the Synthesis and crystal structure of diisothiocyanatotetrakis(4-methylpyridine N-oxide)cobalt(II) and diisothiocyanatotris(4-methylpyridine N-oxide)cobalt(II) showing two different metal coor By journals.iucr.org Published On :: 2024-01-26 The reaction of Co(NCS)2 with 4-methylpyridine N-oxide (C6H7NO) leads to the formation of two compounds, namely, tetrakis(4-methylpyridine N-oxide-κO)bis(thiocyanato-κN)cobalt(II), [Co(NCS)2(C6H7NO)4] (1), and tris(4-methylpyridine N-oxide-κO)bis(thiocyanato-κN)cobalt(II), [Co(NCS)2(C6H7NO)3] (2). The asymmetric unit of 1 consists of one CoII cation located on a centre of inversion, as well as one thiocyanate anion and two 4-methylpyridine N-oxide coligands in general positions. The CoII cations are octahedrally coordinated by two terminal N-bonding thiocyanate anions in trans positions and four 4-methylpyridine N-oxide ligands. In the extended structure, these complexes are linked by C—H⋯O and C—H⋯S interactions. In compound 2, two crystallographically independent complexes are present, which occupy general positions. In each of these complexes, the CoII cations are coordinated in a trigonal–bipyramidal manner by two terminal N-bonding thiocyanate anions in axial positions and by three 4-methylpyridine N-oxide ligands in equatorial positions. In the crystal, these complex molecules are linked by C—H⋯S interactions. For compound 2, a nonmerohedral twin refinement was performed. Powder X-ray diffraction (PXRD) reveals that 2 was nearly obtained as a pure phase, which is not possible for compound 1. Differential thermoanalysis and thermogravimetry data (DTA–TG) show that compound 2 start to decompose at about 518 K. Full Article text
the Crystal structures of the alkali aluminoboracites A4B4Al3O12Cl (A = Li, Na) By journals.iucr.org Published On :: 2024-01-26 Single crystals of alkali aluminoboracites, A4B4Al3O12Cl (A = Li, Na), were grown using the self-flux method, and their isotypic cubic crystal structures were determined by single-crystal X-ray diffraction. Na4B4Al3O12Cl is the first reported sodium boracite, and its lattice parameter [13.5904 (1) Å] is the largest among the boracites consisting of a cation–oxygen framework reported so far. For both crystals, structure models refined in the cubic space group Foverline{4}3c, which assume that all cubic octant subcells in the unit cell are equivalent, converged with R1 factors of ∼0.03. However, the presence of weak hhl reflections with odd h and l values indicates that refinements in the space group F23, which presume a checkerboard-like ordering of two types of subcells with slightly different atomic positions, are more appropriate. Full Article text
the Synthesis, crystal structure and Hirshfeld surface analysis of sodium bis(malonato)borate monohydrate By journals.iucr.org Published On :: 2024-01-26 In the title salt, poly[aqua[μ4-bis(malonato)borato]sodium], {[Na(C6H4BO8)]·H2O}n or Na+·[B(C3H2O4)2]−·H2O, the sodium cation exhibits fivefold coordination by four carbonyl O atoms of the bis(malonato)borate anions and a water O atom. The tetrahedral B atom at the centre of the anion leads to the formation of a polymeric three-dimensional framework, which is consolidated by C—H⋯O and O—H⋯O hydrogen bonds. A Hirshfeld surface analysis indicates that the most significant contacts in the crystal packing are H⋯O/O⋯H (49.7%), Na⋯O/O⋯Na (16.1%), O⋯O (12.6%), H⋯H (10.7%) and C⋯O/O⋯C (7.3%). Full Article text
the Crystal structures and Hirshfeld surface analyses of methyl 4-{2,2-dichloro-1-[(E)-phenyldiazenyl]ethenyl}benzoate, methyl 4-{2,2-dichloro-1-[(E)-(4-methylphenyl)diazenyl]ethenyl}benzoate and methyl 4- By journals.iucr.org Published On :: 2024-01-26 The crystal structures and Hirshfeld surface analyses of three similar azo compounds are reported. Methyl 4-{2,2-dichloro-1-[(E)-phenyldiazenyl]ethenyl}benzoate, C16H12Cl2N2O2, (I), and methyl 4-{2,2-dichloro-1-[(E)-(4-methylphenyl)diazenyl]ethenyl}benzoate, C17H14Cl2N2O2, (II), crystallize in the space group P21/c with Z = 4, and methyl 4-{2,2-dichloro-1-[(E)-(3,4-dimethylphenyl)diazenyl]ethenyl}benzoate, C18H16Cl2N2O2, (III), in the space group Poverline{1} with Z = 2. In the crystal of (I), molecules are linked by C—H⋯N hydrogen bonds, forming chains with C(6) motifs parallel to the b axis. Short intermolecular Cl⋯O contacts of 2.8421 (16) Å and weak van der Waals interactions between these chains stabilize the crystal structure. In (II), molecules are linked by C—H⋯O hydrogen bonds and C—Cl⋯π interactions, forming layers parallel to (010). Weak van der Waals interactions between these layers consolidate the molecular packing. In (III), molecules are linked by C—H⋯π and C—Cl⋯π interactions forming chains parallel to [011]. Furthermore, these chains are connected by C—Cl⋯π interactions parallel to the a axis, forming (0overline{1}1) layers. The stability of the molecular packing is ensured by van der Waals forces between these layers. Full Article text
the Synthesis, crystal structure and Hirshfeld surface analysis of 2-({5-[(naphthalen-1-yl)methyl]-4-phenyl-4H-1,2,4-triazol-3-yl}sulfanyl)-1-(4-nitrophenyl)ethanone By journals.iucr.org Published On :: 2024-01-26 The title compound, C27H20N4O3S, crystallizes in the monoclinic system, space group P21/n, with Z = 4. The global shape of the molecule is determined by the orientation of the substituents on the central 4H-1,2,4-triazole ring. The nitrophenyl ring, phenyl ring, and naphthalene ring system are oriented at dihedral angles of 82.95 (17), 77.14 (18) and 89.46 (15)°, respectively, with respect to the triazole ring. The crystal packing features chain formation in the b-axis direction by S⋯O interactions. A Hirshfeld surface analysis indicates that the highest contributions to surface contacts arise from contacts in which H atoms are involved. Full Article text
the Synthesis and crystal structure of the adduct between 2-pyridylselenyl chloride and isobutyronitrile By journals.iucr.org Published On :: 2024-02-06 The reaction between 2-pyridylselenenyl chloride and isobutyronitrile results in the formation of the corresponding cationic pyridinium-fused 1,2,4-selenodiazole, namely, 3-(propan-2-yl)-1,2,4-[1,2,4]selenadiazolo[4,5-a]pyridin-4-ylium chloride, C9H11N2Se+·Cl−, in high yield (89%). The structure of the compound, established by means of single-crystal X-ray analysis at 100 K, has monoclinic (P21/c) symmetry and revealed the presence of bifurcated chalcogen-hydrogen bonding Se⋯Cl−⋯H—Cl, and these non-covalent contacts were analysed by DFT calculations followed by a topological analysis of the electron-density distribution (ωB97XD/6-311++G** level of theory). Full Article text
the [4-(2-Aminoethyl)morpholine-κ2N,N']dibromidocadmium(II): synthesis, crystal structure and Hirshfeld surface analysis By journals.iucr.org Published On :: 2024-02-08 The title compound, [CdBr2(C6H14N2O)], was synthesized upon complexation of 4-(2-aminoethyl)morpholine and cadmium(II) bromide tetrahydrate at 303 K. It crystallizes as a centrosymmetric dimer, with one cadmium atom, two bromine atoms and one N,N'-bidentate 4-(2-aminoethyl)morpholine ligand in the asymmetric unit. The metal atom is six-coordinated and has a distorted octahedral geometry. In the crystal, O⋯Cd interactions link the dimers into a polymeric double chain and intermolecular C—H⋯O hydrogen bonds form R22(6) ring motifs. Further C—H⋯Br and N—H⋯Br hydrogen bonds link the components into a three-dimensional network. As the N—H⋯Br hydrogen bonds are shorter than the C—H⋯Br interactions, they have a larger effect on the packing. A Hirshfeld surface analysis reveals that the largest contributions to the packing are from H⋯H (46.1%) and Br⋯H/H⋯Br (38.9%) interactions with smaller contributions from the O⋯H/H⋯O (4.7%), Br⋯Cd/Cd⋯Br (4.4%), O⋯Cd/Cd⋯O (3.5%), Br⋯Br (1.1%), Cd⋯H/H⋯Cd (0.9%), Br⋯O/O⋯Br (0.3%) and O⋯N/N⋯O (0.1%) contacts. Full Article text
the Syntheses, characterizations, crystal structures and Hirshfeld surface analyses of methyl 4-[4-(difluoromethoxy)phenyl]-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, isopropyl 4-[4-(difluoro& By journals.iucr.org Published On :: 2024-02-08 The crystal structures and Hirshfeld surface analyses of three similar compounds are reported. Methyl 4-[4-(difluoromethoxy)phenyl]-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, (C21H23F2NO4), (I), crystallizes in the monoclinic space group C2/c with Z = 8, while isopropyl 4-[4-(difluoromethoxy)phenyl]-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, (C23H27F2NO4), (II) and tert-butyl 4-[4-(difluoromethoxy)phenyl]-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, (C24H29F2NO4), (III) crystallize in the orthorhombic space group Pbca with Z = 8. In the crystal structure of (I), molecules are linked by N—H⋯O and C—H⋯O interactions, forming a tri-periodic network, while molecules of (II) and (III) are linked by N—H⋯O, C—H⋯F and C—H⋯π interactions, forming layers parallel to (002). The cohesion of the molecular packing is ensured by van der Waals forces between these layers. In (I), the atoms of the 4-difluoromethoxyphenyl group are disordered over two sets of sites in a 0.647 (3): 0.353 (3) ratio. In (III), the atoms of the dimethyl group attached to the cyclohexane ring, and the two carbon atoms of the cyclohexane ring are disordered over two sets of sites in a 0.646 (3):0.354 (3) ratio. Full Article text
the Crystal structure of the tetraethylammonium salt of the non-steroidal anti-inflammatory drug nimesulide (polymorph II) By journals.iucr.org Published On :: 2024-02-20 The crystal structure of the tetraethylammonium salt of the non-steroidal anti-inflammatory drug nimesulide (polymorph II) (systematic name: tetraethylammonium N-methanesulfonyl-4-nitro-2-phenoxyanilinide), C8H20N+·C13H11N2O5S−, was determined using single-crystal X-ray diffraction. The title compound crystallizes in the monoclinic space group P21/c with one tetraethylammonium cation and one nimesulide anion in the asymmetric unit. In the crystal, the ions are linked by C—H⋯N and C—H⋯O hydrogen bonds and C—H⋯π interactions. There are differences in the geometry of both the nimesulide anion and the tetraethylammonium cation in polymorphs I [Rybczyńska & Sikorski (2023). Sci. Rep. 13, 17268] and II of the title compound. Full Article text
the Crystal structure of the sodium salt of mesotrione: a triketone herbicide By journals.iucr.org Published On :: 2024-02-16 The crystal structure of the sodium salt of mesotrione, namely, catena-poly[[sodium-μ3-2-[(4-methanesulfonyl-2-nitrophenyl)carbonyl]-3-oxocyclohex-1-en-1-olato] ethanol monosolvate], {[Na(C14H12NO7S)]C2H5OH}n, is described. The X-ray structural analysis results reveal that the coordination sphere is established by two chelating O atoms, the O atom of the coordinated ethanol molecule, and an O atom from the methylsulfonyl group of a neighboring molecule. Simultaneously, an O atom of the cyclohexane fragment serves as a bridge to a neighboring sodium ion, forming a flat Na–O–Na–O quadrangle, thereby forming a mono-periodic polymer. The structure displays O—H⋯O hydrogen bonds and C—H⋯O short contacts. Thermogravimetric analysis (TGA) data indicate that the sodium salt of mesotrione decomposes in four stages. Full Article text
the Synthesis, characterization, and crystal structure of 2-(2-azidophenyl)-3-oxo-3H-indole 1-oxide By journals.iucr.org Published On :: 2024-02-20 An attempt to explore the reactivity of the nitro group in the presence of gold catalysis in comparison to the azide group yielded intriguing results. Surprisingly, only the nitro group exhibited reactivity, ultimately giving rise to the formation of the title isatogen, C14H8N4O2. In the crystal structure, weak C—H⋯O hydrogen bonds and π–π stacking interactions link the molecules. The structure exhibits disorder of the molecule. Full Article text
the Synthesis and crystal structures of bis[1-oxopyridin-2-olato(1−)]bis(pentafluorophenyl)silicon(IV)–tetrahydrofuran–pentane (2/1/1), bis[1-oxopyridin-2-olato(1−)]bis(p-tolyl)silicon(IV), and dimes By journals.iucr.org Published On :: 2024-02-20 The neutral organosilicon(IV) complex, (C6F5)2Si(OPO)2 (OPO = 1-oxopyridin-2-one, C5H4NO2), was synthesized from (C6F5)2Si(OCH3)2 and 2 equiv. of 1-hydroxypyridin-2-one in tetrahydrofuran (THF). Single crystals grown from the diffusion of n-pentane into a THF solution were identified as a THF hemisolvate and an n-pentane hemisolvate, (C6F5)2Si(OPO)2·0.5THF·0.5C5H12 (1). p-Tolyl2Si(OPO)2 (2) and mesityl2Si(OPO)2 (3) crystallized directly from reaction mixtures of 2 equiv. of Me3Si(OPO) with p-tolyl2SiCl2 and mesityl2SiCl2, respectively, in acetonitrile. The oxygen-bonded carbon and nitrogen atoms of the OPO ligands in 1, 2, and 3 were modeled as disordered indicating co-crystallization of up to three possible diastereomers in each. Solution NMR studies support the presence of exclusively the all-cis isomer in 1 and multiple isomers in 2. Poor solubility of 3 limited its characterization in solution. Full Article text
the Synthesis, crystal structure and Hirshfeld surface analysis of N-(6-acetyl-1-nitronaphthalen-2-yl)acetamide By journals.iucr.org Published On :: 2024-03-06 The title compound, C14H12N2O4, was obtained from 2-acetyl-6-aminonaphthalene through two-step reactions of acetylation and nitration. The molecule comprises the naphthalene ring system consisting of functional systems bearing a acetyl group (C-2), a nitro group (C-5), and an acetylamino group (C-6). In the crystal, the molecules are assembled into two-dimensional sheet-like structures by intermolecular N—H⋯O and C—H⋯O hydrogen-bonding interactions. Hirshfeld surface analysis illustrates that the most important contributions to the crystal packing are from O⋯H/H⋯O (43.7%), H⋯H (31.0%), and C⋯H/H⋯C (8.5%) contacts. Full Article text
the Crystal structure of 1-{4-[bis(4-methylphenyl)amino]phenyl}ethene-1,2,2-tricarbonitrile By journals.iucr.org Published On :: 2024-02-29 The title compound, C25H18N4, crystallizes in the centrosymmetric orthorhombic space group Pbca, with eight molecules in the unit cell. The main feature noticeable in the structure is the impact of the tricyanovinyl (TCV) group in forcing partial planarity of the portion of the molecule carrying the TCV group and directing the molecular packing in the solid state, resulting in the formation of π-stacks of dimers within the unit cell. Short π–π stack closest atom-to-atom distances of 3.444 (15) Å are observed. Such motif patterns are favorable as they are thought to be conducive for better charge transport in organic semiconductors, which results in enhanced device performance. Intramolecular charge transfer is evident from the shortening in the observed experimental bond lengths. The nitrogen atoms (of the cyano groups) are involved in extensive short contacts, primarily through C—H⋯NC interactions with distances of 2.637 (17) Å. Full Article text
the The unanticipated oxidation of a tertiary amine in a tetracyclic glyoxal-cyclam condensate yielding zinc(II) coordinated to a sterically hindered amine oxide By journals.iucr.org Published On :: 2024-03-06 The complex, trichlorido(1,4,11-triaza-8-azoniatetracyclo[6.6.2.04,16.011,15]hexadecane 1-oxide-κO)zinc(II) monohydrate, [ZnCl3(C12H23N4O)]·H2O, (I), has monoclinic symmetry (space group P21/n) at 120 K. The zinc(II) center adopts a slightly distorted tetrahedral coordination geometry and is coordinated by three chlorine atoms and the oxygen atom of the oxidized tertiary amine of the tetracycle. The amine nitrogen atom, inside the ligand cleft, is protonated and forms a hydrogen bond to the oxygen of the amine oxide. Additional hydrogen-bonding interactions involve the protonated amine, the water solvate oxygen atom, and one of the chloro ligands. Full Article text
the CoII-catalysed synthesis of N-(4-methoxyphenyl)-5-(pyridin-4-yl)-1,3,4-oxadiazol-2-amine hemihydrochloride monohydrate By journals.iucr.org Published On :: 2024-03-12 The title compound, C14H12N4O2·0.5HCl·H2O or H(C14H12N4O2)2+·Cl−·2H2O, arose from the unexpected cyclization of isonicotinoyl-N-phenyl hydrazine carbothioamide catalysed by cobalt(II) acetate. The organic molecule is almost planar and a symmetric N⋯H+⋯N hydrogen bond links two of them together, with the H atom lying on a crystallographic twofold axis. The extended structure features N—H⋯O and O—H⋯Cl hydrogen bonds, which generate [001] chains. Weak C—H⋯Cl interactions cross-link the chains. The chloride ion has site symmetry 2. The major contributions to the Hirshfeld surface are from H⋯H (47.1%), Cl⋯H/H⋯Cl (total 10.8%), O⋯H/H⋯O (7.4%) and N⋯H/H⋯N (6.7%) interactions. Full Article text
the Crystal structure, Hirshfeld surface analysis, calculations of crystal voids, interaction energy and energy frameworks as well as density functional theory (DFT) calculations of 3-[2-(morpholin-4-yl)ethyl]-5,5-diphenylimidazolidine By journals.iucr.org Published On :: 2024-03-26 In the title molecule, C21H23N3O3, the imidazolidine ring slightly deviates from planarity and the morpholine ring exhibits the chair conformation. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds form helical chains of molecules extending parallel to the c axis that are connected by C—H⋯π(ring) interactions. A Hirshfeld surface analysis reveals that the most important contributions for the crystal packing are from H⋯H (55.2%), H⋯C/C⋯H (22.6%) and H⋯O/O⋯H (20.5%) interactions. The volume of the crystal voids and the percentage of free space were calculated to be 236.78 Å3 and 12.71%, respectively. Evaluation of the electrostatic, dispersion and total energy frameworks indicates that the stabilization is dominated by the nearly equal electrostatic and dispersion energy contributions. The DFT-optimized molecular structure at the B3LYP/6-311 G(d,p) level is compared with the experimentally determined molecular structure in the solid state. Moreover, the HOMO–LUMO behaviour was elucidated to determine the energy gap. Full Article text
the Synthesis and crystal structure of N-phenyl-2-(phenylsulfanyl)acetamide By journals.iucr.org Published On :: 2024-03-26 N-Phenyl-2-(phenylsulfanyl)acetamide, C14H13NOS, was synthesized and structurally characterized. In the crystal, N—H⋯O hydrogen bonding leads to the formation of chains of molecules along the [100] direction. The chains are linked by C—H⋯π interactions, forming a three-dimensional network. The crystal studied was twinned by a twofold rotation around [100]. Full Article text
the Synthesis, crystal structure and Hirshfeld surface analysis of 2-phenyl-3-(prop-2-yn-1-yloxy)quinoxaline By journals.iucr.org Published On :: 2024-03-21 In the title compound, C17H12N2O, the quinoxaline moiety shows deviations of 0.0288 (7) to −0.0370 (7) Å from the mean plane (r.m.s. deviation of fitted atoms = 0.0223 Å). In the crystal, corrugated layers two molecules thick are formed by C—H⋯N hydrogen bonds and π-stacking interactions. Full Article text
the Synthesis, characterization and supramolecular analysis for (E)-3-(pyridin-4-yl)acrylic acid By journals.iucr.org Published On :: 2024-03-26 The title compound, C8H7NO2, crystallizes as prismatic colourless crystals in space group Poverline{1}, with one molecule in the asymmetric unit. The pyridine ring is fused to acrylic acid, forming an almost planar structure with an E-configuration about the double bond with a torsion angle of −6.1 (2)°. In the crystal, strong O—H⋯N interactions link the molecules, forming chains along the [101] direction. Weak C—H⋯O interactions link adjacent chains along the [100] direction, generating an R22(14) homosynthon. Finally, π–π stacking interactions lead to the formation of the three-dimensional structure. The supramolecular analysis was supported by Hirshfeld surface and two-dimensional fingerprint plot analysis, indicating that the most abundant contacts are associated with H⋯H, O⋯H/H⋯O, N⋯H/H⋯N and C⋯H/H⋯C interactions. Full Article text
the Synthesis, crystal structure and Hirshfeld surface analysis of bromidotetrakis[5-(prop-2-en-1-ylsulfanyl)-1,3,4-thiadiazol-2-amine-κN3]copper(II) bromide By journals.iucr.org Published On :: 2024-03-26 A novel cationic complex, bromidotetrakis[5-(prop-2-en-1-ylsulfanyl)-1,3,4-thiadiazol-2-amine-κN3]copper(II) bromide, [CuBr](C5H7N3S2)4Br, was synthesized. The complex crystallizes with fourfold molecular symmetry in the tetragonal space group P4/n. The CuII atom exhibits a square-pyramidal coordination geometry. The Cu atom is located centrally within the complex, being coordinated by four nitrogen atoms from four AAT molecules, while a bromine anion is located at the apex of the pyramid. The amino H atoms of AAT interact with bromine from the inner and outer spheres, forming a two-dimensional network in the [100] and [010] directions. Hirshfeld surface analysis reveals that 33.7% of the intermolecular interactions are from H⋯H contacts, 21.2% are from S⋯H/H⋯S contacts, 13.4% are from S⋯S contacts and 11.0% are from C⋯H/H⋯C, while other contributions are from Br⋯H/H⋯Br and N⋯H/H⋯N contacts. Full Article text
the Synthesis and crystal structure of tetramethyl (E)-4,4'-(ethene-1,2-diyl)bis(5-nitrobenzene-1,2-dicarboxylate) By journals.iucr.org Published On :: 2024-03-28 The title compound, C22H18N2O12, was obtained as a by-product during the planned synthesis of 1,2-bis(2-nitro-4,5-dimethyl phthalate)ethane by oxidative dimerization starting from dimethyl-4-methyl-5-nitro phthalate. To identify this compound unambiguously, a single-crystal structure analysis was performed. The asymmetric unit consists of half a molecule that is located at a centre of inversion. As a result of symmetry restrictions, the molecule shows an E configuration around the double bond. Both phenyl rings are coplanar, whereas the nitro and the two methyl ester groups are rotated out of the ring plane by 32.6 (1), 56.5 (2) and 49.5 (2)°, respectively. In the crystal, molecules are connected into chains extending parallel to the a axis by pairs of C—H⋯O hydrogen bonds that are connected into a tri-periodic network by additional C—H⋯O hydrogen-bonding interactions. Full Article text
the Synthesis, crystal structure and Hirshfeld analysis of N-ethyl-2-{3-methyl-2-[(2Z)-pent-2-en-1-yl]cyclopent-2-en-1-ylidene}hydrazinecarbothioamide By journals.iucr.org Published On :: 2024-04-09 The title compound (C14H23N3S, common name: cis-jasmone 4-ethylthiosemicarbazone) was synthesized by the equimolar reaction of cis-jasmone and 4-ethylthiosemicarbazide in ethanol facilitated by acid catalysis. There is one crystallographically independent molecule in the asymmetric unit, which shows disorder of the terminal ethyl group of the jasmone carbon chain [site-occupancy ratio = 0.911 (5):0.089 (5)]. The thiosemicarbazone entity [N—N—C(=S)—N] is approximately planar, with the maximum deviation of the mean plane through the N/N/C/S/N atoms being 0.0331 (8) Å, while the maximum deviation of the mean plane through the five-membered ring of the jasmone fragment amounts to −0.0337 (8) Å. The dihedral angle between the two planes is 4.98 (7)°. The molecule is not planar due to this structural feature and the sp3-hybridized atoms of the jasmone carbon chain. Additionally, one H⋯N intramolecular interaction is observed, with graph-set motif S(5). In the crystal, the molecules are connected through pairs of H⋯S interactions with R22(8) and R21(7) graph-set motifs into centrosymmetric dimers. The dimers are further connected by H⋯N interactions with graph-set motif R22(12), which are related by an inversion centre, forming a mono-periodic hydrogen-bonded ribbon parallel to the b-axis. The crystal structure and the supramolecular assembly of the title compound are compared with four known cis-jasmone thiosemicarbazone derivatives (two crystalline modifications of the non-substituted form, the 4-methyl and the 4-phenyl derivatives). A Hirshfeld surface analysis indicates that the major contributions for the crystal cohesion are from H⋯H (70.7%), H⋯S/S⋯H (13.5%), H⋯C/C⋯H (8.8%), and H⋯N/N⋯H (6.6%) interfaces (only the disordered atoms with the highest s.o.f. were considered for the evaluation). Full Article text
the Synthesis, crystal structure and properties of the trigonal–bipyramidal complex tris(2-methylpyridine N-oxide-κO)bis(thiocyanato-κN)cobalt(II) By journals.iucr.org Published On :: 2024-04-11 Reaction of Co(NCS)2 with 2-methylpyridine N-oxide in a 1:3 ratio in n-butanol leads to the formation of crystals of tris(2-methylpyridine N-oxide-κO)bis(thiocyanato-κN)cobalt(II), [Co(NCS)2(C6H7NO)3]. The asymmetric unit of the title compound consists of one CoII cation two thiocyanate anions and three crystallographically independent 2-methylpyridine N-oxide coligands in general positions. The CoII cations are trigonal–bipyramidally coordinated by two terminal N-bonding thiocyanate anions in the trans-positions and three 2-methylpyridine N-oxide coligands into discrete complexes. These complexes are linked by intermolecular C–H⋯S interactions into double chains that elongate in the c-axis direction. Powder X-ray diffraction (PXRD) measurements prove that all batches are always contaminated with an additional and unknown crystalline phase. Thermogravimetry and differential analysis of crystals selected by hand reveal that the title compound decomposes at about 229°C in an exothermic reaction. At about 113°C a small endothermic signal is observed that, according to differential scanning calorimetry (DSC) measurements, is irreversible. PXRD measurements of the residue prove that a poorly crystalline and unknown phase has formed and thermomicroscopy indicates that some phase transition occurs that is accompanied with a color change of the title compound. Full Article text
the Synthesis, crystal structure and thermal properties of the dinuclear complex bis(μ-4-methylpyridine N-oxide-κ2O:O)bis[(methanol-κO)(4-methylpyridine N-oxide-κO)bis(thiocyanato-κN)cobalt(II)] By journals.iucr.org Published On :: 2024-04-18 Reaction of Co(NCS)2 with 4-methylpyridine N-oxide in methanol leads to the formation of crystals of the title compound, [Co2(NCS)4(C6H7NO)4(CH4O)2] or Co2(NCS)4(4-methylpyridine N-oxide)4(methanol)2. The asymmetric unit consist of one CoII cation, two thiocyanate anions, two 4-methylpyridine N-oxide coligands and one methanol molecule in general positions. The H atoms of one of the methyl groups are disordered and were refined using a split model. The CoII cations octahedrally coordinate two terminal N-bonded thiocyanate anions, three 4-methylpyridine N-oxide coligands and one methanol molecule. Each two CoII cations are linked by pairs of μ-1,1(O,O)-bridging 4-methylpyridine N-oxide coligands into dinuclear units that are located on centers of inversion. Powder X-ray diffraction (PXRD) investigations prove that the title compound is contaminated with a small amount of Co(NCS)2(4-methylpyridine N-oxide)3. Thermogravimetric investigations reveal that the methanol molecules are removed in the beginning, leading to a compound with the composition Co(NCS)2(4-methylpyridine N-oxide), which has been reported in the literature and which is of poor crystallinity. Full Article text
the Synthesis, crystal structure and Hirshfeld surface analysis of 4-{(1E)-1-[(carbamothioylamino)imino]ethyl}phenyl propanoate By journals.iucr.org Published On :: 2024-04-18 The title compound, C12H15N3O2S, adopts an E configuration with respect to the C=N bond. The propionate group adopts an antiperiplanar (ap) conformation. There are short intramolecular N—H⋯N and C—H⋯O contacts, forming S(5) and S(6) ring motifs, respectively. In the crystal, molecules are connected into ribbons extending parallel to [010] by pairs of N—H⋯S interactions, forming rings with R22(8) graph-set motifs, and by pairs of C—H⋯S interactions, where rings with the graph-set motif R21(7) are observed. The O atom of the carbonyl group is disordered over two positions, with a refined occupancy ratio of 0.27 (2):0.73 (2). The studied crystal consisted of two domains. Full Article text
the High-resolution crystal structure of the double nitrate hydrate [La(NO3)6]2[Ni(H2O)6]3·6H2O By journals.iucr.org Published On :: 2024-05-10 This study introduces bis[hexakis(nitrato-κ2O,O')lanthanum(III)] tris[hexaaquanickel(II)] hexahydrate, [La(NO3)6]2[Ni(H2O)6]3·6H2O, with a structure refined in the hexagonal space group Roverline{3}. The salt comprises [La(NO3)6]3− icosahedra and [Ni(H2O)6]2+ octahedra, thus forming an intricate network of interpenetrating honeycomb lattices arranged in layers. This arrangement is stabilized through strong hydrogen bonds. Two successive layers are connected via the second [Ni(H2O)6]2+ octahedra, forming sheets which are stacked perpendicular to the c axis and held in the crystal by van der Waals forces. The synthesis of [La(NO3)6]2[Ni(H2O)6]3·6H2O involves dissolving lanthanum(III) and nickel(II) oxides in nitric acid, followed by slow evaporation, yielding green hexagonal plate-like crystals. Full Article text
the Structure of the five-coordinate CoII complex (1H-imidazole){tris[(1-benzyltriazol-4-yl-κN3)methyl]amine-κN}cobalt(II) bis(tetrafluoroborate) By journals.iucr.org Published On :: 2024-04-18 The title compound, [Co(C3H4N2)(C30H30N10)](BF4)2, is a five-coordinate CoII complex based on the neutral ligands tris[(1-benzyltriazol-4-yl)methyl]amine (tbta) and imidazole. It exhibits a distorted trigonal bipyramidal geometry in which the equatorial positions are occupied by the three N-atom donors from the triazole rings of the tripodal tbta ligand. The apical amine N-atom donor of tbta and the N-atom donor of the imidazole ligand occupy the axial positions of the coordination sphere. Two tetrafluoroborate anions provide charge balance in the crystal. Full Article text
the Synthesis and crystal structures of N,2,4,6-tetramethylanilinium trifluoromethanesulfonate and N-isopropylidene-N,2,4,6-tetramethylanilinium trifluoromethanesulfonate By journals.iucr.org Published On :: 2024-04-26 Two 2,4,6-trimethylaniline-based trifuloromethanesulfonate (trifluoromethanesulfonate) salts were synthesized and characterized by single-crystal X-ray diffraction. N,2,4,6-Tetramethylanilinium trifluoromethanesulfonate, [C10H14NH2+][CF3O3S−] (1), was synthesized via methylation of 2,4,6-trimethylaniline. N-Isopropylidene-N,2,4,6-tetramethylanilinium trifluoromethanesulfonate, [C13H20N+][CF3O3S−] (2), was synthesized in a two-step reaction where the imine, N-isopropylidene-2,4,6-trimethylaniline, was first prepared via a dehydration reaction to form the Schiff base, followed by methylation using methyl trifluoromethanesulfonate to form the iminium ion. In compound 1, both hydrogen bonding and π–π interactions form the main intermolecular interactions. The primary interaction is a strong N—H⋯O hydrogen bond with the oxygen atoms of the trifluoromethanesulfonate anions bonded to the hydrogen atoms of the ammonium nitrogen atom to generate a one-dimensional chain. The [C10H14NH2+] cations form dimers where the benzene rings form a π–π interaction with a parallel-displaced geometry. The separation distance between the calculated centroids of the benzene rings is 3.9129 (8) Å, and the interplanar spacing and ring slippage between the dimers are 3.5156 (5) and 1.718 Å, respectively. For 2, the [C13H20N+] cations also form dimers as in 1, but with the benzene rings highly slipped. The distance between the calculated centroids of the benzene rings is 4.8937 (8) Å, and interplanar spacing and ring slippage are 3.3646 (5) and 3.553 Å, respectively. The major intermolecular interactions in 2 are instead a series of weaker C—H⋯O hydrogen bonds [C⋯O distances of 3.1723 (17), 3.3789 (18), and 3.3789 (18) Å], an interaction virtually absent in the structure of 1. Fluorine atoms are not involved in strong directional interactions in either structure. Full Article text
the Synthesis, crystal structure and Hirshfeld surface analysis of 2-[(4-hydroxyphenyl)amino]-5,5-diphenyl-1H-imidazol-4(5H)-one By journals.iucr.org Published On :: 2024-04-26 In the title molecule, C21H17N3O2, the five-membered ring is slightly ruffled and dihedral angles between the pendant six-membered rings and the central, five-membered ring vary between 50.78 (4) and 86.78 (10)°. The exocyclic nitrogen lone pair is involved in conjugated π bonding to the five-membered ring. In the crystal, a layered structure is generated by O—H⋯N and N—H⋯O hydrogen bonds plus C—H⋯π(ring) and weak π-stacking interactions. Full Article text
the Synthesis and crystal structure of (NH4)[Ni3(HAsO4)(AsO4)(OH)2] By journals.iucr.org Published On :: 2024-04-26 The title compound, ammonium trinickel(II) hydrogen arsenate arsenate dihydroxide, was synthesized under hydrothermal conditions. Its crystal structure is isotypic with that of K[Cu3(HAsO4)(AsO4)(OH)2] and is characterized by pseudo-hexagonal (001) 2∞[Ni3As2O18/3(OH)6/3O1/1(OH)1/1]− layers formed from vertex- and edge-sharing [NiO4(OH)2] octahedra and [AsO3.5(OH)0.5] tetrahedra as the building units. The hydrogen atom of the OH group shows occupational disorder and was refined with a site occupation factor of 1/2, indicating the equal presence of [HAsO4]2– and [AsO4]3– groups. Strong asymmetric hydrogen bonds between symmetry-related (O,OH) groups of the arsenate units [O⋯O = 2.588 (18) Å] as well as hydrogen bonds accepted by these (O,OH) groups from OH groups bonded to the NiII atoms [O⋯O = 2.848 (12) Å] link adjacent layers. Additional consolidation of the packing is achieved through N—H⋯O hydrogen bonds from the ammonium ion, which is sandwiched between adjacent layers [N⋯O = 2.930 (7) Å] although the H atoms could not be located in the present study. The presence of the pseudo-hexagonal 2∞[Ni3As2O18/3(OH)6/3O1/1(OH)1/1]− layers may be the reason for the systematic threefold twinning of (NH4)[Ni3(HAsO4)(AsO4)(OH)2] crystals. Significant overlaps of the reflections of the respective twin domains complicated the structure solution and refinement. Full Article text
the Synthesis and crystal structures of 5,17-dibromo-26,28-dihydroxy-25,27-dipropynyloxycalix[4]arene, 5,17-dibromo-26,28-dipropoxy-25,27-dipropynyloxycalix[4]arene and 25,27-bis(2-azidoethoxy)-5,17-dibromo-26,28-di By journals.iucr.org Published On :: 2024-05-03 The calixarenes, 5,17-dibromo-26,28-dihydroxy-25,27-dipropynyloxycalix[4]arene (C34H26Br2O4, 1), 5,17-dibromo-26,28-dipropoxy-25,27-dipropynyloxycalix[4]arene (C40H38Br2O4, 2) and 25,27-bis(2-azidoethoxy)-5,17-dibromo-26,28-dihydroxycalix[4]arene (C32H28Br2N6O4, 3) possess a pinched cone molecular shape for 1 and 3, and a 1,3-alternate shape for compound 2. In calixarenes 1 and 3, the cone conformations are additionally stabilized by intramolecular O—H⋯O hydrogen bonds, while in calixarene 2 intramolecular Br⋯Br interactions consolidate the 1,3-alternate molecular conformation. The dense crystal packing of the cone dialkyne 1 is a consequence of π–π, C—H⋯π and C—H⋯O interactions. In the crystal of the diazide 3, there are large channels extending parallel to the c axis, which are filled by highly disordered CH2Cl2 solvent molecules. Their contribution to the intensity data was removed by the SQUEEZE procedure that showed an accessible void volume of 585 Å3 where there is room for 4.5 CH2Cl2 solvent molecules per unit cell. Rigid molecules of the 1,3-alternate calixarene 2 form a columnar head-to-tail packing parallel to [010] via van der Waals interactions, and the resulting columns are held together by weak C—H⋯π contacts. Full Article text
the Synthesis, crystal structure and anticancer activity of the complex chlorido(η2-ethylene)(quinolin-8-olato-κ2N,O)platinum(II) by experimental and theoretical methods By journals.iucr.org Published On :: 2024-04-30 The complex [Pt(C9H6NO)Cl(C2H4)], (I), was synthesized and structurally characterized by ESI mass spectrometry, IR, NMR spectroscopy, DFT calculations and X-ray diffraction. The results showed that the deprotonated 8-hydroxyquinoline (C9H6NO) coordinates with the PtII atom via the N and O atoms while the ethylene coordinates in the η2 manner and in the trans position compared to the coordinating N atom. The crystal packing is characterized by C—H⋯O, C—H⋯π, Cl⋯π and Pt⋯π interactions. Complex (I) showed high selective activity against Lu-1 and Hep-G2 cell lines with IC50 values of 0.8 and 0.4 µM, respectively, 54 and 33-fold more active than cisplatin. In particular, complex (I) is about 10 times less toxic to normal cells (HEK-293) than cancer cells Lu-1 and Hep-G2. Furthermore, the reaction of complex (I) with guanine at the N7 position was proposed and investigated using the DFT method. The results indicated that replacement of the ethylene ligand with guanine is thermodynamically more favorable than the Cl ligand and that the reaction occurs via two consecutive steps, namely the replacement of ethylene with H2O and the water with the guanine molecule. Full Article text
the Crystal structure, Hirshfeld surface analysis, calculations of intermolecular interaction energies and energy frameworks and the DFT-optimized molecular structure of 1-[(1-butyl-1H-1,2,3-triazol-4-yl)methyl]-3-(prop-1-en-2-yl)-1H-b By journals.iucr.org Published On :: 2024-05-14 The benzimidazole entity of the title molecule, C17H21N5O, is almost planar (r.m.s. deviation = 0.0262 Å). In the crystal, bifurcated C—H⋯O hydrogen bonds link individual molecules into layers extending parallel to the ac plane. Two weak C—H⋯π(ring) interactions may also be effective in the stabilization of the crystal structure. Hirshfeld surface analysis of the crystal structure reveals that the most important contributions for the crystal packing are from H⋯H (57.9%), H⋯C/C⋯H (18.1%) and H⋯O/O⋯H (14.9%) interactions. Hydrogen bonding and van der Waals interactions are the most dominant forces in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization of the title compound is dominated via dispersion energy contributions. The molecular structure optimized by density functional theory (DFT) at the B3LYP/6–311 G(d,p) level is compared with the experimentally determined molecular structure in the solid state. Full Article text
the Synthesis, crystal structure and Hirshfeld surface analysis of (3Z)-4-[(4-amino-1,2,5-oxadiazol-3-yl)amino]-3-bromo-1,1,1-trifluorobut-3-en-2-one By journals.iucr.org Published On :: 2024-05-10 In the title compound, C6H4BrF3N4O2, the oxadiazole ring is essentially planar with a maximum deviation of 0.003 (2) Å. In the crystal, molecular pairs are connected by N—H⋯N hydrogen bonds, forming dimers with an R22(8) motif. The dimers are linked into layers parallel to the (10overline{4}) plane by N—H⋯O hydrogen bonds. In addition, C—O⋯π and C—Br⋯π interactions connect the molecules, forming a three-dimensional network. The F atoms of the trifluoromethyl group are disordered over two sites in a 0.515 (6): 0.485 (6) ratio. The intermolecular interactions in the crystal structure were investigated and quantified using Hirshfeld surface analysis. Full Article text
the Synthesis, crystal structure and properties of poly[di-μ3-chlorido-di-μ2-chlorido-bis[4-methyl-N-(pyridin-2-ylmethylidene)aniline]dicadmium(II)] By journals.iucr.org Published On :: 2024-05-21 The title coordination polymer with the 4-methyl-N-(pyridin-2-ylmethylidene)aniline Schiff base ligand (L, C13H12N2), [Cd2Cl4(C13H12N2)]n (1), exhibits a columnar structure extending parallel to [100]. The columns are aligned in parallel and are decorated with chelating L ligands on both sides. They are elongated into a supramolecular sheet extending parallel to (01overline{1}) through π–π stacking interactions involving L ligands of neighbouring columns. Adjacent sheets are packed into the tri-periodic supramolecular network through weak C—H⋯Cl hydrogen-bonding interactions that involve the phenyl CH groups and chlorido ligands. The thermal stability and photoluminescent properties of (1) have also been examined. Full Article text
the Mixed occupancy: the crystal structure of scheelite-type LiLu[MoO4]2 By journals.iucr.org Published On :: 2024-05-17 Coarse colorless single crystals of lithium lutetium bis[orthomolybdate(VI)], LiLu[MoO4]2, were obtained as a by-product from a reaction aimed at lithium derivatives of lutetium molybdate. The title compound crystallizes in the scheelite structure type (tetragonal, space group I41/a) with two formula units per unit cell. The Wyckoff position 4b (site symmetry overline{4}) comprises a mixed occupancy of Li+ and Lu3+ cations in a 1:1 ratio. In comparison with a previous powder X-ray study [Cheng et al. (2015). Dalton Trans. 44, 18078–18089.] all atoms were refined with anisotropic displacement parameters. Full Article text
the Synthesis, crystal structure and Hirshfeld surface analysis of 1-[3-(2-oxo-3-phenyl-1,2-dihydroquinoxalin-1-yl)propyl]-3-phenyl-1,2-dihydroquinoxalin-2-one By journals.iucr.org Published On :: 2024-05-17 In the title compound, C31H24N4O2, the dihydroquinoxaline units are both essentially planar with the dihedral angle between their mean planes being 64.82 (4)°. The attached phenyl rings differ significantly in their rotational orientations with respect to the dihydroquinoxaline planes. In the crystal, one set of C—H⋯O hydrogen bonds form chains along the b-axis direction, which are connected in pairs by a second set of C—H⋯O hydrogen bonds. Two sets of π-stacking interactions and C—H⋯π(ring) interactions join the double chains into the final three-dimensional structure. Full Article text
the Synthesis and crystal structure of 2,9-diamino-5,6,11,12-tetrahydrodibenzo[a,e]cyclooctene By journals.iucr.org Published On :: 2024-05-21 The cis- form of diaminodibenzocyclooctane (DADBCO, C16H18N2) is of interest as a negative coefficient of thermal expansion (CTE) material. The crystal structure was determined through single-crystal X-ray diffraction at 100 K and is presented herein. Full Article text
the Synthesis and crystal structures of three organoplatinum(II) complexes bearing natural arylolefin and quinoline derivatives By journals.iucr.org Published On :: 2024-05-21 Three organoplatinum(II) complexes bearing natural arylolefin and quinoline derivatives, namely, [4-methoxy-5-(2-methoxy-2-oxoethoxy)-2-(prop-2-en-1-yl)phenyl](quinolin-8-olato)platinum(II), [Pt(C13H15O4)(C9H6NO)], (I), [4-methoxy-5-(2-oxo-2-propoxyethoxy)-2-(prop-2-en-1-yl)phenyl](quinoline-2-carboxylato)platinum(II), [Pt(C15H19O4)(C10H6NO2)], (II), and chlorido[4-methoxy-5-(2-oxo-2-propoxyethoxy)-2-(prop-2-en-1-yl)phenyl](quinoline)platinum(II), [Pt(C15H19O4)Cl(C9H7N)], (III), were synthesized and structurally characterized by IR and 1H NMR spectroscopy, and by single-crystal X-ray diffraction. The results showed that the cycloplatinated arylolefin coordinates with PtII via the carbon atom of the phenyl ring and the C=Colefinic group. The deprotonated 8-hydroxyquinoline (C9H6NO) and quinoline-2-carboxylic acid (C10H6NO2) coordinate with the PtII atom via the N and O atoms in complexes (I) and (II) while the quinoline (C9H7N) coordinates via the N atom in (III). Moreover, the coordinating N atom in complexes (I)–(III) is in the cis position compared to the C=Colefinic group. The crystal packing is characterized by C—H⋯π, C—H⋯O [for (II) and (III)], C—H⋯Cl [for (III) and π–π [for (I)] interactions. Full Article text
the Synthesis and structural characterization of a hydrated sodium–caesium tetracosatungstate(VI), Na5Cs19[W24O84]·21H2O By journals.iucr.org Published On :: 2024-05-31 Crystal formation of pentasodium nonadecacesium tetracosatungstate(VI) heneikosahydrate, Na5Cs19[W24O84]·21H2O, was successfully achieved by the conversion of [H2W12O42]10− through the addition of excess Cs+. The crystal structure comprising the toroidal isopolyoxidometalate is presented, as well as its Raman spectrum. Na5Cs19(H2O)21W24O84 crystallizes in the rhombohedral space group Roverline{3} with an obverse centering. The title compound represents the addition of a new member to the isopolytungstate family with mixed alkali counter-ions and contains rarely observed five-coordinate tungsten(VI) atoms in the [W24O84]24− anion (site symmetry C3i) arising from the conversion mediated by Cs+ counter-ions. Full Article text
the Structural characterization of the supramolecular complex between a tetraquinoxaline-based cavitand and benzonitrile By journals.iucr.org Published On :: 2024-05-31 The structural characterization is reported of the supramolecular complex between the tetraquinoxaline-based cavitand 2,8,14,20-tetrahexyl-6,10:12,16:18,22:24,4-O,O'-tetrakis(quinoxaline-2,3-diyl)calix[4]resorcinarene (QxCav) with benzonitrile. The complex, of general formula C84H80N8O8·2C7H5N, crystallizes in the space group Poverline{1} with two independent molecules in the asymmetric unit, displaying very similar geometrical parameters. For each complex, one of the benzonitrile molecules is engulfed inside the cavity, while the other is located among the alkyl legs at the lower rim. The host and the guests mainly interact through weak C—H⋯π, C—H⋯N and dispersion interactions. These interactions help to consolidate the formation of supramolecular chains running along the crystallographic b-axis direction. Full Article text
the Synthesis and crystal structure of the cluster (Et4N)[(Tp*)MoFe3S3(μ3-NSiMe3)(N3)3] By journals.iucr.org Published On :: 2024-05-31 The title compound, tetraethylammonium triazidotri-μ3-sulfido-[μ3-(trimethylsilyl)azanediido][tris(3,5-dimethylpyrazol-1-yl)hydroborato]triiron(+2.33)molybdenum(IV), (C8H20N)[Fe3MoS3(C15H22BN6)(C3H9NSi)(N3)3] or (Et4N)[(Tp*)MoFe3S3(μ3-NSiMe3)(N3)3] [Tp* = tris(3,5-dimethylpyrazol-1-yl)hydroborate(1−)], crystallizes as needle-like black crystals in space group Poverline{1}. In this cluster, the Mo site is in a distorted octahedral coordination model, coordinating three N atoms on the Tp* ligand and three μ3-bridging S atoms in the core. The Fe sites are in a distorted tetrahedral coordination model, coordinating two μ3-bridging S atoms, one μ3-bridging N atom from Me3SiN2−, and another N atom on the terminal azide ligand. This type of heterometallic and heteroleptic single cubane cluster represents a typical example within the Mo–Fe–S cluster family, which may be a good reference for understanding the structure and function of the nitrogenase FeMo cofactor. The residual electron density of disordered solvent molecules in the void space could not be reasonably modeled, thus the SQUEEZE [Spek (2015). Acta Cryst. C71, 9–18] function was applied. The solvent contribution is not included in the reported molecular weight and density. Full Article text
the The crystal structures and Hirshfeld surface analysis of three new bromo-substituted 3-methyl-1-(phenylsulfonyl)-1H-indole derivatives By journals.iucr.org Published On :: 2024-05-31 Three new 1H-indole derivatives, namely, 2-(bromomethyl)-3-methyl-1-(phenylsulfonyl)-1H-indole, C16H14BrNO2S, (I), 2-[(E)-2-(2-bromo-5-methoxyphenyl)ethenyl]-3-methyl-1-(phenylsulfonyl)-1H-indole, C24H20BrNO3S, (II), and 2-[(E)-2-(2-bromophenyl)ethenyl]-3-methyl-1-(phenylsulfonyl)-1H-indole, C23H18BrNO2S, (III), exhibit nearly orthogonal orientations of their indole ring systems and sulfonyl-bound phenyl rings. Such conformations are favourable for intermolecular bonding involving sets of slipped π–π interactions between the indole systems and mutual C—H⋯π hydrogen bonds, with the generation of two-dimensional monoperiodic patterns. The latter are found in all three structures, in the form of supramolecular columns with every pair of successive molecules related by inversion. The crystal packing of the compounds is additionally stabilized by weaker slipped π–π interactions between the outer phenyl rings (in II and III) and by weak C—H⋯O, C—H⋯Br and C—H⋯π hydrogen bonds. The structural significance of the different kinds of interactions agree with the results of a Hirshfeld surface analysis and the calculated interaction energies. In particular, the largest interaction energies (up to −60.8 kJ mol−1) are associated with pairing of antiparallel indole systems, while the energetics of weak hydrogen bonds and phenyl π–π interactions are comparable and account for 13–34 kJ mol−1. Full Article text
the Synthesis, crystal structure and thermal properties of a new polymorphic modification of diisothiocyanatotetrakis(4-methylpyridine)cobalt(II) By journals.iucr.org Published On :: 2024-05-31 The title compound, [Co(NCS)2(C6H7N)4] or Co(NCS)2(4-methylpyridine)4, was prepared by the reaction of Co(NCS)2 with 4-methylpyridine in water and is isotypic to one of the polymorphs of Ni(NCS)2(4-methylpyridine)4 [Kerr & Williams (1977). Acta Cryst. B33, 3589–3592 and Soldatov et al. (2004). Cryst. Growth Des. 4, 1185–1194]. Comparison of the experimental X-ray powder pattern with that calculated from the single-crystal data proves that a pure phase has been obtained. The asymmetric unit consists of one CoII cation, two crystallographically independent thiocyanate anions and four independent 4-methylpyridine ligands, all located in general positions. The CoII cations are sixfold coordinated to two terminally N-bonded thiocyanate anions and four 4-methylpyridine coligands within slightly distorted octahedra. Between the complexes, a number of weak C—H⋯N and C—H⋯S contacts are found. This structure represent a polymorphic modification of Co(NCS)2(4-methylpyridine)4 already reported in the CCD [Harris et al. (2003). NASA Technical Reports, 211890]. In contrast to this form, the crystal structure of the new polymorph shows a denser packing, indicating that it is thermodynamically stable at least at low temperatures. Thermogravimetric and differential thermoanalysis reveal that the title compound starts to decomposes at about 100°C and that the coligands are removed in separate steps without any sign of a polymorphic transition before decomposition. Full Article text
the Synthesis and crystal structures of two racemic 2-heteroaryl-3-phenyl-2,3-dihydro-4H-pyrido[3,2-e][1,3]thiazin-4-ones By journals.iucr.org Published On :: 2024-06-04 3-Phenyl-2-(thiophen-3-yl)-2,3-dihydro-4H-pyrido[3,2-e][1,3]thiazin-4-one (C17H12N2OS2, 1) and 2-(1H-indol-3-yl)-3-phenyl-2,3-dihydro-4H-pyrido[3,2-e][1,3]thiazin-4-one 0.438-hydrate (C21H15N3OS·0.438H2O, 2) crystallize in space groups P21/n and C2/c, respectively. The asymmetric unit in each case is comprised of two parent molecules, albeit of mixed chirality in the case of 1 and of similar chirality in 2 with the enantiomers occupying the neighboring asymmetric units. Structure 2 also has water molecules (partial occupancies) that form continuous channels along the b-axis direction. The thiazine rings in both structures exhibit an envelope conformation. Intermolecular interactions in 1 are defined only by C—H⋯O and C—H⋯N hydrogen bonds between crystallographically independent molecules. In 2, hydrogen bonds of the type N—H⋯O between independent molecules and C—H⋯N(π) type, and π–π stacking interactions between the pyridine rings of symmetry-related molecules are observed. Full Article text
the Syntheses and crystal structures of the five- and sixfold coordinated complexes diisoselenocyanatotris(2-methylpyridine N-oxide)cobalt(II) and diisoselenocyanatotetrakis(2-methylpyridine N- By journals.iucr.org Published On :: 2024-06-07 The reaction of CoBr2, KNCSe and 2-methylpyridine N-oxide (C6H7NO) in ethanol leads to the formation of crystals of [Co(NCSe)2(C6H7NO)3] (1) and [Co(NCSe)2(C6H7NO)4] (2) from the same reaction mixture. The asymmetric unit of 1 is built up of one CoII cation, two NCSe− isoselenocyanate anions and three 2-methylpyridine N-oxide coligands, with all atoms located on general positions. The asymmetric unit of 2 consists of two cobalt cations, four isoselenocanate anions and eight 2-methylpyridine N-oxide coligands in general positions, because two crystallographically independent complexes are present. In compound 1, the CoII cations are fivefold coordinated to two terminally N-bonded anionic ligands and three 2-methylpyridine N-oxide coligands within a slightly distorted trigonal–bipyramidal coordination, forming discrete complexes with the O atoms occupying the equatorial sites. In compound 2, each of the two complexes is coordinated to two terminally N-bonded isoselenocyanate anions and four 2-methylpyridine N-oxide coligands within a slightly distorted cis-CoN2O4 octahedral coordination geometry. In the crystal structures of 1 and 2, the complexes are linked by weak C—H⋯Se and C—H⋯O contacts. Powder X-ray diffraction reveals that neither of the two compounds were obtained as a pure crystalline phase. Full Article text
the Crystal structures of the isomeric dipeptides l-glycyl-l-methionine and l-methionyl-l-glycine By journals.iucr.org Published On :: 2024-06-14 The oxidation of methionyl peptides can contribute to increased biological (oxidative) stress and development of various inflammatory diseases. The conformation of peptides has an important role in the mechanism of oxidation and the intermediates formed in the reaction. Herein, the crystal structures of the isomeric dipeptides Gly-Met (Gly = glycine and Met = methionine) and Met-Gly, both C7H14N2O3S, are reported. Both molecules exist in the solid state as zwitterions with nominal proton transfer from the carboxylic acid to the primary amine group. The Gly-Met molecule has an extended backbone structure, while Met-Gly has two nearly planar regions kinked at the C atom bearing the NH3 group. In the crystals, both structures form extensive three-dimensional hydrogen-bonding networks via N—H⋯O and bifurcated N—H⋯(O,O) hydrogen bonds having N⋯O distances in the range 2.6619 (13)–2.8513 (13) Å for Gly-Met and 2.6273 (8)–3.1465 (8) Å for Met-Gly. Full Article text
the Synthesis and crystal structure of bis(2-aminobenzimidazolium) catena-[metavanadate(V)] By journals.iucr.org Published On :: 2024-06-18 The structure of polymeric catena-poly[2-aminobenzimidazolium [[dioxidovanadium(V)]-μ-oxido]], {(C7H8N3)2[V2O6]}n, has monoclinic symmetry. The title compound is of interest with respect to anticancer activity. In the crystal structure, infinite linear zigzag vanadate (V2O6)2− chains, constructed from corner-sharing VO4 tetrahedra and that run parallel to the a axis, are present. Two different protonated 2-aminobenzimidazole molecules are located between the (V2O6)2– chains and form classical N—H⋯O hydrogen bonds with the vanadate oxygen atoms, which contribute to the cohesion of the structure. Full Article text
the Crystal structure and Hirshfeld surface analysis of 2-bromoethylammonium bromide – a possible side product upon synthesis of hybrid perovskites By journals.iucr.org Published On :: 2024-06-18 This study presents the synthesis, characterization and Hirshfeld surface analysis of a small organic ammonium salt, C2H7BrN+·Br−. Small cations like the one in the title compound are considered promising components of hybrid perovskites, crucial for optoelectronic and photovoltaic applications. While the incorporation of this organic cation into various hybrid perovskite structures has been explored, its halide salt counterpart remains largely uninvestigated. The obtained structural results are valuable for the synthesis and phase analysis of hybrid perovskites. The title compound crystallizes in the solvent-free form in the centrosymmetric monoclinic space group P21/c, featuring one organic cation and one bromide anion in its asymmetric unit, with a torsion angle of −64.8 (2)° between the ammonium group and the bromine substituent, positioned in a gauche conformation. The crystal packing is predominantly governed by Br⋯H interactions, which constitute 62.6% of the overall close atom contacts. Full Article text