nc

Educational Opportunities and Performance in West Virginia

This Quality Counts 2019 Highlights Report captures all the data you need to assess your state's performance on key educational outcomes.




nc

West Virginia Superintendent Announces Resignation

Michael Martirano led the state's schools through dramatic budget cuts, academic challenges, and a state-versus-local battle over school construction.




nc

W. Va. Governor Fires Sen. Joe Manchin's Wife From State Education Post

The legislature sent a proposal last week to Gov. Jim Justice's desk to shutter the state's advisory education and the arts department, leaving the Gayle Manchin and her staff in the lurch.




nc

West Virginia Teacher Strike Ends After Four Days, Governor Announces Pay Raise

Teachers will receive a 5 percent raise, pending a vote by the state legislature. School will resume Thursday.




nc

Educational Opportunities and Performance in West Virginia

This Quality Counts 2020 Highlights Report captures all the data you need to assess your state's performance on key educational outcomes.




nc

Educational Opportunities and Performance in Michigan

This Quality Counts 2020 Highlights Report captures all the data you need to assess your state's performance on key educational outcomes.




nc

Chicago Strike: Why Teachers Are on the Picket Lines Once Again

Teachers in the nation's third-largest school system are fighting for salary increases, class-size caps, and a written commitment for more nurses, social workers, and librarians—as well as investments some say are outside the scope of collective bargaining.




nc

Educational Opportunities and Performance in Illinois

This Quality Counts 2019 Highlights Report captures all the data you need to assess your state's performance on key educational outcomes.




nc

Educational Opportunities and Performance in Illinois

This Quality Counts 2020 Highlights Report captures all the data you need to assess your state's performance on key educational outcomes.




nc

2023 Fellows announced

Each year, Library Fellows help uncover new stories and offer fresh insights into our extensive collections.




nc

Notre Dame WBB puts up highlight-reel performance in dominating Purdue

Dazzling first with a relentless hawking defense that helped force 22 turnovers, then adding an almost frantic-paced offensive assault, the 2-0 No. 6-ranked Irish overwhelmed Purdue (1-1), 102-58, at Mackey Arena in West Lafayette, Ind. Dynamo guard Hannah Hidalgo was slapping, diving and picking pockets all night, making life miserable for any Boilermaker stuck bringing the ball up the floor. ► Snap Counts: Here's who played for Notre Dame football against Florida St.




nc

Why Lady Vols reminded Nicky Anosike of her own Tennessee team at Girls Inc. basketball clinic

While the Lady Vols volunteered at the Girls Inc. basketball clinic, they reminded Nicky Anosike of her own Tennessee teammates




nc

Cincinnati Bearcats basketball junior Dan Skillings Jr. has had surgery

Dan Skillings Jr. sidelined by surgery for Cincinnati Bearcats basketball




nc

FSU basketball bounces back with a blowout victory over FAMU in a crosstown rivalry game

FSU women's basketball improves to 2-1 after a dominating victory over FAMU on Monday.




nc

Lady Vols basketball schedule for 2025-26 season will open vs NC State in Greensboro

Tennessee Lady Vols basketball will open the 2025-26 season with a neutral-site matchup against NC State in Greensboro at First Horizon Coliseum




nc

Tennessee soccer earns fourth straight NCAA Tournament berth, will face No. 7 seed Virginia Tech

Tennessee soccer earned an NCAA Tournament berth for the fourth straight season and will face No. 7 seed Virginia Tech in the first round Friday




nc

Chance Gray ties program record with 9 3-pointers to help No. 12 Ohio State women beat Charlotte

Chance Gray scored 14 of her career-high 31 points in the third quarter and she tied a program-best with nine 3-pointers to help No. 12 Ohio State beat Charlotte 94-53 on Tuesday night. Gray finished 9 of 14 from 3-point range to top her previous best of six makes. Gray scored 11 points in the first half after making all three of her 3-pointers to help Ohio State build a 43-17 lead.




nc

Lady Vols rely on best 3-point shooting performance of season to beat Middle Tennessee

Lady Vols basketball relied on its best 3-point shooting night of the season to close out a win over Middle Tennessee State on Tuesday




nc

Wagga Wagga students first in the state to experience new immersive learning program

Friday 15 March 2024

Wagga Wagga students first in the state to experience new immersive learning program.




nc

NSW Premier’s History Award winners announced

$85,000 in prize money was awarded as part of NSW History Week. 




nc

2024 Fellows announced

The State Library welcomed its newest research fellow, Nancy Cushing, at the 4th Biennial Coral Thomas Lecture last night.  




nc

Music and Brain Circuitry: Strategies for Strengthening Evidence-Based Research for Music-Based Interventions

Wen Grace Chen
Nov 9, 2022; 42:8498-8507
Symposium and Mini-Symposium




nc

Pathological Choice: The Neuroscience of Gambling and Gambling Addiction

Luke Clark
Nov 6, 2013; 33:17617-17623
Symposium and Mini-Symposium




nc

On Myelinated Axon Plasticity and Neuronal Circuit Formation and Function

Rafael G. Almeida
Oct 18, 2017; 37:10023-10034
Viewpoints




nc

Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type

Guo-qiang Bi
Dec 15, 1998; 18:10464-10472
Articles




nc

Right Temporoparietal Junction Underlies Avoidance of Moral Transgression in Autism Spectrum Disorder

Yang Hu
Feb 24, 2021; 41:1699-1715
BehavioralSystemsCognitive




nc

Neuregulin1 Nuclear Signaling Influences Adult Neurogenesis and Regulates a Schizophrenia Susceptibility Gene Network within the Mouse Dentate Gyrus

Prithviraj Rajebhosale
Oct 23, 2024; 44:e0063242024-e0063242024
Cellular




nc

Beyond the 5-HT2A Receptor: Classic and Nonclassic Targets in Psychedelic Drug Action

Lindsay P. Cameron
Nov 8, 2023; 43:7472-7482
Symposium and Mini-Symposium




nc

Revisiting the Stress Concept: Implications for Affective Disorders

Bruce S. McEwen
Jan 2, 2020; 40:12-21
Viewpoints




nc

Gender in Science, Technology, Engineering, and Mathematics: Issues, Causes, Solutions

Tessa E.S. Charlesworth
Sep 11, 2019; 39:7228-7243
Viewpoints




nc

Loss of Dopamine Transporters in Methamphetamine Abusers Recovers with Protracted Abstinence

Nora D. Volkow
Dec 1, 2001; 21:9414-9418
Behavioral




nc

Human REM Sleep Delta Waves and the Blurring Distinction between NREM and REM Sleep

Jesse J. Langille
Jul 3, 2019; 39:5244-5246
Journal Club




nc

Diurnal Fluctuations in Steroid Hormones Tied to Variation in Intrinsic Functional Connectivity in a Densely Sampled Male

Hannah Grotzinger
May 29, 2024; 44:e1856232024-e1856232024
BehavioralSystemsCognitive




nc

On the Role of Theory and Modeling in Neuroscience

Daniel Levenstein
Feb 15, 2023; 43:1074-1088
Viewpoints




nc

Cognitive-Affective Functions of the Cerebellum

Stephanie Rudolph
Nov 8, 2023; 43:7554-7564
Symposium and Mini-Symposium




nc

The Salience Network: A Neural System for Perceiving and Responding to Homeostatic Demands

William W. Seeley
Dec 11, 2019; 39:9878-9882
Progressions




nc

Rediscovering Ancient Egypt in print

Drop in for a special collection viewing of some of the Library's most spectacular works documenting Egypt in the 19th century.




nc

Molecular, Structural, and Functional Characterization of Alzheimer's Disease: Evidence for a Relationship between Default Activity, Amyloid, and Memory

Randy L. Buckner
Aug 24, 2005; 25:7709-7717
Neurobiology of Disease




nc

Neuronal Avalanches in Neocortical Circuits

John M. Beggs
Dec 3, 2003; 23:11167-11177
BehavioralSystemsCognitive




nc

Cells and Molecules Underpinning Cannabis-Related Variations in Cortical Thickness during Adolescence

During adolescence, cannabis experimentation is common, and its association with interindividual variations in brain maturation well studied. Cellular and molecular underpinnings of these system-level relationships are, however, unclear. We thus conducted a three-step study. First, we exposed adolescent male mice to -9-tetrahydrocannabinol (THC) or a synthetic cannabinoid WIN 55,212-2 (WIN) and assessed differentially expressed genes (DEGs), spine numbers, and dendritic complexity in their frontal cortex. Second, in human (male) adolescents, we examined group differences in cortical thickness in 34 brain regions, using magnetic resonance imaging, between those who experimented with cannabis before age 16 (n = 140) and those who did not (n = 327). Finally, we correlated spatially these group differences with gene expression of human homologs of mouse-identified DEGs. The spatial expression of 13 THC-related human homologs of DEGs correlated with cannabis-related variations in cortical thickness, and virtual histology revealed coexpression patterns of these 13 genes with cell-specific markers of astrocytes, microglia, and a type of pyramidal cells enriched in dendrite-regulating genes. Similarly, the spatial expression of 18 WIN-related human homologs of DEGs correlated with group differences in cortical thickness and showed coexpression patterns with the same three cell types. Gene ontology analysis indicated that 37 THC-related human homologs are enriched in neuron projection development, while 33 WIN-related homologs are enriched in processes associated with learning and memory. In mice, we observed spine loss and lower dendritic complexity in pyramidal cells of THC-exposed animals (vs controls). Experimentation with cannabis during adolescence may influence cortical thickness by impacting glutamatergic synapses and dendritic arborization.




nc

Cardiac-Sympathetic Contractility and Neural Alpha-Band Power: Cross-Modal Collaboration during Approach-Avoidance Conflict

As evidence mounts that the cardiac-sympathetic nervous system reacts to challenging cognitive settings, we ask if these responses are epiphenomenal companions or if there is evidence suggesting a more intertwined role of this system with cognitive function. Healthy male and female human participants performed an approach-avoidance paradigm, trading off monetary reward for painful electric shock, while we recorded simultaneous electroencephalographic and cardiac-sympathetic signals. Participants were reward sensitive but also experienced approach-avoidance "conflict" when the subjective appeal of the reward was near equivalent to the revulsion of the cost. Drift-diffusion model parameters suggested that participants managed conflict in part by integrating larger volumes of evidence into choices (wider decision boundaries). Late alpha-band (neural) dynamics were consistent with widening decision boundaries serving to combat reward sensitivity and spread attention more fairly to all dimensions of available information. Independently, wider boundaries were also associated with cardiac "contractility" (an index of sympathetically mediated positive inotropy). We also saw evidence of conflict-specific "collaboration" between the neural and cardiac-sympathetic signals. In states of high conflict, the alignment (i.e., product) of alpha dynamics and contractility were associated with a further widening of the boundary, independent of either signal's singular association. Cross-trial coherence analyses provided additional evidence that the autonomic systems controlling cardiac-sympathetics might influence the assessment of information streams during conflict by disrupting or overriding reward processing. We conclude that cardiac-sympathetic control might play a critical role, in collaboration with cognitive processes, during the approach-avoidance conflict in humans.




nc

A Systematic Structure-Function Characterization of a Human Mutation in Neurexin-3{alpha} Reveals an Extracellular Modulatory Sequence That Stabilizes Neuroligin-1 Binding to Enhance the Postsynaptic Properties of Excitatory Synapses

α-Neurexins are essential and highly expressed presynaptic cell-adhesion molecules that are frequently linked to neuropsychiatric and neurodevelopmental disorders. Despite their importance, how the elaborate extracellular sequences of α-neurexins contribute to synapse function is poorly understood. We recently characterized the presynaptic gain-of-function phenotype caused by a missense mutation in an evolutionarily conserved extracellular sequence of neurexin-3α (A687T) that we identified in a patient diagnosed with profound intellectual disability and epilepsy. The striking A687T gain-of-function mutation on neurexin-3α prompted us to systematically test using mutants whether the presynaptic gain-of-function phenotype is a consequence of the addition of side-chain bulk (i.e., A687V) or polar/hydrophilic properties (i.e., A687S). We used multidisciplinary approaches in mixed-sex primary hippocampal cultures to assess the impact of the neurexin-3αA687 residue on synapse morphology, function and ligand binding. Unexpectedly, neither A687V nor A687S recapitulated the neurexin-3α A687T phenotype. Instead, distinct from A687T, molecular replacement with A687S significantly enhanced postsynaptic properties exclusively at excitatory synapses and selectively increased binding to neuroligin-1 and neuroligin-3 without changing binding to neuroligin-2 or LRRTM2. Importantly, we provide the first experimental evidence supporting the notion that the position A687 of neurexin-3α and the N-terminal sequences of neuroligins may contribute to the stability of α-neurexin–neuroligin-1 trans-synaptic interactions and that these interactions may specifically regulate the postsynaptic strength of excitatory synapses.




nc

Role of the STING->IRF3 Pathway in Ambient GABA Homeostasis and Cognitive Function

Targeting altered expression and/or activity of GABA (-aminobutyric acid) transporters (GATs) provide therapeutic benefit for age-related impairments, including cognitive dysfunction. However, the mechanisms underlying the transcriptional regulation of GATs are unknown. In the present study, we demonstrated that the stimulator of interferon genes (STING) upregulates GAT1 and GAT3 expression in the brain, which resulted in cognitive dysfunction. Genetic and pharmacological intervention of STING suppressed the expression of both GAT1 and GAT3, increased the ambient GABA concentration, and therefore, enhanced tonic GABAA inhibition of principal hippocampal neurons, resulting in spatial learning and working memory deficits in mice in a type I interferon-independent manner. Stimulation of the STING->GAT pathway efficiently restored cognitive dysfunction in STING-deficient mice models. Our study uncovered for the first time that the STING signaling pathway regulates GAT expression in a cell autonomous manner and therefore could be a novel target for GABAergic cognitive deficits.




nc

Recent Visual Experience Reshapes V4 Neuronal Activity and Improves Perceptual Performance

Recent visual experience heavily influences our visual perception, but how neuronal activity is reshaped to alter and improve perceptual discrimination remains unknown. We recorded from populations of neurons in visual cortical area V4 while two male rhesus macaque monkeys performed a natural image change detection task under different experience conditions. We found that maximizing the recent experience with a particular image led to an improvement in the ability to detect a change in that image. This improvement was associated with decreased neural responses to the image, consistent with neuronal changes previously seen in studies of adaptation and expectation. We found that the magnitude of behavioral improvement was correlated with the magnitude of response suppression. Furthermore, this suppression of activity led to an increase in signal separation, providing evidence that a reduction in activity can improve stimulus encoding. Within populations of neurons, greater recent experience was associated with decreased trial-to-trial shared variability, indicating that a reduction in variability is a key means by which experience influences perception. Taken together, the results of our study contribute to an understanding of how recent visual experience can shape our perception and behavior through modulating activity patterns in the mid-level visual cortex.




nc

Brief and Diverse Excitotoxic Insults Increase the Neuronal Nuclear Membrane Permeability in the Neonatal Brain, Resulting in Neuronal Dysfunction and Cell Death

Neuronal cytotoxic edema is implicated in neuronal injury and death, yet mitigating brain edema with osmotic and surgical interventions yields poor clinical outcomes. Importantly, neuronal swelling and its downstream consequences during early brain development remain poorly investigated, and new treatment approaches are needed. We explored Ca2+-dependent downstream effects after neuronal cytotoxic edema caused by diverse injuries in mice of both sexes using multiphoton Ca2+ imaging in vivo [Postnatal Day (P)12–17] and in acute brain slices (P8–12). After different excitotoxic insults, cytosolic GCaMP6s translocated into the nucleus after a few minutes in a subpopulation of neurons, persisting for hours. We used an automated morphology-detection algorithm to detect neuronal soma and quantified the nuclear translocation of GCaMP6s as the nuclear to cytosolic intensity (N/C ratio). Elevated neuronal N/C ratios occurred concurrently with persistent elevation in Ca2+ loads and could also occur independently from neuronal swelling. Electron microscopy revealed that the nuclear translocation was associated with the increased nuclear pore size. The nuclear accumulation of GCaMP6s in neurons led to neocortical circuit dysfunction, mitochondrial pathology, and increased cell death. Inhibiting calpains, a family of Ca2+-activated proteases, prevented elevated N/C ratios and neuronal swelling. In summary, in the developing brain, we identified a calpain-dependent alteration of nuclear transport in a subpopulation of neurons after disease-relevant insults leading to long-term circuit dysfunction and cell death. The nuclear translocation of GCaMP6 and other cytosolic proteins after acute excitotoxicity can be an early biomarker of brain injury in the developing brain.




nc

Neuritin Controls Axonal Branching in Serotonin Neurons: A Possible Mediator Involved in the Regulation of Depressive and Anxiety Behaviors via FGF Signaling

Abnormal neuronal morphological features, such as dendrite branching, axonal branching, and spine density, are thought to contribute to the symptoms of depression and anxiety. However, the role and molecular mechanisms of aberrant neuronal morphology in the regulation of mood disorders remain poorly characterized. Here, we show that neuritin, an activity-dependent protein, regulates the axonal morphology of serotonin neurons. Male neuritin knock-out (KO) mice harbored impaired axonal branches of serotonin neurons in the medial prefrontal cortex and basolateral region of the amygdala (BLA), and male neuritin KO mice exhibited depressive and anxiety-like behaviors. We also observed that the expression of neuritin was decreased by unpredictable chronic stress in the male mouse brain and that decreased expression of neuritin was associated with reduced axonal branching of serotonin neurons in the brain and with depressive and anxiety behaviors in mice. Furthermore, the stress-mediated impairments in axonal branching and depressive behaviors were reversed by the overexpression of neuritin in the BLA. The ability of neuritin to increase axonal branching in serotonin neurons involves fibroblast growth factor (FGF) signaling, and neuritin contributes to FGF-2-mediated axonal branching regulation in vitro. Finally, the oral administration of an FGF inhibitor reduced the axonal branching of serotonin neurons in the brain and caused depressive and anxiety behaviors in male mice. Our results support the involvement of neuritin in models of stress-induced depression and suggest that neuronal morphological plasticity may play a role in controlling animal behavior.




nc

Hand-Jaw Coordination as Mice Handle Food Is Organized around Intrinsic Structure-Function Relationships

Rodent jaws evolved structurally to support dual functionality, for either biting or chewing food. Rodent hands also function dually during food handling, for actively manipulating or statically holding food. How are these oral and manual functions coordinated? We combined electrophysiological recording of muscle activity and kilohertz kinematic tracking to analyze masseter and hand actions as mice of both sexes handled food. Masseter activity was organized into two modes synchronized to hand movement modes. In holding/chewing mode, mastication occurred as rhythmic (~5 Hz) masseter activity while the hands held food below the mouth. In oromanual/ingestion mode, bites occurred as lower-amplitude aperiodic masseter events that were precisely timed to follow regrips (by ~200 ms). Thus, jaw and hand movements are flexibly coordinated during food handling: uncoupled in holding/chewing mode and tightly coordinated in oromanual/ingestion mode as regrip–bite sequences. Key features of this coordination were captured in a simple model of hierarchically orchestrated mode-switching and intramode action sequencing. We serendipitously detected an additional masseter-related action, tooth sharpening, identified as bouts of higher-frequency (~13 Hz) rhythmic masseter activity, which was accompanied by eye displacement, including rhythmic proptosis, attributable to masseter contractions. Collectively, the findings demonstrate how a natural, complex, and goal-oriented activity is organized as an assemblage of distinct modes and complex actions, adapted for the divisions of function arising from anatomical structure. These results reveal intricate, high-speed coordination of disparate effectors and show how natural forms of dexterity can serve as a model for understanding the behavioral neurobiology of multi-body-part coordination.




nc

Mu-Opioid Receptor (MOR) Dependence of Pain in Chemotherapy-Induced Peripheral Neuropathy

We recently demonstrated that transient attenuation of Toll-like receptor 4 (TLR4) in dorsal root ganglion (DRG) neurons, can both prevent and reverse pain associated with chemotherapy-induced peripheral neuropathy (CIPN), a severe side effect of cancer chemotherapy, for which treatment options are limited. Given the reduced efficacy of opioid analgesics to treat neuropathic, compared with inflammatory pain, the cross talk between nociceptor TLR4 and mu-opioid receptors (MORs), and that MOR and TLR4 agonists induce hyperalgesic priming (priming), which also occurs in CIPN, we determined, using male rats, whether (1) antisense knockdown of nociceptor MOR attenuates CIPN, (2) and attenuates the priming associated with CIPN, and (3) CIPN also produces opioid-induced hyperalgesia (OIH). We found that intrathecal MOR antisense prevents and reverses hyperalgesia induced by oxaliplatin and paclitaxel, two common clinical chemotherapy agents. Oxaliplatin-induced priming was also markedly attenuated by MOR antisense. Additionally, intradermal morphine, at a dose that does not affect nociceptive threshold in controls, exacerbates mechanical hyperalgesia (OIH) in rats with CIPN, suggesting the presence of OIH. This OIH associated with CIPN is inhibited by interventions that reverse Type II priming [the combination of an inhibitor of Src and mitogen-activated protein kinase (MAPK)], an MOR antagonist, as well as a TLR4 antagonist. Our findings support a role of nociceptor MOR in oxaliplatin-induced pain and priming. We propose that priming and OIH are central to the symptom burden in CIPN, contributing to its chronicity and the limited efficacy of opioid analgesics to treat neuropathic pain.




nc

Multiple Intrinsic Timescales Govern Distinct Brain States in Human Sleep

Human sleep exhibits multiple, recurrent temporal regularities, ranging from circadian rhythms to sleep stage cycles and neuronal oscillations during nonrapid eye movement sleep. Moreover, recent evidence revealed a functional role of aperiodic activity, which reliably discriminates different sleep stages. Aperiodic activity is commonly defined as the spectral slope of the 1/frequency (1/f) decay function of the electrophysiological power spectrum. However, several lines of inquiry now indicate that the aperiodic component of the power spectrum might be better characterized by a superposition of several decay processes with associated timescales. Here, we determined multiple timescales, which jointly shape aperiodic activity using human intracranial electroencephalography. Across three independent studies (47 participants, 23 female), our results reveal that aperiodic activity reliably dissociated sleep stage-dependent dynamics in a regionally specific manner. A principled approach to parametrize aperiodic activity delineated several, spatially and state-specific timescales. Lastly, we employed pharmacological modulation by means of propofol anesthesia to disentangle state-invariant timescales that may reflect physical properties of the underlying neural population from state-specific timescales that likely constitute functional interactions. Collectively, these results establish the presence of multiple intrinsic timescales that define the electrophysiological power spectrum during distinct brain states.




nc

Erratum: Spencer et al., "Regulation of the Mouse Ventral Tegmental Area by Melanin-Concentrating Hormone"