET scheme based on the hardness assumption of lattices in the standard model. More specifically, the security of the proposed scheme is reduces to the hardness of the Learning With Errors problem.




cr

Catch Me If You Can: Using Power Analysis to Identify HPC Activity. (arXiv:2005.03135v1 [cs.CR])

Monitoring users on large computing platforms such as high performance computing (HPC) and cloud computing systems is non-trivial. Utilities such as process viewers provide limited insight into what users are running, due to granularity limitation, and other sources of data, such as system call tracing, can impose significant operational overhead. However, despite technical and procedural measures, instances of users abusing valuable HPC resources for personal gains have been documented in the past cite{hpcbitmine}, and systems that are open to large numbers of loosely-verified users from around the world are at risk of abuse. In this paper, we show how electrical power consumption data from an HPC platform can be used to identify what programs are executed. The intuition is that during execution, programs exhibit various patterns of CPU and memory activity. These patterns are reflected in the power consumption of the system and can be used to identify programs running. We test our approach on an HPC rack at Lawrence Berkeley National Laboratory using a variety of scientific benchmarks. Among other interesting observations, our results show that by monitoring the power consumption of an HPC rack, it is possible to identify if particular programs are running with precision up to and recall of 95\% even in noisy scenarios.




cr

I Always Feel Like Somebody's Sensing Me! A Framework to Detect, Identify, and Localize Clandestine Wireless Sensors. (arXiv:2005.03068v1 [cs.CR])

The increasing ubiquity of low-cost wireless sensors in smart homes and buildings has enabled users to easily deploy systems to remotely monitor and control their environments. However, this raises privacy concerns for third-party occupants, such as a hotel room guest who may be unaware of deployed clandestine sensors. Previous methods focused on specific modalities such as detecting cameras but do not provide a generalizable and comprehensive method to capture arbitrary sensors which may be "spying" on a user. In this work, we seek to determine whether one can walk in a room and detect any wireless sensor monitoring an individual. As such, we propose SnoopDog, a framework to not only detect wireless sensors that are actively monitoring a user, but also classify and localize each device. SnoopDog works by establishing causality between patterns in observable wireless traffic and a trusted sensor in the same space, e.g., an inertial measurement unit (IMU) that captures a user's movement. Once causality is established, SnoopDog performs packet inspection to inform the user about the monitoring device. Finally, SnoopDog localizes the clandestine device in a 2D plane using a novel trial-based localization technique. We evaluated SnoopDog across several devices and various modalities and were able to detect causality 96.6% percent of the time, classify suspicious devices with 100% accuracy, and localize devices to a sufficiently reduced sub-space.




cr

Computing-in-Memory for Performance and Energy Efficient Homomorphic Encryption. (arXiv:2005.03002v1 [cs.CR])

Homomorphic encryption (HE) allows direct computations on encrypted data. Despite numerous research efforts, the practicality of HE schemes remains to be demonstrated. In this regard, the enormous size of ciphertexts involved in HE computations degrades computational efficiency. Near-memory Processing (NMP) and Computing-in-memory (CiM) - paradigms where computation is done within the memory boundaries - represent architectural solutions for reducing latency and energy associated with data transfers in data-intensive applications such as HE. This paper introduces CiM-HE, a Computing-in-memory (CiM) architecture that can support operations for the B/FV scheme, a somewhat homomorphic encryption scheme for general computation. CiM-HE hardware consists of customized peripherals such as sense amplifiers, adders, bit-shifters, and sequencing circuits. The peripherals are based on CMOS technology, and could support computations with memory cells of different technologies. Circuit-level simulations are used to evaluate our CiM-HE framework assuming a 6T-SRAM memory. We compare our CiM-HE implementation against (i) two optimized CPU HE implementations, and (ii) an FPGA-based HE accelerator implementation. When compared to a CPU solution, CiM-HE obtains speedups between 4.6x and 9.1x, and energy savings between 266.4x and 532.8x for homomorphic multiplications (the most expensive HE operation). Also, a set of four end-to-end tasks, i.e., mean, variance, linear regression, and inference are up to 1.1x, 7.7x, 7.1x, and 7.5x faster (and 301.1x, 404.6x, 532.3x, and 532.8x more energy efficient). Compared to CPU-based HE in a previous work, CiM-HE obtain 14.3x speed-up and >2600x energy savings. Finally, our design offers 2.2x speed-up with 88.1x energy savings compared to a state-of-the-art FPGA-based accelerator.




cr

5 Best Practices for Breadcrumb Navigation 

Breadcrumbs are a subtle element of a website that helps improve usability and navigation. They’re a utility that often receives little acknowledgment; however, breadcrumbs can have a large impact and provide a plethora of benefits, such as lowering bounce rate, increasing conversions, and improving user satisfaction.   Imagine you’re in a regular grocery store, except […]

The post 5 Best Practices for Breadcrumb Navigation  appeared first on WebFX Blog.




cr

What is a Favicon? [+4 Tips for Creating an Impactful Favicon]

When you bookmark pages on the web, it’s challenging to remember the name of the page. As you dive back into your bookmarks to find it, you see a small icon next to the page. You recognize the icon and realize it’s the website you viewed prior. This icon, known as a favicon, is small, […]

The post What is a Favicon? [+4 Tips for Creating an Impactful Favicon] appeared first on WebFX Blog.




cr

Website Statistics for 2020: 10 Critical Stats to Know for Web Design

Are you looking to start 2020 with a fresh web design for your business? If so, you must know what you need to do in 2020 to have a website that drives success for your business. With website statistics for 2020, you can see what to do and what to avoid, which will help you […]

The post Website Statistics for 2020: 10 Critical Stats to Know for Web Design appeared first on WebFX Blog.