ive

System and apparatus for interference suppression using macrodiversity in mobile wireless networks

In a wireless network, plural downlink signals from plural base stations are transmitted to a terminal. The plural downlink signals all carry the same information to the terminal. The terminal provides feedback on the downlink channels. The feedback provides information on the taps of the channels. The amount of information fed back is constrained. Based on the feedback, transmission parameters of the downlink signals are adjusted. The process of transmitting, providing feedback, and adjusting the parameters continue so that the energy of the downlink signal is enhanced at the terminal location and suppressed elsewhere. Beam forming can be used to further suppress the energy signature at locations other than the terminal location.




ive

Transmission method, transmitter apparatus, reception method and receiver apparatus

Transmission quality is improved in an environment in which direct waves dominate in a transmission method for transmitting a plurality of modulated signals from a plurality of antennas at the same time. All data symbols used in data transmission of a modulated signal are precoded by hopping between precoding matrices so that the precoding matrix used to precode each data symbol and the precoding matrices used to precode data symbols that are adjacent to the data symbol in the frequency domain and the time domain all differ. A modulated signal with such data symbols arranged therein is transmitted.




ive

Annotative information applying apparatus, annotative information applying method, recording medium, and electronic proofreading system

A proof information processing apparatus adds a plurality of types of annotative information to a proof image by use of a plurality of input modes for inputting respective different types of annotative information. A proof information processing method is carried out by using the proof information processing apparatus. A recording medium stores a program for performing the functions of the proof information processing apparatus. An electronic proofreading system includes the proof information processing apparatus and a remote server. At least one of input modes including a text input mode, a stylus input mode, a color information input mode, and a speech input mode is selected depending on characteristics of an image in a region of interest which is indicated.




ive

Computing cloud system for object selection, object picking by line, object loading and object delivery using an object location identification trigger

A cloud computing system for object location, object identification, object picking, object picking by line, object loading onto one or more transport devices, or object delivery that can include using a cloud based server comprising a cloud based processor in communication with a cloud based data storage. The cloud based server can be in communication with at least one mobile processor in communication with a mobile data storage and a display. The method can also include sending instructions to an operator from the cloud based computer to a mobile processor associated with an operator to instruct the operator to perform a logistics operation. The logistic operation can include one or more of object location, object identification, object picking, object picking by line, object loading onto one or more transport devices, and object delivery.




ive

Creating dynamic interactive views from trace events for performing deterministic performance analysis

View definitions are created for deterministic performance analysis in real-time computing systems, and can then be used to present views for analyzing outliers that occur during run-time execution. Trace data created by a real-time application is compared to a set of view definitions to determine whether the trace data matches the view definition. If so, then related records from the trace are gathered according to specifications in the matched view definition, and calculations (such as elapsed time) can then be performed using the related records. A view definition may be created by prompting a user for selection of parameters to be programmatically inserted into a markup language document. A capability may be provided whereby a user can receive additional information (which is extracted from the trace data, according to specifications in the matched view definition) upon a user gesture such as hovering a selection means over a displayed view.




ive

5-wire resistive touch screen pressure measurement circuit and method

A 5-wire touch screen system includes a touch screen (10) including a wiper (11) and a resistive layer (16) aligned with the wiper and first (UL), second (UR), third (LR), and fourth (LL) resistive layer contacts, wherein a touch on the screen presses a small portion of the wiper against the resistive layer, producing a touch resistance (RZ) between them at a touch point on the resistive layer. The wiper and various contacts are selectively coupled to first (VDD) and second (GND) reference voltages, respectively, to generate an analog touch voltage (VZ) at the touch point. The wiper and various contacts are selectively coupled to an analog input (56) and a reference voltage input of an ADC (48) for converting the touch voltage (VZ) to a digital representation. Analog voltages (VX) and (VY) at the touch point are converted to corresponding digital representations by the ADC.




ive

Circuit board with integrated passive devices

Embodiments of the present disclosure are directed towards a circuit board having integrated passive devices such as inductors, capacitors, resistors and associated techniques and configurations. In one embodiment, an apparatus includes a circuit board having a first surface and a second surface opposite to the first surface and a passive device integral to the circuit board, the passive device having an input terminal configured to couple with electrical power of a die, an output terminal electrically coupled with the input terminal, and electrical routing features disposed between the first surface and the second surface of the circuit board and coupled with the input terminal and the output terminal to route the electrical power between the input terminal and the output terminal, wherein the input terminal includes a surface configured to receive a solder ball connection of a package assembly including the die. Other embodiments may be described and/or claimed.




ive

Capacitive device and resonance circuit

To provide a capacitive device capable of accurately securing a capacitance value, a variable capacitive device capable of sufficiently securing a capacity variability rate, and a resonance circuit that uses the capacitive devices. A capacitive device includes a capacitive device body constituted of a dielectric layer and at least a pair of capacitive device electrodes that sandwich the dielectric layer and cause a desired electric field in the dielectric layer; and stress adjustment portions to adjust a stress caused in the dielectric layer of the capacitive device body.




ive

Filter, receiver, transmitter and transceiver

Embodiments of the present invention provide a filter, a receiver, a transmitter, and a transceiver. The filter includes a resonant cavity component, a microstrip filtering component, and two connecting pieces, where the resonant cavity component includes at least two resonant cavities connected in parallel, each resonant cavity is provided with a resonator and a tuning screw, the microstrip filtering component includes a dielectric substrate and a microstrip positioned on the dielectric substrate, one of the connecting pieces matches and connects one end of the microstrip to the resonator on one resonant cavity, the other connecting piece matches and connects the other end of the microstrip to the resonator on another resonant cavity, and impedance of the resonant cavity component is less than impedance of the microstrip filtering component.




ive

Multilayer protective textile sleeve and method of construction

A multilayer textile sleeve and method of construction thereof is provided. The sleeve has an outer layer constructed at least in part from a first warp yarn extending along a length direction of the sleeve and a weft yarn extending transversely to the length direction. The sleeve further includes an inner layer constructed at least in part from a second warp yarn extending along the length direction and a weft yarn extending transversely to the length direction, with the second warp yarn being a different type of yarn than the first warp yarn. The outer layer and inner layer are connected to one another by interlinking the weft yarn of the outer layer with at least some of the second warp yarns of the inner layer and by interlinking the weft yarn of the inner layer with at least some of the first warp yarns of the outer layer.




ive

Direct feeding apparatus for impedance matching of wireless power transmission device, and transmitter and receiver using the same

A direct feeding apparatus for impedance matching of a wireless power transmission device includes a helical type resonator, and a feeding unit configured to directly feed power to a region having a relatively small current value as compared to a center of a conductive line of the resonator.




ive

Battery power delivery module

A system and method for digital management and control of power conversion from battery cells. The system utilizes a power management and conversion module that uses a CPU to maintain a high power conversion efficiency over a wide range of loads and to manage charge and discharge operation of the battery cells. The power management and conversion module includes the CPU, a current sense unit, a charge/discharge unit, a DC-to-DC conversion unit, a battery protection unit, a fuel gauge and an internal DC regulation unit. Through intelligent power conversion and charge/discharge operations, a given battery type is given the ability to emulate other battery types by conversion of the output voltage of the battery and adaptation of the charging scheme to suit the battery.




ive

Discharge device and discharge method for the active discharge of a capacitor for use in the electric-power system of an electric-drive vehicle

A discharge device actively discharges a main capacitor in an electric-power system of an electric-drive vehicle and comprises a discharge branch of a circuit connected in parallel to the capacitor and including a discharge transistor biased to “conduction” mode when the capacitor must be discharged. A control device is connected to a “gate/base” terminal of and controls the transistor, biasing the transistor to the mode when the capacitor is required to fee discharged. A control transistor maintains the discharge transistor in a “non-conductive” state when the control transistor is in the mode. The control transistor is in the state for the discharge transistor to be in the mode. A safety capacitor is interposed between the terminal and a power supply and charges when the discharge transistor is in the mode, causing a progressive decrease of current at the terminal, until the discharge transistor is biased to the state.




ive

Automatic start/stop device for engine-driven power generator

Starting and stopping an engine is automatically controlled based on a load without using a relay. An inverter engine-driven power generator has an alternator, a rectifying circuit, a DC/DC converter, and an inverter circuit. A load detection circuit is connected to an output of the inverter circuit in parallel. A load detection line of the load detection circuit is connected to an output line of the inverter circuit in parallel via resistors. A power supply formed of a battery is connected to the load detection line. A decision circuit outputs a load detection signal when a current having a preset value or more flows through the load detection line. A drive/stop CPU starts the engine in response to the load detection. The resistors are set at a resistance value which does not influence a load to which a generator output is supplied.




ive

Automatic start and stop of a portable engine driven power source

The present embodiments provide a control system and method that is able to automatically start and/or stop a portable engine-driven power source. For example, in one embodiment, a system includes an engine-driven power source having an engine, a compressor driven by the engine, a sensor configured to generate a first signal indicative of a demand for air pressure from the compressor and a second signal indicative of no demand for air pressure from the compressor. The engine-driven power source also includes a controller configured to stop the engine in response to the second signal.




ive

Generator drive system for an internal combustion engine

A generator drive system for the generator (3) of an internal combustion engine (1), including a flexible drive having a traction mechanism (5) which is guided across a generator pulley (6) driving the generator (3). The generator (3) is configured and electrically wired such that the generator (3) can be temporarily driven as a motor, and the generator (3) is coupled to the generator pulley (6) or the crankshaft pulley (7) is coupled to the crankshaft (8) via an overrunning clutch (4) which allows the generator (3), when operated as a motor, running faster than the generator pulley (6) or, taking into consideration a gear ratio, the crankshaft (8).




ive

System adapted for one or more vehicles, which may be driven forward electrically

The present invention has its application to a system for driving an electric and by one or more batteries powered vehicle along a roadway, comprising “a” one or more vehicles, which may be driven by an individual electric motor or motors and where in the respective vehicles exhibit a power-controlling control circuit for creating the necessary power and/or speed control and wherein required power i.a. can be provided primarily by a chargeable can be provided primarily by a chargeable battery set associated with the vehicle and “b” a plurality of road sections road portions divisible for the roadway, each being allotted one or more vehicle external electric stations for charging the battery set thereby and/or for supplying necessary power and energy for driving the vehicle. The underneath side of the mentioned vehicle is provided with a contact means displaceably positioned up and down and sideways, counted in the direction of transportation. Said roadway and its road sections or portions exhibits an elongated track or groove, each road section is supporting two rails in the groove and disposed under the driving path of the road section or portion. The rails being supplied with current and voltage. Said contact means is coordinated with a control equipment for creating simple adaptation of the contact means for registering the contact means for mechanical and electrical contact against said two rails.




ive

Wireless power feeder and wireless power receiver

A wireless power feeder 116 feeds power from a feeding coil L2 in the ground to a receiving coil L3 incorporated in an EV by wireless using a magnetic field resonance phenomenon between the feeding coil L2 and receiving coil L3. A plurality of feeding coils L2a to L2d are buried in the ground. Receivers 112a to 112d are buried in corresponding respectively with the feeding coils L2a to L2d. The plurality of receivers 112 each receive a position signal transmitted from a transmitter 110 of the EV. A feeding coil circuit 120 supplies AC power to the feeding coil L2 corresponding to the receiver 112 that has received the position signal to allow the feeding coil L2 to feed power to the receiving coil L3 by wireless.




ive

Device and method for inductively transmitting electric energy to displaceable consumers

The invention relates to a device for inductively transmitting electrical energy to displaceable consumers (F1-F13) that can be moved along a track, having a primary conductor arrangement (2) divided into route segments (3-7) that are electrically separated from each other, and extending along the track, wherein individual route segments (3-7) are each associated with at least one current source (3'-7') for imprinting a continuous current into each of the route segments (3-7), and to a corresponding method. The aim of the invention is to supply the displaceable consumers in an energy-saving manner with electric energy matched to demand, and to allow short reaction times when operating the device. This aim is achieved by providing the device with a means (11) for determining the total power of the displaceable consumers (F1-F13) present in each of the individual route segments (3-7) and with a means (11) for actuating the current sources (3'-7') for applying the electrical continuous current corresponding to the total power required for each route segment (3-7), or by determining, according to the method, the required total power of the displaceable consumers (F1-F13) present in each route segment and applying an electrical continuous current to each route segment (3-7) by means of the associated current source (3'-7'), said current corresponding to the total power required therein.




ive

Auxiliary and motive electric power pick-up structure for land vehicles

An auxiliary and motive electric power pick-up structure for articulated and non-articulated land vehicles, such as electric public transport vehicles, that pass close to a collector-shoe-type power supply member mounted on a stationary support (17) along the route of the vehicle and positioned at intervals along the length of the route in order to provide auxiliary and motive electric power to the vehicle by way of the shoe (16). The structure comprises at least one conductor rail mounted on insulating supports (11) attached to the vehicle by suspension points (34), each including an elastic suspension unit (30) and a pneumatic, hydraulic or other type active suspension unit (33). In the case of articulated vehicles, the pick-up structure is divided into power supply segments (14) separated by a conducting link (19) at each articulated unit of the vehicle.




ive

Inductively receiving electric energy for a vehicle

The invention relates to an arrangement for providing a vehicle, in particular a track bound vehicle, with electric energy, wherein the arrangement comprises a receiving device (200) adapted to receive an alternating electromagnetic field and to produce an alternating electric current by electromagnetic induction. The receiving device (200) comprises a plurality of windings and/or coils (9, 10, 11) of electrically conducting material, wherein each winding or coil (9, 10, 11) is adapted to produce a separate phase of the alternating electric current.




ive

Transferring electric energy to a vehicle, using a system which comprises consecutive segments for energy transfer

Disclosed is a system for transferring electric energy to a vehicle, in particular to a track bound vehicle such as a light rail vehicle. The system includes an electric conductor arrangement for producing an alternating electromagnetic field and for thereby transferring the energy to the vehicle. The electric conductor arrangement includes at least one alternating current line. Each alternating current line carries one phase of an alternating electric current. The conductor arrangement includes a plurality of consecutive segments. The segments extend along the path of travel of the, vehicle. Each segment includes one section of each of the at least one alternating current line.




ive

Upper lateral structure for the occasional or continuous collection of main-drive or auxiliary electrical power by a land vehicle

The upper lateral collection structure (8) is mounted on a land vehicle (1), notably an urban public transport vehicle, and cooperates, for the purpose of overhead electrical power supply to the vehicle, with fixed contact slippers (16) located along its route. This structure comprises: a conducting track (14) arranged longitudinally (NEW) the upper lateral part of the vehicle and comprising a contact region (15) for the contact slipper; an electrical connection connecting the conducting track to the electrical circuit of the vehicle; an insulating support (24) on which the conducting track is mounted; a means of mechanical connection of the collecting structure to the vehicle; and a damping device which damps out the shocks resulting from the contact slipper and ensures satisfactory contact between the conducting track and the contact slipper. This invention is of benefit to the manufacturers of electrically powered public transport vehicles.




ive

Electrically driven dump truck

A vehicle control device 50, a controller 100, an inverter control device 30 and a steering control device 32 constitute a control device 200 which controls elevation of sliders 4Ra and 4La of power collectors 4R and 4L based on information detected by a trolley wire detecting device (camera) 15. The control device 200 calculates positional relationship between a slider and a trolley wire 3R/3L based on the information detected by the trolley wire detecting device. When the slider has deviated from a prescribed range for being in contact with the trolley wire, the control device executes control to prohibit an operation for elevating the sliders or to lower the sliders when the sliders have been elevated. With this configuration, an electrically driven dump truck capable of lightening the operating load on the driver during the trolley traveling is provided.




ive

Arrangement for operating consumers in a rail vehicle with electrical energy, selectively from an energy supply network or from a motor-generator combination

An arrangement for operating a rail vehicle includes a DC voltage intermediate circuit which is connected to an energy supply network, at least one traction inverter which is connected at its DC voltage side to the DC voltage intermediate circuit and at its AC voltage side which is connected one or more traction motors of the rail vehicle. An auxiliary system inverter is connected at its DC voltage side to the DC voltage intermediate circuit and is connected at its AC voltage side to a primary side of an auxiliary system transformer. Auxiliary systems are connected to a secondary side of the auxiliary system transformer via an auxiliary line. Electrical energy generated by an electrical energy supply unit is transferred via the auxiliary line, the auxiliary system transformer and the auxiliary system inverter into the DC voltage intermediate circuit for operation of the at least one traction motor.




ive

Positioning and/or holding a plurality of line sections of electric lines along a drive way of a vehicle

A shaped block for positioning and/or holding a plurality of line sections of one or more electric lines along the track of a vehicle includes a plurality of recesses and/or projections. Edges of the recesses and/or the projections each delimit a space for the line sections into which one of the line sections can be introduced, so that said line section extends through the space in a longitudinal direction of the space. The longitudinal directions of the spaces delimited by the edges of the recesses and/or by the projections extend essentially mutually parallel in a common plane.




ive

Model-free adaptive control of supercritical circulating fluidized-bed boilers

A novel 3-Input-3-Output (3×3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7×7) MFA control system is also described for controlling a combined 3-Input-3-Output (3×3) process of Boiler-Turbine-Generator (BTG) units and a 5×5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.




ive

Water delivery system and method for making hot water available in a domestic hot water installation

A water delivery system is provided, comprising at least one faucet device with a cold water faucet part and a hot water faucet part, a cold water line to the at least one faucet device, a tankless heater device for heating water, a hot water line having a first portion running from an outlet of the tankless heater device to the at least one faucet device and having a second portion running from the at least one faucet device to an inlet of the tankless heater device, and a circulatory pump arranged in the second portion of the hot water line, wherein the circulatory pump has a prefixed first performance level and a prefixed second performance level, wherein the first performance level causes a finite water flow in the hot water line which is below an operation threshold value of the tankless heater device.




ive

Livestock guide and manipulator

A livestock guide and manipulator panel prod is disclosed by this invention wherein electronic shocking circuitry is provided in combination with a hand-held livestock guiding and directing panel having electronic prods of said circuitry arranged on the surface of the panel.




ive

Spring whip defensive weapon

A spring whip which defines a defensive weapon for emergency use to disarm an attacker carrying and intending to use a knife, gun or any other type of offensive weapon, the spring whip having a hollow housing serving as a hand grip and providing an internal storage compartment for receiving plural lengths of helically wound springs, the springs being of sequentially increasing larger diameter size. The springs are operatively arranged relative to each other about a common axis so as to be maneuverable between a telescoped stored position within the housing compartment and an extended whipping position extending from one end of the housing. The lengths of springs are alternately wound in opposing clockwise and counter clockwise directions to facilitate moving between the telescoped stored position and the extended position, and also to permit threading together of adjacent sections, to thereby securely lock them in place in the extended position.




ive

Spring whip defensive mechanism having means to permit disassembly thereof

A knock down spring whip assembly including a hollow housing which serves as a handgrip, and also stores a spring subassembly formed of lengths of helically wound springs of sequentially increasingly larger diameter size to move between a telescoped position within the housing and an extended whipping position projecting from one end of the housing with the springs wedgingly engaging each other in an end to end arrangement. A removable closure unit is provided for plugging the other end of the housing to define a storage compartment. The closure unit includes an integral magnet for retaining the spring subassembly in the telescoped position, where the closure unit can be replaced with other types of closure units. The housing includes a tapered end and an annular constriction for providing both a wedging engagement of the projecting springs as well as a positive locking action. Weighted ball bearings can be included within one of the springs for spiral rotation therethrough to provide an additional striking force. The striking spring can be replaced by a solid rod for an increased striking force. Preferably, the tip portion at the striking end is also removable to permit the spring whip assembly to be disassembled into its component parts.




ive

Electrified livestock controller

An electrified livestock controller for guiding animals, preferably pigs, doubles as a gate and a prod. The controller comprises a central panel of generally planar dimensions, comprising a plurality of central, vertically disposed ribs separated from one another by elongated slots. One or more similar accessory panels are hingedly connected to each side of the central panel. The hinge structure facilitates adjustment of the controller for deployment in a variety of configurations. The hinge structure comprises a detent system having a plurality of indexing disks which, when yieldably mated together, facilitate positioning of the panels in a custom configuration. Suitable flush mounted electric strips are defined on all of the ribs, to provide a shocking effect without tissue damage. The system includes a removable cattle prod which, besides functioning as a handle, can be withdrawn from the handle to separately prod animals. Either concurrently with or independently of rib electrification, audio and/or visual effects may be generated to cause Pavlovian conditioning in the animals. A preferred visual effect of ascending motion, which may be induced by a revolving curtain displaying a spiral image, motivates the animals like a prod. The curtain is best operatively disposed behind the vertical ribs of at least one of the panels.




ive

Spring whip defensive mechanism having means to permit disassembly thereof

A knock down spring whip assembly including a hollow housing which serves as a handgrip, and also stores a spring subassembly formed of lengths of helically wound springs of sequentially increasingly larger diameter size to move between a telescoped position within the housing and an extended whipping position projecting from one end of the housing with the springs wedgingly engaging each other in an end to end arrangement. A removable closure unit is provided for plugging the other end of the housing to define a storage compartment. The closure unit includes an integral magnet for retaining the spring subassembly in the telescoped position, where the closure unit can be replaced with other types of closure units. The housing includes a tapered end and an annular constriction for providing both a wedging engagement of the projecting springs as well as a positive locking action. Weighted ball bearings can be included within one of the springs for spiral rotation therethrough to provide an additional striking force. The striking spring can be replaced by a solid rod for an increased striking force. Preferably, the tip portion at the striking end is also removable to permit the spring whip assembly to be disassembled into its component parts.




ive

Animal defensive barrier and exercise device

An animal defensive barrier device comprising a hand-grip portion having end caps; a strap connected to the hand-grip through one of the end caps; a loop portion distal at one end of the hand-grip and a loop portion distal from the first loop end; a plurality of knots between the hand-grip and the distal loop portion; and a plurality of sleeves on the strap between the hand-grip portion and the distal loop portion.




ive

Device for handling livestock using vibration and noise as a stimulation on external portions of the body

A battery operated hand held device for use in handling or controlling livestock, particularly cattle, swine, sheep and horses. This invention provides a novel alternative to conventional electric livestock prods, which deliver an electric shock to the animal. While operating on the principle of external stimulus to invoke a flight response, this invention relies on vibration and/or sound rather than painful electric shock. This unique mode of action satisfies the needs in the livestock industry for low stress handling equipment and techniques with the welfare of the animal as a priority.




ive

Audible prod for livestock

A device designed to prod livestock is intended to create an audible sound to aid in the controlled movement of animals. The device takes the form of a long pole comprising an upper end provided with a comfortable handle and a wrist strap and a lower end provided with a whistle. To use, the user would hold the device by the handle in one hand and whip it in a fast, circular motion, causing the whistle to make a sound. When done near an animal, the sound will cause the animal to move away, thus allowing the user to control the movement of the animal. The device is suitable for use by farmers, ranchers, auctioneers, herdsmen, or anyone who loads or moves livestock.




ive

Automated lumber retrieval and delivery

An automated lumber handling system laser-scans the top profile of multiple stacks of lumber, each of which contain boards of a unique size. Based on the scanned profiles, the system determines the order in which individual boards from a chosen stack should be transferred to a numerically controlled saw. The saw cuts the boards to proper size, and in the proper sequence to facilitate orderly assembly of a roof truss or prefabricated wall. In some examples, the system lifts individual boards by driving two retractable screws, or some other piercing tool, down into the upward facing surface of the board. A track mounted cantilever, holding the screws and a laser unit, translates over the lumber stacks to retrieve and deliver individual boards and, while doing so, the laser repeatedly scans the stacked lumber profiles on-the-fly to continuously update the profiles. The open cantilever design facilitates replenishing the stacks of lumber.




ive

Desktop adhesive tape dispenser

A desktop dispenser includes a stationary base including a bottom member defining a bottom open chamber, a vacuum mount including a suction disc positioned in the bottom open chamber and an actuation rod extended from the top wall of the suction disc, and a carrier coupled to the stationary base and biasable between a first position and a second position. When the carrier is in the first position, the actuation rod of the vacuum mount is in an initial position; when the carrier is in the second position, the driving member lifts the actuation rod of the vacuum mount to an acting position. Thus, the desktop tape dispenser can be adhered to the top of a desk.




ive

System and method for coordinating product delivery with ground engaging tool position

An agricultural implement system that includes a control system configured to receive a first signal to initiate seeding operations, to transition a ground engaging tool toward a working position at a first time after receiving the first signal, and to activate a product delivery system at a second time, different from the first time, after receiving the first signal.




ive

Central product delivery system

A stack-fold implement having a central bulk fill hopper assembly is provided. The bulk fill hopper assembly is mounted to the center frame section of the stack-told implement and does not affect the narrowness of the stack-fold implement when it's in a stacked, transport position, The hopper assembly includes a pair of bulk fill hoppers or tanks supported by cradle that is in turn supported by a pair of wheels. The cradle is removably coupled to the center frame section by a plurality of rigid frame members.




ive

Row unit for a seeding machine having active downforce control for the closing wheels

A planter row unit is disclosed having an active downforce control system for the closing wheels. This separate control of the downforce pressure for the closing wheels is provided from the row unit downforce control. A single operator input is used to set a desired downforce for all row units. The control system then operates to produce the desired downforce. Alternatively, the control system may display a downforce load to the operator who then manually makes adjustments as desired.




ive

Seeder with metering system having selectively powered metering sections

A metering system for a seeding machine is provided. The metering system includes selectively powered metering sections operable to individually allow or restrict seed dispensation. A damper arrangement is also provided so that pneumatic conveying of the particulate within the machine is consistently maintained when particulate flow is varied between the metering sections.




ive

Seed delivery apparatus for a farm implement

A seed metering assembly for a farm implement has a meter roller that can be accessed and removed in a relatively quick manner. The seed metering assembly includes a fluted meter roller that is segmented into a number of discrete fluted sections. Each fluted section has an associated flow control member that is selectively operable to impede the flow of granular material from a seed hopper to its corresponding section of the fluted meter roller.




ive

Seed delivery apparatus, systems, and methods

Referring to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views, FIG. 1 illustrates a side elevation view of a single row unit (10) of a conventional row crop planter such as the type disclosed in U.S. Pat. No. 7,438,006, the disclosure of which is hereby incorporated herein in its entirety by reference. As is well known in the art, the row units (10) are mounted in spaced relation along the length of a transverse toolbar (12) by a parallel linkage (14), comprised of upper and lower parallel arms (16, 18) pivotally mounted at their forward ends to the transverse toolbar (12) and at their rearward end to the row unit frame (20).




ive

Fluid delivery system for an agricultural implement

An agricultural implement is provided that includes a first tool bar and a second tool bar each supporting respective ground engaging tools and fluid dispersal components. The second tool bar is pivotally coupled to the first tool bar. The agricultural implement further includes fluid conduits coupled to respective tool bars for conveying fluid to the respective fluid dispersal components. Additionally, each of the conduits has a flexible end adjacent to the other tool bar. Furthermore, the agricultural implement includes a fluid joint coupled between the first and second flexible ends and configured to provide a sealed connection between the first and second flexible ends during relative pivotal movement of the first and second tool bars in operation but to allow for uncoupling of the first and second flexible ends for servicing of the implement.




ive

Method for fabricating a high coercivity hard bias structure for magnetoresistive sensor

A hard bias (HB) structure for longitudinally biasing a free layer in a MR sensor is disclosed that includes a mildly etched seed layer and a hard bias (HB) layer on the etched seed layer. The HB layer may contain one or more HB sub-layers stacked on a lower sub-layer which contacts the etched seed layer. Each HB sub-layer is mildly etched before depositing another HB sub-layer thereon. The etch may be performed in an IBD chamber and creates a higher concentration of nucleation sites on the etched surface thereby promoting a smaller HB average grain size than would be realized with no etch treatments. A smaller HB average grain size is responsible for increasing Hcr in a CoPt HB layer to as high as 2500 to 3000 Oe. Higher Hcr is achieved without changing the seed layer or HB material and without changing the thickness of the aforementioned layers.




ive

Reactive sputtering apparatus

A reactive sputtering apparatus includes a chamber, a substrate holder provided in the chamber, a target holder which is provided in the chamber and configured to hold a target, a deposition shield plate which is provided in the chamber so as to form a sputtering space between the target holder and the substrate holder, and prevents a sputter particle from adhering to an inner wall of the chamber, a reactive gas introduction pipe configured to introduce a reactive gas into the sputtering space, an inert gas introduction port which introduces an inert gas into a space that falls outside the sputtering space and within the chamber, and a shielding member which prevents a sputter particle from the target mounted on the target holder from adhering to an introduction port of the reactive gas introduction pipe upon sputtering.




ive

Method for producing a transparent and conductive metal oxide layer by highly ionized pulsed magnetron sputtering

A method for producing a transparent and conductive metal oxide layer on a substrate, includes atomizing at least one component of the metal oxide layer by highly ionized, high power pulsed magnetron sputtering to condense on the substrate. The pulses of the magnetron have a peak power density of more than 1.5 kW/cm2, the pulses of the magnetron have a duration of ≦200 μs, and the average increase in current density during ignition of the plasma within an interval, which is ≦0.025 ms, is at least 106 A/(ms cm2).




ive

Vibratory ripper having pressure sensor for selectively controlling activation of vibration mechanism

A ripping mechanism for a vehicle has a support frame. A ripping member has an engagement head that is configured for plowing a groove in the ground. The ripping member is preferably positionable in a selected working position and working orientation by adjustment of the support frame. The ripping member is preferably movable relative to the support frame to cause reciprocating movement of the engagement head at least partially longitudinally. A tilt adjustment cylinder is preferably operable to orient the ripping member in the selected orientation. A vibrator mechanism is preferably operatively connected to the ripping member and activatable to cause reciprocating movement of the engagement head at least partially longitudinally.




ive

Passive load and active velocity based flow compensation for a hydraulic tractor hitch

A hitch on a vehicle is raised and lowered by a hydraulic actuator controlled by an electrically operated valve. A control system receives a command that indicates a designated velocity and uses the command to operate the valve. Based on a reference external force exerted on the hitch, the control system is configured with relationships for converting a plurality of command values to corresponding electric current levels for operating the valve. The control system compensates for effects due to differences between the actual force acting on the hitch and the reference external force. Velocity feedback adjusts the electric current level applied to the valve. The passive load force control provides a predictor of the hitch load force to eliminate overshoot/undershoot of hitch motion. During hitch motion, the velocity feedback also compensates for effects due to load and hitch geometry changes that occur.