ppe Coronavirus: Public parade ceremony at Attari-Wagah border stopped, till further orders, from March 7 By www.newkerala.com Published On :: Sat, 07 Mar 2020 07:06:02 +0530 Full Article
ppe Coronavirus: Punjab CM appeals people to stay away from crowds By www.newkerala.com Published On :: Sun, 08 Mar 2020 05:20:02 +0530 Full Article
ppe Punjab CM appeals people to avoid crowding By www.newkerala.com Published On :: Mon, 16 Mar 2020 15:56:02 +0530 Full Article
ppe Punjab CM appeals for contributions to COVID-19 relief fund By www.newkerala.com Published On :: Wed, 25 Mar 2020 13:54:01 +0530 Full Article
ppe Punjab Minister appeals to Jathedar of Sri Akal Takht Sahib to ask Sikh community not to congregate on Vaisakhi By www.newkerala.com Published On :: Thu, 02 Apr 2020 09:27:01 +0530 Full Article
ppe Punjab's textile firms develop PPE, hazmat suits amid COVID19 crisis By www.newkerala.com Published On :: Wed, 08 Apr 2020 13:20:02 +0530 Full Article
ppe Punjab Police officer's hand chopped off, 7 Nihangs held By www.newkerala.com Published On :: Sun, 12 Apr 2020 17:40:02 +0530 Full Article
ppe COVID-19 lockdown: Cop's hand chopped off, others injured in attack by 'Nihangs' in Patiala, Punjab By www.newkerala.com Published On :: Mon, 13 Apr 2020 07:03:02 +0530 Full Article
ppe After 7.5-hour-long surgery, doctors stitch back Punjab ASI's chopped off hand By www.newkerala.com Published On :: Mon, 13 Apr 2020 12:00:03 +0530 Full Article
ppe Punjab govt to provide PPE kits to cops, announces Capt Amarinder Singh By www.newkerala.com Published On :: Wed, 15 Apr 2020 03:44:01 +0530 Full Article
ppe Punjab to provide PPE kits to policemen: CM By www.newkerala.com Published On :: Wed, 15 Apr 2020 08:54:02 +0530 Full Article
ppe COVID-19: Operations of food preparation establishments stopped in Ludhiana By www.newkerala.com Published On :: Fri, 17 Apr 2020 02:18:01 +0530 Full Article
ppe Home delivery services stopped in Ludhiana By www.newkerala.com Published On :: Fri, 17 Apr 2020 09:15:02 +0530 Full Article
ppe IAF chopper makes emergency landing in Punjab By www.newkerala.com Published On :: Fri, 17 Apr 2020 15:41:01 +0530 Full Article
ppe IAF chopper makes emergency landing in Punjab By www.newkerala.com Published On :: Fri, 17 Apr 2020 16:50:01 +0530 Full Article
ppe Chandigarh Police's trapper for uncooperative corona patients By www.newkerala.com Published On :: Sun, 26 Apr 2020 16:05:01 +0530 Full Article
ppe Out to free trapped rat, Chandigarh resident lands in lock-up By www.newkerala.com Published On :: Sat, 02 May 2020 07:23:02 +0530 Full Article
ppe Fly-past by C-130 Hercules, chopper showers petals in Chandigarh By www.newkerala.com Published On :: Mon, 04 May 2020 07:16:01 +0530 Full Article
ppe Chhattisgarh: Baloda Bazaar-Bhatapara to use lockdown fine for buying PPE kits By timesofindia.indiatimes.com Published On :: Sat, 09 May 2020 20:03:02 IST Baloda Bazaar-Bhatapara district has come up with a great idea to contribute in the fight against the coronavirus pandemic. The amount of financial penalties recovered from the lockdown violators will be used for procuring safety kits for the doctors and health workers. Full Article
ppe Mumbai: Several trapped after building collapses in Kandivali West; rescue operation underway By www.dnaindia.com Published On :: Sun, 10 May 2020 03:16:00 GMT Further details are awaited. Full Article India
ppe Dichlorido{N,N,N'-trimethyl-N'-(1H-pyrazol-1-yl-κN2)methyl]ethane-1,2-diamine-κ2N,N'}copper(II) methanol monosolvate By scripts.iucr.org Published On :: 2019-05-31 In the title compound, [CuCl2(C9H18N4)]·CH3OH, the central CuII ion is coordinated by three N atoms from the pyrazole derivative ligand and two chloride co-ligands. The coordination geometry around the CuII ion is distorted trigonal–bipyramidal. In the crystal, the molecules are linked by C—H⋯O, C—H⋯Cl and O—H⋯Cl hydrogen bonds, forming a three-dimensional framework with the lattice solvent molecule. Full Article text
ppe Bis(μ2-benzoato-κ2O,O')bis(benzoato-κO)bis(ethanol-κO)bis(μ3-hydroxido)hexakis(μ-pyrazolato-κ2N,N')hexacopper(II) ethanol disolvate By scripts.iucr.org Published On :: 2019-09-03 Trinuclear copper–pyrazolate entities are present in various Cu-based enzymes and nanojar supramolecular arrangements. The reaction of copper(II) chloride with pyrazole (pzH) and sodium benzoate (benzNa) assisted by microwave radiation afforded a neutral centrosymmetric hexanuclear copper(II) complex, [Cu6(C7H5O2)4(OH)2(C3H3N2)6(C2H5OH)2]·2C2H5OH. Half a molecule is present in the asymmetric unit that comprises a [Cu3(μ3-OH)(pz)3]2+ core with the copper(II) atoms arranged in an irregular triangle. The three copper(II) atoms are bridged by an O atom of the central hydroxyl group and by three bridging pyrazolate ligands on each of the sides. The carboxylate groups show a chelating mode to one and a bridging syn,syn mode to the other two CuII atoms. The coordination environment of one CuII atom is square-planar while it is distorted square-pyramidal for the other two. Two ethanol molecules are present in the asymmetric unit, one binding to one of the CuII atoms, one as a solvent molecule. In the crystal, stabilization arises from intermolecular O—H⋯O hydrogen-bonding interactions. Full Article text
ppe μ2-Methanol-κ2O:O-bis[(1,10-phenanthroline-κ2N,N')bis(2,3,4,5-tetrafluorobenzoato)-κO;κ2O,O'-copper(II)] By scripts.iucr.org Published On :: 2019-11-29 In the title compound, [Cu2(C7HF4O2)4(C12H8N2)2(CH3OH)], the molecule lies on a twofold rotation axis in space group C2/c. The Cu2+ ion exhibits a distorted octahedral sphere with two N atoms from the phenanthroline ligand, three O atoms from the 2,3,4,5-tetrafluorobenzoate ligands and one O atom from a methanol molecule. The distortion from an octahedral shape is a consequence of the Jahn–Teller effect of CuII and the small bite angle for the bidentate fluorobenzoate ligand [54.50 (11)°]. The methanol molecule bridges two symmetry-related CuII atoms to form the complete molecule. In the bidentate fluorobenzoate ligand, one F atom is disordered over two positions of equal occupancy. In the crystal structure, only weak intermolecular interactions are observed. Full Article text
ppe Poly[(μ4-5,7-dihydro-1H,3H-dithieno[3,4-b:3',4'-e]pyrazine-κ4N:N':S:S')tetra-μ3-iodido-tetracopper]: a three-dimensional copper(I) coordination polymer By scripts.iucr.org Published On :: 2020-03-27 The reaction of ligand 5,7-dihydro-1H,3H-dithieno[3,4-b:3',4'-e]pyrazine (L) with CuI lead to the formation of a three-dimensional coordination polymer, incorporating the well known [CuxIx]n staircase motif (x = 4). These polymer [Cu4I4]n chains are linked via the N and S atoms of the ligand to form the three-dimensional coordination polymer poly[(μ4-5,7-dihydro-1H,3H-dithieno[3,4-b:3',4'-e]pyrazine-κ4N:N':S:S')tetra-μ3-iodido-tetracopper], [Cu4I4(C8H8N2S2)]n (I). The asymmetric unit is composed of half a ligand molecule, with the pyrazine ring located about a center of symmetry, and two independent copper(I) atoms and two independent I− ions forming the staircase motif via centers of inversion symmetry. The framework is consolidated by C—H⋯I hydrogen bonds. Full Article text
ppe Diaquatetrakis(μ-3-methoxybenzoato-κ2O1:O1')dicopper(II) By scripts.iucr.org Published On :: 2020-04-07 The asymmetric unit of the binuclear title compound, [Cu2(C8H7O3)4(H2O)2], comprises two halves of diaquatetrakis(μ-3-methoxybenzoato-κ2O1:O1')dicopper(II) units. The paddle-wheel structure of each complex is completed by application of inversion symmetry, with the inversion centre situated at the midpoint between two CuII atoms in each dimer. The two CuII atoms of each centrosymmetric dimer are bridged by four 3-methoxybenzoate anions resulting in Cu⋯Cu separations of 2.5961 (11) and 2.6060 (12) Å, respectively. The square-pyramidal coordination sphere of each CuII atom is completed by an apical water molecule. Intermolecular O—H⋯O hydrogen bonds of weak nature link the complexes into layers parallel to (100). The three-dimensional network structure is accomplished by C—H⋯O hydrogen bonds interlinking adjacent layers. Full Article text
ppe Poly[[μ4-3,4,8,10,11,13-hexahydro-1H,6H-bis([1,4]dithiocino)[6,7-b:6',7'-e]pyrazine]di-μ-iodido-dicopper(I)]: a two-dimensional copper(I) coordination polymer By scripts.iucr.org Published On :: 2020-04-07 The reaction of ligand 3,4,8,10,11,13-hexahydro-1H,6H-bis([1,4]dithiocino)[6,7-b:6',7'-e]pyrazine (L) with CuI led to the formation of a two-dimensional coordination polymer, incorporating a [Cu2I2] motif. These units are linked via the four S atoms of the ligand to form the title two-dimensional coordination polymer, poly[[μ4-3,4,8,10,11,13-hexahydro-1H,6H-bis([1,4]dithiocino)[6,7-b:6',7'-e]pyrazine]di-μ-iodido-dicopper(I)], [Cu2I2(C12H16N2S4)]n, (I). The asymmetric unit is composed of a ligand molecule, two copper(I) atoms and two I− ions. Both copper(I) atoms are fourfold S2I2 coordinate with almost regular trigonal-pyramidal environments. In the crystal, the layers, lying parallel to (102), are linked by C—H⋯I hydrogen bonds, forming a supramolecular framework. Full Article text
ppe Synthesis, characterization, and crystal structure of aquabis(4,4'-dimethoxy-2,2'-bipyridine)[μ-(2R,3R)-tartrato(4−)]dicopper(II) octahydrate By scripts.iucr.org Published On :: 2019-06-11 Typical electroless copper baths (ECBs), which are used to chemically deposit copper on printed circuit boards, consist of an aqueous alkali hydroxide solution, a copper(II) salt, formaldehyde as reducing agent, an l-(+)-tartrate as complexing agent, and a 2,2'-bipyridine derivative as stabilizer. Actual speciation and reactivity are, however, largely unknown. Herein, we report on the synthesis and crystal structure of aqua-1κO-bis(4,4'-dimethoxy-2,2'-bipyridine)-1κ2N,N';2κ2N,N'-[μ-(2R,3R)-2,3-dioxidosuccinato-1κ2O1,O2:2κ2O3,O4]dicopper(II) octahydrate, [Cu2(C12H12N2O2)2(C4H2O6)(H2O)]·8H2O, from an ECB mock-up. The title compound crystallizes in the Sohncke group P21 with one chiral dinuclear complex and eight molecules of hydrate water in the asymmetric unit. The expected retention of the tartrato ligand's absolute configuration was confirmed via determination of the absolute structure. The complex molecules exhibit an ansa-like structure with two planar, nearly parallel bipyridine ligands, each bound to a copper atom that is connected to the other by a bridging tartrato `handle'. The complex and water molecules give rise to a layered supramolecular structure dominated by alternating π stacks and hydrogen bonds. The understanding of structures ex situ is a first step on the way to prolonged stability and improved coating behavior of ECBs. Full Article text
ppe Crystal structures of trans-diaqua(3-R-1,3,5,8,12-pentaazacyclotetradecane)copper(II) isophthalate hydrates (R = benzyl or pyridin-3-ylmethyl) By scripts.iucr.org Published On :: 2019-06-21 The asymmetric units of the title compounds, trans-diaqua(3-benzyl-1,3,5,8,12-pentaazacyclotetradecane-κ4N1,N5,N8,N12)copper(II) isophthalate monohydrate, [Cu(C16H29N5)(H2O)2](C8H4O4)·H2O, (I), and trans-diaqua[3-(pyridin-3-ylmethyl)-1,3,5,8,12-pentaazacyclotetradecane-κ4N1,N5,N8,N12]copper(II) isophthalate 0.9-hydrate, [Cu(C15H28N6)(H2O)2](C8H4O4)·0.9H2O, (II) consist of one diaqua macrocyclic cation, one dicarboxylate anion and uncoordinated water molecule(s). In each compound, the metal ion is coordinated by the four secondary N atoms of the macrocyclic ligand and the mutually trans O atoms of the water molecules in a tetragonally distorted octahedral geometry. The average equatorial Cu—N bond lengths are significantly shorter than the average axial Cu—O bond lengths [2.020 (9) versus 2.495 (12) Å and 2.015 (4) versus 2.507 (7) Å for (I) and (II), respectively]. The coordinated macrocyclic ligand in the cations of both compounds adopts the most energetically favorable trans-III conformation. In the crystals, the complex cations and counter-anions are connected via hydrogen-bonding interactions between the N—H groups of the macrocycles and the O—H groups of coordinated water molecules as the proton donors and the O atoms of the carboxylate as the proton acceptors. Additionally, as a result of O—H⋯O hydrogen bonding with the coordinated and water molecules of crystallization, the isophthalate dianions form layers lying parallel to the (overline{1}01) and (100) planes in (I) and (II), respectively. Full Article text
ppe Crystal structure of hexa-μ-chlorido-μ4-oxido-tetrakis{[1-(2-hydroxyethyl)-2-methyl-5-nitro-1H-imidazole-κN3]copper(II)} containing short NO2⋯NO2 contacts By scripts.iucr.org Published On :: 2019-06-25 The title tetranuclear copper complex, [Cu4Cl6O(C6H9N3O3)4] or [Cu4Cl6O(MET)4] [MET is 1-(2-hydroxyethyl)-2-methyl-5-nitro-1H-imidazole or metronidazole], contains a tetrahedral arrangement of copper(II) ions. Each copper atom is also linked to the other three copper atoms in the tetrahedron via bridging chloride ions. A fifth coordination position on each metal atom is occupied by a nitrogen atom of the monodentate MET ligand. The result is a distorted CuCl3NO trigonal–bipyramidal coordination polyhedron with the axial positions occupied by oxygen and nitrogen atoms. The extended structure displays O—H⋯O hydrogen bonding, as well as unusual short O⋯N interactions [2.775 (4) Å] between the nitro groups of adjacent clusters that are oriented perpendicular to each other. The scattering contribution of disordered water and methanol solvent molecules was removed using the SQUEEZE procedure [Spek (2015). Acta Cryst. C71, 9–16] in PLATON [Spek (2009). Acta Cryst. D65, 148–155]. Full Article text
ppe Crystal structures of two CuII compounds: catena-poly[[chloridocopper(II)]-μ-N-[ethoxy(pyridin-2-yl)methylidene]-N'-[oxido(pyridin-3-yl)methylidene]hydrazine-κ4N,N',O:N''] and di-μ-chlorido-1:4κ2Cl:Cl-2:3κ2Cl:Cl-dichlorido-2κ By scripts.iucr.org Published On :: 2019-06-28 Two CuII complexes [Cu(C14H13N4O2)Cl]n, I, and [Cu4(C8H10NO2)4Cl4]n, II, have been synthesized. In the structure of the mononuclear complex I, each ligand is coordinated to two metal centers. The basal plane around the CuII cation is formed by one chloride anion, one oxygen atom, one imino and one pyridine nitrogen atom. The apical position of the distorted square-pyramidal geometry is occupied by a pyridine nitrogen atom from a neighbouring unit, leading to infinite one-dimensional polymeric chains along the b-axis direction. Each chain is connected to adjacent chains by intermolecular C—H⋯O and C—H⋯Cl interactions, leading to a three-dimensional network structure. The tetranuclear complex II lies about a crystallographic inversion centre and has one core in which two CuII metal centers are mutually interconnected via two enolato oxygen atoms while the other two CuII cations are linked by a chloride anion and an enolato oxygen. An open-cube structure is generated in which the two open-cube units, with seven vertices each, share a side composed of two CuII ions bridged by two enolato oxygen atoms acting in a μ3-mode. The CuII atoms in each of the two CuO3NCl units are connected by one μ2-O and two μ3-O atoms from deprotonated hydroxyl groups and one chloride anion to the three other CuII centres. Each of the pentacoordinated CuII cations has a distorted NO3Cl square-pyramidal environment. The CuII atoms in each of the two CuO2NCl2 units are connected by μ2-O and μ3-O atoms from deprotonated alcohol hydroxy groups and one chloride anion to two other CuII ions. Each of the pentacoordinated CuII cations has a distorted NO2Cl2 square-pyramidal environment. In the crystal, a series of intramolecular C—H⋯O and C—H⋯Cl hydrogen bonds are observed in each tetranuclear monomeric unit, which is connected to four tetranuclear monomeric units by intermolecular C—H⋯O hydrogen bonds, thus forming a planar two-dimensional structure in the (overline{1}01) plane. Full Article text
ppe Crystal structure of a low-spin poly[di-μ3-cyanido-di-μ2-cyanido-bis(μ2-2-ethylpyrazine)dicopper(I)iron(II)] By scripts.iucr.org Published On :: 2019-07-19 In the title metal–organic framework, [Fe(C6H8N2)2{Cu(CN)2}2]n, the low-spin FeII ion lies at an inversion centre and displays an elongated octahedral [FeN6] coordination environment. The axial positions are occupied by two symmetry-related bridging 2-ethylpyrazine ligands, while the equatorial positions are occupied by four N atoms of two pairs of symmetry-related cyanide groups. The CuI centre is coordinated by three cyanide carbon atoms and one N atom of a bridging 2-ethylpyrazine molecule, which form a tetrahedral coordination environment. Two neighbouring Cu atoms have a short Cu⋯Cu contact [2.4662 (7) Å] and their coordination tetrahedra are connected through a common edge between two C atoms of cyanide groups. Each Cu2(CN)2 unit, formed by two neighbouring Cu atoms bridged by two carbons from a pair of μ-CN groups, is connected to six FeII centres via two bridging 2-ethylpyrazine molecules and four cyanide groups, resulting in the formation of a polymeric three-dimensional metal–organic coordination framework. Full Article text
ppe Crystal structure of poly[[(μ3-hydroxido-κ3O:O:O)(μ3-selenato-κ3O1:O2:O3)tris[μ3-2-(1,2,4-triazol-4-yl)acetato-κ3N1:N2:O]tricopper(II)] dihydrate] By scripts.iucr.org Published On :: 2019-07-16 The title coordination polymer, {[Cu3(C4H4N3O9)3(SeO4)(OH)]·2H2O}n or ([Cu3(μ3-OH)(trgly)3(SeO4)]·2H2O), crystallizes in the monoclinic space group P21/c. The three independent Cu2+ cations adopt distorted square-pyramidal geometries with {O2N2+O} polyhedra. The three copper centres are bridged by a μ3-OH anion, leading to a triangular [Cu3(μ3-OH)] core. 2-(1,2,4-Triazol-4-yl)acetic acid (trgly-H) acts in a deprotonated form as a μ3-κ3N1:N2:O ligand. The three triazolyl groups bridge three copper centres of the hydroxo-cluster in an N1:N2 mode, thus supporting the triangular geometry. The [Cu3(μ3-OH)(tr)3] clusters serve as secondary building units (SBUs). Each SBU can be regarded as a six-connected node, which is linked to six neighbouring triangles through carboxylate groups, generating a two-dimensional uninodal (3,6) coordination network. The selenate anion is bound in a μ3-κ3O1:O2:O3 fashion to the trinuclear copper platform. The [Cu3(OH)(trgly)3(SeO4)] coordination layers and guest water molecules are linked together by numerous O—H⋯O and C—H⋯O hydrogen bonds, leading to a three-dimensional structure. Full Article text
ppe Crystal structure of tetra-μ-acetato-bis[(5-amino-2-methylsulfanyl-1,3,4-thiadiazole-κN1)copper(II)] By scripts.iucr.org Published On :: 2019-07-23 The reaction of 2-methylthio-5-amino-1,3,4-thiadiazole (Me-SNTD; C3H5N3S2) with copper(II) acetate monohydrate [Cu(OAc)2·H2O; C4H8CuO5] resulted in the formation of the title binuclear compound, [Cu2(C2H3O2)4(C3H5N3S2)2] or [Cu2(OAc)4(Me-SNTD)2]. The structure has triclinic (P overline{1}) symmetry with a crystallographic inversion centre located at the midpoint of the line connecting the Cu atoms in the dimer. These two Cu atoms of the dimer [Cu⋯Cu = 2.6727 (6) Å] are held together by four carboxylate groups. Each Cu atom is further coordinated to the N atom of an Me-SNTD molecule and exhibits a Jahn–Teller-distorted octahedral geometry. The dimers are connected into infinite chains by hydrogen bonds between the NH (Me-SNTD) and the carboxylate groups of neighbouring molecules, generating an R22(12) ring motif. The molecules are further linked by C—H⋯π interactions between the thiadiazole rings and the methyl groups of the acetate units. Full Article text
ppe Bis[2-(4,5-diphenyl-1H-imidazol-2-yl)-4-nitrophenolato]copper(II) dihydrate: crystal structure and Hirshfeld surface analysis By scripts.iucr.org Published On :: 2019-10-22 The crystal and molecular structures of the title CuII complex, isolated as a dihydrate, [Cu(C21H14N3O3)2]·2H2O, reveals a highly distorted coordination geometry intermediate between square-planar and tetrahedral defined by an N2O2 donor set derived from two mono-anionic bidentate ligands. Furthermore, each six-membered chelate ring adopts an envelope conformation with the Cu atom being the flap. In the crystal, imidazolyl-amine-N—H⋯O(water), water-O—H⋯O(coordinated, nitro and water), phenyl-C—H⋯O(nitro) and π(imidazolyl)–π(nitrobenzene) [inter-centroid distances = 3.7452 (14) and 3.6647 (13) Å] contacts link the components into a supramolecular layer lying parallel to (101). The connections between layers forming a three-dimensional architecture are of the types nitrobenzene-C—H⋯O(nitro) and phenyl-C—H⋯π(phenyl). The distorted coordination geometry for the CuII atom is highlighted in an analysis of the Hirshfeld surface calculated for the metal centre alone. The significance of the intermolecular contacts is also revealed in a study of the calculated Hirshfeld surfaces; the dominant contacts in the crystal are H⋯H (41.0%), O⋯H/H⋯O (27.1%) and C⋯H/H⋯C (19.6%). Full Article text
ppe The first structural characterization of the protonated azacyclam ligand in catena-poly[[[(perchlorato)copper(II)]-μ-3-(3-carboxypropyl)-1,5,8,12-tetraaza-3-azoniacyclotetradecane] bis(per& By scripts.iucr.org Published On :: 2019-10-22 The asymmetric unit of the title compound, catena-poly[[[(perchlorato-κO)copper(II)]-μ-3-(3-carboxypropyl)-1,5,8,12-tetraaza-3-azoniacyclotetradecane-κ4N1,N5,N8,N12] bis(perchlorate)], {[Cu(C13H30N5O2)(ClO4)](ClO4)2}n, (I), consists of a macrocyclic cation, one coordinated perchlorate anion and two perchlorate ions as counter-anions. The metal ion is coordinated in a tetragonally distorted octahedral geometry by the four secondary N atoms of the macrocyclic ligand, the mutually trans O atoms of the perchlorate anion and the carbonyl O atom of the protonated carboxylic acid group of a neighbouring cation. The average equatorial Cu—N bond lengths [2.01 (6) Å] are significantly shorter than the axial Cu—O bond lengths [2.379 (8) Å for carboxylate and average 2.62 (7) Å for disordered perchlorate]. The coordinated macrocyclic ligand in (I) adopts the most energetically favourable trans-III conformation with an equatorial orientation of the substituent at the protonated distal 3-position N atom in a six-membered chelate ring. The coordination of the carboxylic acid group of the cation to a neighbouring complex unit results in the formation of infinite chains running along the b-axis direction, which are crosslinked by N—H⋯O hydrogen bonds between the secondary amine groups of the macrocycle and O atoms of the perchlorate counter-anions to form sheets lying parallel to the (001) plane. Additionally, the extended structure of (I) is consolidated by numerous intra- and interchain C—H⋯O contacts. Full Article text
ppe Crystal structure and Hirshfeld surface analysis of 2,2'-{(1E,1'E)-[ethane-1,2-diylbis(azanylylidene)]bis(methanylylidene)}bis[4-(trifluoromethoxy)phenol]copper(II) hydroquinone hemisolvate By scripts.iucr.org Published On :: 2019-10-29 In the title complex, [Cu(C18H12F6N2O4)]·0.5C6H6O2, the CuII ion has a square-planar coordination geometry, being ligated by two N and two O atoms of the tetradentate open-chain Schiff base ligand 6,6'-{(1E,1'E)-[ethane-1,2-diylbis(azanylylidene)]bis(methanylylidene)}bis[2-(trifluoromethoxy)phenol]. The crystal packing is stabilized by intramolecular O—H⋯O and intermolecular C—H⋯F, C—H⋯O and C—H⋯π hydrogen bonds. In addition, weak π–π interactions form a three-dimensional structure. Hirshfeld surface analysis and two-dimensional fingerprint plots were performed and created to analyze the intermolecular interactions present in the crystal, indicating that the most important contributions for the crystal packing are from F⋯H/H⋯F (25.7%), H⋯H (23.5%) and C⋯H/H⋯C (12.6%) interactions. Full Article text
ppe Crystal structure of catena-poly[[[(2-ethoxypyrazine-κN)copper(I)]-di-μ2-cyanido] [copper(I)-μ2-cyanido]] By scripts.iucr.org Published On :: 2019-10-31 In the asymmetric unit of the title coordination compound, {[Cu(CN)(C4H3OC2H5N2)][Cu(CN)]}n, there are two Cu atoms with different coordination environments. One CuI ion is coordinated in a triangular coordination geometry by the N atom of the 2-ethoxypyrazine molecule and by two bridging cyanide ligands, equally disordered over two sites exchanging C and N atoms, thus forming polymeric chains parallel to the c axis. The other Cu atom is connected to two bridging cyanide groups disordered over two sites with an occupancy of 0.5 for each C and N atom, and forming an almost linear polymeric chain parallel to the b axis. In the crystal, the two types of chain, which are orthogonal to each other, are connected by cuprophilic Cu⋯Cu interactions [2.7958 (13) Å], forming two-dimensional metal–organic coordination layers parallel to the bc plane. The coordination framework is further stabilized by weak long-range (electrostatic type) C—H⋯π interactions between cyano groups and 2-ethoxypyrazine rings. Full Article text
ppe Crystal structures of two coordination isomers of copper(II) 4-sulfobenzoic acid hexahydrate and two mixed silver/potassium 4-sulfobenzoic acid salts By scripts.iucr.org Published On :: 2019-10-31 A reaction of copper(II) carbonate and potassium 4-sulfobenzoic acid in water acidified with hydrochloric acid yielded two crystalline products. Tetraaquabis(4-carboxybenzenesulfonato)copper(II) dihydrate, [Cu(O3SC6H4CO2H)2(H2O)4]·2H2O, (I), crystallizes in the triclinic space group Poverline{1} with the Cu2+ ions located on centers of inversion. Each copper ion is coordinated to four water molecules in a square plane with two sulfonate O atoms in the apical positions of a Jahn–Teller-distorted octahedron. The carboxylate group is protonated and not involved in coordination to the metal ions. The complexes pack so as to create a layered structure with alternating inorganic and organic domains. The packing is reinforced by several O—H⋯O hydrogen bonds involving coordinated and non-coordinated water molecules, the carboxylic acid group and the sulfonate group. Hexaaquacopper(II) 4-carboxybenzenesulfonate, [Cu(H2O)6](O3SC6H4CO2H)2, (II), also crystallizes in the triclinic space group Poverline{1} with Jahn–Teller-distorted octahedral copper(II) aqua complexes on the centers of inversion. As in (I), the carboxylate group on the anion is protonated and the structure consists of alternating layers of inorganic cations and organic anions linked by O—H⋯O hydrogen bonds. A reaction of silver nitrate and potassium 4-sulfobenzoic acid in water also resulted in two distinct products that have been structurally characterized. An anhydrous silver potassium 4-carboxybenzenesulfonate salt, [Ag0.69K0.31](O3SC6H4CO2H), (III), crystallizes in the monoclinic space group C2/c. There are two independent metal sites, one fully occupied by silver ions and the other showing a 62% K+/38% Ag+ (fixed) ratio, refined in two slightly different positions. The coordination environments of the metal ions are composed primarily of sulfonate O atoms, with some participation by the non-protonated carboxylate O atoms in the disordered site. As in the copper compounds, the cations and anions cleanly segregate into alternating layers. A hydrated mixed silver potassium 4-carboxybenzenesulfonate salt dihydrate, [Ag0.20K0.80](O3SC6H4CO2H)·2H2O, (IV), crystallizes in the monoclinic space group P21/c with the Ag+ and K+ ions sharing one unique metal site coordinated by two water molecules and six sulfonate O atoms. The packing in (IV) follows the dominant motif of alternating inorganic and organic layers. The protonated carboxylate groups do not interact with the cations directly, but do participate in hydrogen bonds with the coordinated water molecules. (IV) is isostructural with pure potassium 4-sulfobenzoic acid dihydrate. Full Article text
ppe Crystal structure of the coordination polymer catena-poly[[[(acetonitrile-κN)copper(I)]-μ3-1,3-dithiolane-κ3S:S:S'] hexafluoridophosphate] By scripts.iucr.org Published On :: 2020-01-01 The polymeric title compound, [Cu2(C2H3N)2(C3H6S2)2](PF6)2, represents an example of a one-dimensional coordination polymer resulting from the reaction of [Cu(MeCN)4][PF6] with 1,3-dithiolane. The cationic one-dimensional ribbon consists of two copper(I) centers each ligated by one acetonitrile molecule and interconnected through two bridging 1,3-dithiolane ligands. One S-donor site of each ligand is κ1-bound to Cu, whereas the second S atom acts as a four-electron donor, bridging two Cu atoms in a κ4-bonding mode. The positive charge of each copper cation is compensated for by a hexafluoridophosphate counter-ion. In the crystal, the polymer chains are linked by a series of C—H⋯F hydrogen bonds, forming a supramolecular framework. The crystal studied was refined as a two-component twin. Full Article text
ppe Crystal structure, Hirshfeld surface analysis and computational study of bis(2-{[(2,6-dichlorobenzylidene)hydrazinylidene]methyl}phenolato)cobalt(II) and of the copper(II) analogue By scripts.iucr.org Published On :: 2020-01-01 The title homoleptic Schiff base complexes, [M(C14H9Cl2N2O)2], for M = CoII, (I), and CuII, (II), present distinct coordination geometries despite the Schiff base dianion coordinating via the phenolato-O and imine-N atoms in each case. For (I), the coordination geometry is based on a trigonal bipyramid whereas for (II), a square-planar geometry is found (Cu site symmetry overline{1}). In the crystal of (I), discernible supramolecular layers in the ac plane are sustained by chlorobenzene-C—H⋯O(coordinated), chlorobenzene-C—H⋯π(fused-benzene ring) as well as π(fused-benzene, chlorobenzene)–π(chlorobenzene) interactions [inter-centroid separations = 3.6460 (17) and 3.6580 (16) Å, respectively]. The layers inter-digitate along the b-axis direction and are linked by dichlorobenzene-C—H⋯π(fused-benzene ring) and π–π interactions between fused-benzene rings and between chlorobenzene rings [inter-centroid separations = 3.6916 (16) and 3.7968 (19) Å, respectively] . Flat, supramolecular layers are also found in the crystal of (II), being stabilized by π–π interactions formed between fused-benzene rings and between chlorobenzene rings [inter-centroid separations = 3.8889 (15) and 3.8889 (15) Å, respectively]; these stack parallel to [10overline{1}] without directional interactions between them. The analysis of the respective calculated Hirshfeld surfaces indicate diminished roles for H⋯H contacts [26.2% (I) and 30.5% (II)] owing to significant contributions by Cl⋯H/H⋯Cl contacts [25.8% (I) and 24.9% (II)]. Minor contributions by Cl⋯Cl [2.2%] and Cu⋯Cl [1.9%] contacts are indicated in the crystals of (I) and (II), respectively. The interaction energies largely arise from dispersion terms; the aforementioned Cu⋯Cl contact in (II) gives rise to the most stabilizing interaction in the crystal of (II). Full Article text
ppe Crystal structure and Hirshfeld surface analysis of a copper(II) complex with ethylenediamine and non-coordinated benzoate By scripts.iucr.org Published On :: 2020-01-01 In the title compound, diaquabis(ethylenediamine-κ2N,N')copper(II) bis(2-nitrobenzoate), [Cu(C2H8N2)2(H2O)2](C7H4NO4)2, two diaquabis(ethylenediamine)copper(II) cations and four nitrobenzoate anions are present in the asymmetric unit. All four anions are `whole-molecule' disordered over two sets of sites. The major components have refined occupancies of 0.572 (13), 0.591 (9), 0.601 (9) and 0.794 (10). The CuII ions exhibit slightly distorted octahedral geometries. In the crystal, cations and anions are connected to each other via N—H⋯O and O—H⋯O hydrogen bonds, forming a two-dimensional network parallel to (200). The intermolecular contacts in the crystal were further analysed using Hirshfeld surface analysis, which indicates that the most significant contacts are O⋯H/H⋯O (42.9%), followed by H⋯H (35.7%), C⋯H/H⋯C (14.2%), C⋯C (2.9%), C⋯O/O⋯C (2.2%), N⋯H/H⋯N (0.9%) and N⋯O/O⋯N (0.3%). Full Article text
ppe Crystal structure, spectroscopic characterization and Hirshfeld surface analysis of aquadichlorido{N-[(pyridin-2-yl)methylidene]aniline}copper(II) monohydrate By scripts.iucr.org Published On :: 2020-01-07 The reaction of N-phenyl-1-(pyridin-2-yl)methanimine with copper chloride dihydrate produced the title neutral complex, [CuCl2(C12H10N2)(H2O)]·H2O. The CuII ion is five-coordinated in a distorted square-pyramidal geometry, in which the two N atoms of the bidentate Schiff base, as well as one chloro and a water molecule, form the irregular base of the pyramidal structure. Meanwhile, the apical chloride ligand interacts through a strong hydrogen bond with a water molecule of crystallization. In the crystal, molecules are arranged in pairs, forming a stacking of symmetrical cyclic dimers that interact in turn through strong hydrogen bonds between the chloride ligands and both the coordinated and the crystallization water molecules. The molecular and electronic structures of the complex were also studied in detail using EPR (continuous and pulsed), FT–IR and Raman spectroscopy, as well as magnetization measurements. Likewise, Hirshfeld surface analysis was used to investigate the intermolecular interactions in the crystal packing. Full Article text
ppe Crystal structure of silver strontium copper orthophosphate, AgSr4Cu4.5(PO4)6 By scripts.iucr.org Published On :: 2020-01-10 Crystals of the new compound, AgSr4Cu4.5(PO4)6, were grown successfully by the hydrothermal process. The asymmetric unit of the crystal structure of the title compound contains 40 independent atoms (4 Sr, 4.5 Cu, 1 Ag, 6 P and 24 O), which are all in general positions except for one Cu atom, which is located on an inversion centre. The Cu atoms are arranged in CuOn (n = 4 or 5) polyhedra, linked through common oxygen corners to build a rigid three-dimensional motif. The connection of these copper units is assured by PO4 tetrahedra. This arrangement allows the construction of layers extending parallel to the (100) plane and hosts suitable cavities in which Ag+ and Sr2+ cations are located. The crystal-structure cohesion is ensured by ionic bonds between the silver and strontium cations and the oxygen anions belonging to two adjacent sheets. Charge-distribution analysis and bond-valence-sum calculations were used to validate the structural model. Full Article text
ppe The first coordination compound of deprotonated 2-bromonicotinic acid: crystal structure of a dinuclear paddle-wheel copper(II) complex By scripts.iucr.org Published On :: 2020-01-17 A copper(II) dimer with the deprotonated anion of 2-bromonicotinic acid (2-BrnicH), namely, tetrakis(μ-2-bromonicotinato-κ2O:O')bis[aquacopper(II)](Cu—Cu), [Cu2(H2O)2(C6H3BrNO2)4] or [Cu2(H2O)2(2-Brnic)4], (1), was prepared by the reaction of copper(II) chloride dihydrate and 2-bromonicotinic acid in water. The copper(II) ion in 1 has a distorted square-pyramidal coordination environment, achieved by four carboxylate O atoms in the basal plane and the water molecule in the apical position. The pair of symmetry-related copper(II) ions are connected into a centrosymmetric paddle-wheel dinuclear cluster [Cu⋯Cu = 2.6470 (11) Å] via four O,O'-bridging 2-bromonicotinate ligands in the syn-syn coordination mode. In the extended structure of 1, the cluster molecules are assembled into an infinite two-dimensional hydrogen-bonded network lying parallel to the (001) plane via strong O—H⋯O and O—H⋯N hydrogen bonds, leading to the formation of various hydrogen-bond ring motifs: dimeric R22(8) and R22(16) loops and a tetrameric R44(16) loop. The Hirshfeld surface analysis was also performed in order to better illustrate the nature and abundance of the intermolecular contacts in the structure of 1. Full Article text
ppe Syntheses and crystal structures of a new pyrazine dicarboxamide ligand, N2,N3-bis(quinolin-8-yl)pyrazine-2,3-dicarboxamide, and of a copper perchlorate binuclear complex By scripts.iucr.org Published On :: 2020-02-14 The title pyrazine dicarboxamide ligand, N2,N3-bis(quinolin-8-yl)pyrazine-2,3-dicarboxamide (H2L1), C24H16N6O2, has a twisted conformation with the outer quinoline groups being inclined to the central pyrazine ring by 9.00 (6) and 78.67 (5)°, and by 79.94 (4)° to each other. In the crystal, molecules are linked by C—H⋯O hydrogen bonds, forming layers parallel to the (10overline{1}) plane, which are in turn linked by offset π–π interactions [intercentroid distances 3.4779 (9) and 3.6526 (8) Å], forming a supramolecular three-dimensional structure. Reaction of the ligand H2L1 with Cu(ClO4)2 in acetonitrile leads to the formation of the binuclear complex, [μ-(3-{hydroxy[(quinolin-8-yl)imino]methyl}pyrazin-2-yl)[(quinolin-8-yl)imino]methanolato]bis[diacetonitrilecopper(II)] tris(perchlorate) acetonitrile disolvate, [Cu2(C24H15N6O2)(CH3CN)4](ClO4)3·2CH3CN or [Cu2(HL1−)(CH3CN)4](ClO4)3·2CH3CN (I). In the cation of complex I, the ligand coordinates to the copper(II) atoms in a bis-tridentate fashion. A resonance-assisted O—H⋯O hydrogen bond is present in the ligand; the position of this H atom was located in a difference-Fourier map. Both copper(II) atoms are fivefold coordinate, being ligated by three N atoms of the ligand and by the N atoms of two acetonitrile molecules. The first copper atom has a perfect square-pyramidal geometry while the second copper atom has a distorted shape. In the crystal, the cation and perchlorate anions are linked by a number of C—H⋯O hydrogen bonds, forming a supramolecular three-dimensional structure. Full Article text
ppe Crystal structure, characterization and Hirshfeld analysis of bis{(E)-1-[(2,4,6-tribromophenyl)diazenyl]naphthalen-2-olato}copper(II) dimethyl sulfoxide monosolvate By scripts.iucr.org Published On :: 2020-02-18 In the title compound, [Cu(C16H8Br3N2O)2]·C2H6OS, the CuII atom is tetracoordinated in a square-planar coordination, being surrounded by two N atoms and two O atoms from two N,O-bidentate (E)-1-[(2,4,6-tribromophenyl)diazenyl]naphthalen-2-olate ligands. The two N atoms and two O atoms around the metal center are trans to each other, with an O—Cu—O bond angle of 177.90 (16)° and a N—Cu—N bond angle of 177.8 (2)°. The average distances between the CuII atom and the coordinated O and N atoms are 1.892 (4) and 1.976 (4) Å, respectively. In the crystal, complexes are linked by C—H⋯O hydrogen bonds and by π–π interactions involving adjacent naphthalene ring systems [centroid–centroid distance = 3.679 (4) Å]. The disordered DMSO molecules interact weakly with the complex molecules, being positioned in the voids left by the packing arrangement of the square-planar complexes. The DMSO solvent molecule is disordered over two positions with occupancies of 0.70 and 0.30. Full Article text
ppe Synthesis and crystal structure of a pentacopper(II) 12-metallacrown-4: cis-diaquatetrakis(dimethylformamide-κO)manganese(II) tetrakis(μ3-N,2-dioxidobenzene-1-carboximidate)pentacopper(II) By scripts.iucr.org Published On :: 2020-04-30 The title compound, [Mn(C3H7NO)4(H2O)2][Cu5(C7H4NO3)4]·C3H7NO or cis-[Mn(H2O)2(DMF)4]{Cu[12-MCCu(II)N(shi)-4]}·DMF, where MC is metallacrown, shi3− is salicylhydroximate, and DMF is N,N-dimethylformamide, crystallizes in the monoclinic space group P21/n. Two crystallographically independent metallacrown anions are present in the structure, and both anions exhibit minor main molecule disorder by an approximate (non-crystallographic) 180° rotation with occupancy ratios of 0.9010 (9) to 0.0990 (9) for one anion and 0.9497 (8) to 0.0503 (8) for the other. Each pentacopper(II) metallacrown contains four CuII ions in the MC ring and a CuII ion captured in the central cavity. Each CuII ion is four-coordinate with a square-planar geometry. The anionic {Cu[12-MCCu(II)N(shi)-4]}2− is charged-balanced by the presence of a cis-[Mn(H2O)2(DMF)4]2+ cation located in the lattice. In addition, the octahedral MnII counter-cation is hydrogen bonded to both MC anions via the coordinated water molecules of the MnII ion. The water molecules form hydrogen bonds with the phenolate and carbonyl oxygen atoms of the shi3− ligands of the MCs. Full Article text
ppe Catalytically important damage-free structures of a copper nitrite reductase obtained by femtosecond X-ray laser and room-temperature neutron crystallography By scripts.iucr.org Published On :: 2019-06-23 Copper-containing nitrite reductases (CuNiRs) that convert NO2− to NO via a CuCAT–His–Cys–CuET proton-coupled redox system are of central importance in nitrogen-based energy metabolism. These metalloenzymes, like all redox enzymes, are very susceptible to radiation damage from the intense synchrotron-radiation X-rays that are used to obtain structures at high resolution. Understanding the chemistry that underpins the enzyme mechanisms in these systems requires resolutions of better than 2 Å. Here, for the first time, the damage-free structure of the resting state of one of the most studied CuNiRs was obtained by combining X-ray free-electron laser (XFEL) and neutron crystallography. This represents the first direct comparison of neutron and XFEL structural data for any protein. In addition, damage-free structures of the reduced and nitrite-bound forms have been obtained to high resolution from cryogenically maintained crystals by XFEL crystallography. It is demonstrated that AspCAT and HisCAT are deprotonated in the resting state of CuNiRs at pH values close to the optimum for activity. A bridging neutral water (D2O) is positioned with one deuteron directed towards AspCAT Oδ1 and one towards HisCAT N∊2. The catalytic T2Cu-ligated water (W1) can clearly be modelled as a neutral D2O molecule as opposed to D3O+ or OD−, which have previously been suggested as possible alternatives. The bridging water restricts the movement of the unprotonated AspCAT and is too distant to form a hydrogen bond to the O atom of the bound nitrite that interacts with AspCAT. Upon the binding of NO2− a proton is transferred from the bridging water to the Oδ2 atom of AspCAT, prompting electron transfer from T1Cu to T2Cu and reducing the catalytic redox centre. This triggers the transfer of a proton from AspCAT to the bound nitrite, enabling the reaction to proceed. Full Article text
ppe Structure and mechanism of copper–carbonic anhydrase II: a nitrite reductase By scripts.iucr.org Published On :: 2020-02-21 Nitric oxide (NO) promotes vasodilation through the activation of guanylate cyclase, resulting in the relaxation of the smooth muscle vasculature and a subsequent decrease in blood pressure. Therefore, its regulation is of interest for the treatment and prevention of heart disease. An example is pulmonary hypertension which is treated by targeting this NO/vasodilation pathway. In bacteria, plants and fungi, nitrite (NO2−) is utilized as a source of NO through enzymes known as nitrite reductases. These enzymes reduce NO2− to NO through a catalytic metal ion, often copper. Recently, several studies have shown nitrite reductase activity of mammalian carbonic anhydrase II (CAII), yet the molecular basis for this activity is unknown. Here we report the crystal structure of copper-bound human CAII (Cu–CAII) in complex with NO2− at 1.2 Å resolution. The structure exhibits Type 1 (T-1) and 2 (T-2) copper centers, analogous to bacterial nitrite reductases, both required for catalysis. The copper-substituted CAII active site is penta-coordinated with a `side-on' bound NO2−, resembling a T-2 center. At the N terminus, several residues that are normally disordered form a porphyrin ring-like configuration surrounding a second copper, acting as a T-1 center. A structural comparison with both apo- (without metal) and zinc-bound CAII (Zn–CAII) provides a mechanistic picture of how, in the presence of copper, CAII, with minimal conformational changes, can function as a nitrite reductase. Full Article text
ppe Disappeared supramolecular isomer reappears with perylene guest By scripts.iucr.org Published On :: 2020-02-27 Among different types of polymorphism, disappearing polymorphism deals with the metastable kinetic form which can not be reproduced after its first isolation. In the world of coordination polymers (CPs) and metal–organic frameworks (MOFs), despite the fact that many types of supramolecular isomerism exist, we are unaware of disappearing supramolecular isomerism akin to disappearing polymorphism. This work reports a MOF with dia topology that could not be reproduced, but subsequent synthesis yielded another supramolecular isomer, a double-pillared-layer MOF. When perylene was added in the same reaction, the disappeared dia MOF reappeared with perylene as a guest in the channels. Interestingly, the photoluminescence of the dia MOF with a perylene guest is dominated by the emission of the guest molecule. The influence of guest molecules on the stabilization of the supramolecular isomers of a MOF opens up a strategy to access MOFs with different structures. Full Article text