ana

Syntheses and crystal structures of the five- and sixfold coordinated complexes diiso­seleno­cyanato­tris­(2-methyl­pyridine N-oxide)cobalt(II) and diiso­seleno­cyanato­tetra­kis­(2-methyl­pyridine N-

The reaction of CoBr2, KNCSe and 2-methyl­pyridine N-oxide (C6H7NO) in ethanol leads to the formation of crystals of [Co(NCSe)2(C6H7NO)3] (1) and [Co(NCSe)2(C6H7NO)4] (2) from the same reaction mixture. The asymmetric unit of 1 is built up of one CoII cation, two NCSe− iso­seleno­cyanate anions and three 2-methyl­pyridine N-oxide coligands, with all atoms located on general positions. The asymmetric unit of 2 consists of two cobalt cations, four iso­seleno­canate anions and eight 2-methyl­pyridine N-oxide coligands in general positions, because two crystallographically independent complexes are present. In compound 1, the CoII cations are fivefold coordinated to two terminally N-bonded anionic ligands and three 2-methyl­pyridine N-oxide coligands within a slightly distorted trigonal–bipyramidal coordination, forming discrete complexes with the O atoms occupying the equatorial sites. In compound 2, each of the two complexes is coordinated to two terminally N-bonded iso­seleno­cyanate anions and four 2-methyl­pyridine N-oxide coligands within a slightly distorted cis-CoN2O4 octa­hedral coordination geometry. In the crystal structures of 1 and 2, the complexes are linked by weak C—H⋯Se and C—H⋯O contacts. Powder X-ray diffraction reveals that neither of the two compounds were obtained as a pure crystalline phase.




ana

Crystal structure and Hirshfeld surface analysis of 6,6'-dimethyl-2,2'-bi­pyridine-1,1'-diium tetra­chlorido­cobaltate(II)

In the title mol­ecular salt, (C12H14N2)[CoCl4], the dihedral angle between the pyridine rings of the cation is 52.46 (9)° and the N—C—C—N torsion angle is −128.78 (14)°, indicating that the ring nitro­gen atoms are in anti-clinal conformation. The Cl—Co—Cl bond angles in the anion span the range 105.46 (3)–117.91 (2)°. In the extended structure, the cations and anions are linked by cation-to-anion N—H⋯Cl and C—H⋯Cl inter­actions, facilitating the formation of R44(18) and R44(20) ring motifs. Furthermore, the crystal structure features weak anion-to-cation Cl⋯π inter­actions [Cl⋯π = 3.4891 (12) and 3.5465 (12) Å]. Hirshfeld two-dimensional fingerprint plots revealed that the most significant inter­actions are Cl⋯H/H⋯Cl (45.5%), H⋯H (29.0%), Cl⋯C/C⋯Cl (7.8%), Cl⋯N/N⋯Cl (3.5%), Cl⋯Cl (1.4) and Co⋯H (1%) contacts.




ana

Synthesis and crystal structure of bis­(2-aminobenzimidazolium) catena-[metavanadate(V)]

The structure of polymeric catena-poly[2-amino­benzimidazolium [[dioxidovanadium(V)]-μ-oxido]], {(C7H8N3)2[V2O6]}n, has monoclinic symmetry. The title compound is of inter­est with respect to anti­cancer activity. In the crystal structure, infinite linear zigzag vanadate (V2O6)2− chains, constructed from corner-sharing VO4 tetra­hedra and that run parallel to the a axis, are present. Two different protonated 2-amino­benzimidazole mol­ecules are located between the (V2O6)2– chains and form classical N—H⋯O hydrogen bonds with the vanadate oxygen atoms, which contribute to the cohesion of the structure.




ana

Crystal structure and Hirshfeld surface analysis of 2-bromo­ethyl­ammonium bromide – a possible side product upon synthesis of hybrid perovskites

This study presents the synthesis, characterization and Hirshfeld surface analysis of a small organic ammonium salt, C2H7BrN+·Br−. Small cations like the one in the title compound are considered promising components of hybrid perovskites, crucial for optoelectronic and photovoltaic applications. While the incorporation of this organic cation into various hybrid perovskite structures has been explored, its halide salt counterpart remains largely uninvestigated. The obtained structural results are valuable for the synthesis and phase analysis of hybrid perovskites. The title compound crystallizes in the solvent-free form in the centrosymmetric monoclinic space group P21/c, featuring one organic cation and one bromide anion in its asymmetric unit, with a torsion angle of −64.8 (2)° between the ammonium group and the bromine substituent, positioned in a gauche conformation. The crystal packing is predominantly governed by Br⋯H inter­actions, which constitute 62.6% of the overall close atom contacts.




ana

Synthesis, spectroscopic analysis and crystal structure of (N-{2-[(2-amino­eth­yl)amino]­eth­yl}-4'-methyl-[1,1'-biphenyl]-4-sulfonamidato)tri­carb­on­ylrhenium(I)

The title compound, [Re(C17H22N3O2S)(CO)3] is a net neutral fac-Re(I)(CO)3 complex of the 4-methyl­biphenyl sulfonamide derivatized di­ethyl­enetri­amine ligand. The NNN-donor monoanionic ligand coordinates with the Re core in tridentate fashion, establishing an inner coordination sphere resulting in a net neutral complex. The complex possesses pseudo-octa­hedral geometry where one face of the octa­hedron is occupied by three carbonyl ligands and the other faces are occupied by one sp2 nitro­gen atom of the sulfonamide group and two sp3 nitro­gen atoms of the dien backbone. The Re—Nsp2 bond distance, 2.173 (4) Å, is shorter than the Re—Nsp3 bond distances, 2.217 (5) and 2.228 (6) Å, and is similar to the range reported for typical Re—Nsp2 bond lengths (2.14 to 2.18 Å).




ana

Crystal structure and Hirshfeld surface analysis of dimeth­yl(phen­yl)phosphine sulfide

The title compound, C8H11PS, which melts below room temperature, was crystallized at low temperature. The P—S bond length is 1.9623 (5) Å and the major contributors to the Hirshfeld surface are H⋯H (58.1%), S⋯H/H⋯S (13.4%) and C⋯H/H⋯C contacts (11.7%).




ana

Crystal structure and Hirshfeld surface analysis of a halogen bond between 2-(allyl­thio)­pyridine and 1,2,4,5-tetra­fluoro-3,6-di­iodo­benzene

The crystal structure of the title 2:1 mol­ecular complex between 2-(allyl­thio)­pyridine and 1,2,4,5-tetra­fluoro-3,6-di­iodo­benzene, C6F4I2·2C8H9NS, at 100 K has been determined in the monoclinic space group P21/c. The most noteworthy characteristic of the complex is the halogen bond between iodine and the pyridine ring with a short N⋯I contact [2.8628 (12) Å]. The Hirshfeld surface analysis shows that the hydrogen⋯hydrogen contacts dominate the crystal packing with a contribution of 32.1%.




ana

Crystal structure and Hirshfeld surface analysis of 1-[6-bromo-2-(4-fluoro­phen­yl)-1,2,3,4-tetra­hydroquinolin-4-yl]pyrrolidin-2-one

In the title compound, C19H18BrFN2O, the pyrrolidine ring adopts an envelope conformation. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O, C—H⋯O, C—H⋯F and C—H⋯Br hydrogen bonds, forming a three-dimensional network. In addition, C—H⋯π inter­actions connect mol­ecules into ribbons along the b-axis direction, consolidating the mol­ecular packing. The inter­molecular inter­actions in the crystal structure were qu­anti­fied and analysed using Hirshfeld surface analysis.




ana

Synthesis, structure and Hirshfeld surface analysis of 2-oxo-2H-chromen-4-yl penta­noate

In the title compound, C14H14O4, the dihedral angle between the coumarin ring system (r.m.s deviation = 0.016 Å) and the penta­noate ring is 36.26 (8)°. A short intra­molecular C—H⋯O contact of 2.40 Å is observed. Hirshfeld surface analysis reveals that 46.1% of the inter­molecular inter­actions are from H⋯H contacts, 28.6% are from H⋯O/O⋯H contacts and 14.7% are from H⋯C/C⋯H.




ana

Synthesis, crystal structure and thermal properties of catena-poly[[bis­(4-methyl­pyridine)­nickel(II)]-di-μ-thio­cyanato], which shows an alternating all-trans and cis–cis–trans-coordination of the NiS2Np2Nt2 octa­hedra (p = 4-me

The title compound, [Ni(NCS)2(C6H7N)2]n, was prepared by the reaction of Ni(NCS)2 with 4-methyl­pyridine in water. Its asymmetric unit consists of two crystallographically independent NiII cations, of which one is located on a twofold rotational axis whereas the second occupies a center of inversion, two independent thio­cyanate anions and two independent 4-methyl­pyridine co­ligands in general positions. Each NiII cation is octa­hedrally coordinated by two 4-methyl­pyridine coligands as well as two N- and two S-bonded thio­cyanate anions. One of the cations shows an all-trans, the other a cis–cis–trans configuration. The metal centers are linked by pairs of μ-1,3-bridging thio­cyanate anions into [101] chains. X-ray powder diffraction shows that a pure crystalline phase has been obtained and thermogravimetry coupled to differential thermoanalysis reveals that the title compound loses half of the 4-methyl­pyridine coligands and transforms into Ni(NCS)2(C6H7N). Nearly pure samples of this compound can be obtained by thermal annealing and a Rietveld refinement demonstrated that it is isotypic to its recently reported Cd analog [Neumann et al., (2020). CrystEngComm. 22, 184–194] In its crystal structure, the metal cations are linked by one μ-1,3(N,S)- and one μ-1,3,3(N,S,S)-bridging thio­cyanate anion into single chains that condense via the μ-1,3,3(N,S,S)-bridging anionic ligands into double chains.




ana

Crystal structure determination and analyses of Hirshfeld surface, crystal voids, inter­molecular inter­action energies and energy frameworks of 1-benzyl-4-(methyl­sulfan­yl)-3a,7a-di­hydro-1H-pyrazolo­[3,4-d]pyrimidine

The pyrazolo­pyrimidine moiety in the title mol­ecule, C13H12N4S, is planar with the methyl­sulfanyl substituent lying essentially in the same plane. The benzyl group is rotated well out of this plane by 73.64 (6)°, giving the mol­ecule an approximate L shape. In the crystal, C—H⋯π(ring) inter­actions and C—H⋯S hydrogen bonds form tubes extending along the a axis. Furthermore, there are π–π inter­actions between parallel phenyl rings with centroid-to-centroid distances of 3.8418 (12) Å. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (47.0%), H⋯N/N⋯H (17.6%) and H⋯C/C⋯H (17.0%) inter­actions. The volume of the crystal voids and the percentage of free space were calculated to be 76.45 Å3 and 6.39%, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the cohesion of the crystal structure is dominated by the dispersion energy contributions.




ana

Synthesis, structural studies and Hirshfeld surface analysis of 2-[(4-phenyl-1H-1,2,3-triazol-1-yl)methyl]pyridin-1-ium hexa­kis­(nitrato-κ2O,O')thorate(IV)

Reaction of thorium(IV) nitrate with 2-[(4-phenyl-1H-1,2,3-triazol-1-yl)meth­yl]pyridine (L) yielded (LH)2[Th(NO3)6] or (C14H13N4)2[Th(NO3)6] (1), instead of the expected mixed-ligand complex [Th(NO3)4L2], which was detected in the mass spectrum of 1. In the structure, the [Th(NO3)6]2− anions display an icosa­hedral coordination geometry and are connected by LH+ cations through C—H⋯O hydrogen bonds. The LH+ cations inter­act via N—H⋯N hydrogen bonds. Hirshfeld surface analysis indicates that the most important inter­actions are O⋯H/H⋯O hydrogen-bonding inter­actions, which represent a 55.2% contribution.




ana

Structural determination of oleanane-28,13β-olide and taraxerane-28,14β-olide fluoro­lactonization products from the reaction of oleanolic acid with SelectfluorTM

The X-ray crystal structure data of 12-α-fluoro-3β-hy­droxy­olean-28,13β-olide methanol hemisolvate, 2C30H47FO3·CH3OH, (1), and 12-α-fluoro-3β-hy­droxy­taraxer-28,14β-olide methanol hemisolvate, 2C30H47FO3·CH3OH, (2), are described. The fluoro­lactonization of oleanolic acid using SelectfluorTM yielded a mixture of the six-membered δ-lactone (1) and the unusual seven-membered γ-lactone (2) following a 1,2-shift of methyl C-27 from C-14 to C-13.




ana

Crystal structure determination and Hirshfeld surface analysis of N-acetyl-N-3-meth­oxy­phenyl and N-(2,5-di­meth­oxy­phen­yl)-N-phenyl­sulfonyl derivatives of N-[1-(phenyl­sulfon­yl)-1H-indol-2-yl]methanamine

Two new [1-(phenyl­sulfon­yl)-1H-indol-2-yl]methanamine derivatives, namely, N-(3-meth­oxy­phen­yl)-N-{[1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}acetamide, C24H22N2O4S, (I), and N-(2,5-di­meth­oxy­phen­yl)-N-{[1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}benzene­sulfonamide, C29H26N2O6S2, (II), reveal a nearly orthogonal orientation of their indole ring systems and sulfonyl-bound phenyl rings. The sulfonyl moieties adopt the anti-periplanar conformation. For both compounds, the crystal packing is dominated by C—H⋯O bonding [C⋯O = 3.312 (4)–3.788 (8) Å], with the structure of II exhibiting a larger number, but weaker bonds of this type. Slipped π–π inter­actions of anti­parallel indole systems are specific for I, whereas the structure of II delivers two kinds of C—H⋯π inter­actions at both axial sides of the indole moiety. These findings agree with the results of Hirshfeld surface analysis. The primary contributions to the surface areas are associated with the contacts involving H atoms. Although II manifests a larger fraction of the O⋯H/H⋯O contacts (25.8 versus 22.4%), most of them are relatively distal and agree with the corresponding van der Waals separations.




ana

Synthesis, crystal structure and Hirshfeld surface analysis of [1-(4-bromo­phen­yl)-1H-1,2,3-triazol-4-yl]methyl 2-(4-nitro­phen­oxy)acetate

The title compound, C17H13BrN4O5, was synthesized by a Cu2Br2-catalysed Meldal–Sharpless reaction between 4-nitro­phen­oxy­acetic acid propargyl ether and para-bromo­phenyl­azide, and characterized by X-ray structure determination and 1H NMR spectroscopy. The mol­ecules, with a near-perpendicular orientation of the bromo­phenyl-triazole and nitro­phen­oxy­acetate fragments, are connected into a three-dimensional network by inter­molecular C—H⋯O and C—H⋯N hydrogen bonds (confirmed by Hirshfeld surface analysis), π–π and Br–π inter­actions.




ana

Synthesis, crystal structure and Hirshfeld surface analysis of 1-[(1-octyl-1H-1,2,3-triazol-4-yl)methyl]-3-phenyl-1,2-di­hydro­quinoxalin-2(1H)-one

In the title mol­ecule, C25H29N5O, the di­hydro­quinoxaline unit is not quite planar (r.m.s. deviation = 0.030 Å) as there is a dihedral angle of 2.69 (3)° between the mean planes of the constituent rings and the mol­ecule adopts a hairpin conformation. In the crystal, the polar portions of the mol­ecules are associated through C—H⋯O and C—H⋯N hydrogen bonds and C—H⋯π(ring) and C=O⋯π(ring) inter­actions, forming thick layers parallel to the bc plane and with the n-octyl groups on the outside surfaces.




ana

Crystal structure and Hirshfeld surface analysis of di­chlorido­[2-(3-cyclo­pentyl-1,2,4-triazol-5-yl-κN4)pyridine-κN]palladium(II) di­methyl­formamide monosolvate

This study presents the synthesis, characterization and Hirshfeld surface analysis of the title mononuclear complex, [PdCl2(C12H14N4)]·C3H7NO. The compound crystalizes in the P21/c space group of the monoclinic system. The asymmetric unit contains one neutral complex Pd(HLc-Pe)Cl2 [HLc-Pe is 2-(3-cyclo­pentyl-1,2,4-triazol-5-yl)pyridine] and one mol­ecule of DMF as a solvate. The Pd atom has a square-planar coordination. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O and C—H⋯N hydrogen bonds, forming layers parallel to the bc plane. A Hirshfeld surface analysis showed that the H⋯H contacts dominate the crystal packing with a contribution of 41.4%. The contribution of the N⋯H/H⋯N and H⋯O/O⋯H inter­actions is somewhat smaller, amounting to 12.4% and 5%, respectively.




ana

Synthesis, crystal structure and Hirshfeld surface analysis of [Cu(H2L)2(μ-Cl)CuCl3]·H2O [H2L = 2-hy­droxy-N'-(propan-2-yl­idene)benzohydrazide]

The present study focuses on the synthesis and structural characterization of a novel dinuclear CuII complex, [tri­chlorido­copper(II)]-μ-chlorido-{bis­[2-hy­droxy-N'-(propan-2-yl­idene)benzohydrazide]copper(II)} monohydrate, [Cu2Cl4(C10H12N2O2)2]·H2O or [Cu(H2L)2(μ-Cl)CuCl3]·H2O [H2L = 2-hy­droxy-N'-(propan-2-yl­idene)benzohydrazide]. The complex crystallizes in the monoclinic space group P21/n with one mol­ecule of water, which forms inter­actions with the ligands. The first copper ion is penta-coordinated to two benzohydrazine-derived ligands via two nitro­gen and two oxygen atoms, and one bridging chloride, which is also coordinated by the second copper ion alongside three terminal chlorines in a distorted tetra­hedral geometry. The arrangement around the first copper ion exhibits a distorted geometry inter­mediate between trigonal bipyramidal and square pyramidal. In the crystal, chains are formed via inter­molecular inter­actions along the a-axis direction, with subsequent layers constructed through hydrogen-bonding inter­actions parallel to the ac plane, and through slipped π–π stacking inter­actions parallel to the ab plane, resulting in a three-dimensional network. The inter­molecular inter­actions in the crystal structure were qu­anti­fied and analysed using Hirshfeld surface analysis. Residual electron density from disordered methanol mol­ecules in the void space could not be reasonably modelled, thus a solvent mask was applied.




ana

Crystal structure and Hirshfeld surface analysis of 1-[6-bromo-2-(3-bromo­phen­yl)-1,2,3,4-tetra­hydro­quinolin-4-yl]pyrrolidin-2-one

This study presents the synthesis, characterization and Hirshfeld surface analysis of 1-[6-bromo-2-(3-bromo­phen­yl)-1,2,3,4-tetra­hydro­quinolin-4-yl]pyrrolidin-2-one, C19H18Br2N2O. In the title compound, the pyrrolidine ring adopts a distorted envelope configuration. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O, C—H⋯O and C—H⋯Br hydrogen bonds, forming a three-dimensional network. In addition, pairs of mol­ecules along the c axis are connected by C—H⋯π inter­actions. According to a Hirshfeld surface study, H⋯H (36.9%), Br⋯H/H⋯Br (28.2%) and C⋯H/H⋯C (24.3%) inter­actions are the most significant contributors to the crystal packing.




ana

Synthesis, crystal structure and Hirshfeld surface analysis of a new copper(II) complex based on diethyl 2,2'-(4H-1,2,4-triazole-3,5-di­yl)di­acetate

The title compound, bis­[μ-2,2'-(4H-1,2,4-triazole-3,5-di­yl)di­acetato]­bis­[di­aqua­copper(II)] dihydrate, [Cu2(C6H5N3O4)2(H2O)4]·2H2O, is a dinuclear octa­hedral CuII triazole-based complex. The central copper atoms are hexa-coordinated by two nitro­gen atoms in the equatorial positions, two equatorial oxygen atoms of two carboxyl­ate substituents in position 3 and 5 of the 1,2,4-triazole ring, and two axial oxygen atoms of two water mol­ecules. Two additional solvent water mol­ecules are linked to the title mol­ecule by O—H⋯N and O⋯H—O hydrogen bonds. The crystal structure is built up from the parallel packing of discrete supra­molecular chains running along the a-axis direction. Hirshfeld surface analysis suggests that the most important contributions to the surface contacts are from H⋯O/O⋯H (53.5%), H⋯H (28.1%), O⋯O (6.3%) and H⋯C/C⋯H (6.2%) inter­actions. The crystal studied was twinned by a twofold rotation around [100].




ana

Crystal structure, Hirshfeld surface analysis, DFT and the mol­ecular docking studies of 3-(2-chloro­acet­yl)-2,4,6,8-tetra­phenyl-3,7-di­azabicyclo­[3.3.1]nonan-9-one

In the title compound, C33H29ClN2O2, the two piperidine rings of the di­aza­bicyclo moiety adopt distorted-chair conformations. Inter­molecular C—H⋯π inter­actions are mainly responsible for the crystal packing. The inter­molecular inter­actions were qu­anti­fied and analysed using Hirshfeld surface analysis, revealing that H⋯H inter­actions contribute most to the crystal packing (52.3%). The mol­ecular structure was further optimized by density functional theory (DFT) at the B3LYP/6–31 G(d,p) level and is compared with the experimentally determined mol­ecular structure in the solid state.




ana

Crystal structure, Hirshfeld surface analysis, DFT optimized mol­ecular structure and the mol­ecular docking studies of 1-[2-(cyano­sulfan­yl)acet­yl]-3-methyl-2,6-bis­(4-methyl­phen­yl)piperidin-4-one

The two mol­ecules in the asymmetric unit of the title compound, C23H24N2O2S, have a structural overlap with an r.m.s. deviation of 0.82 Å. The piperidine rings adopt a distorted boat conformation. Intra- and inter­molecular C—H⋯O hydrogen bonds are responsible for the cohesion of the crystal packing. The inter­molecular inter­actions were qu­anti­fied and analysed using Hirshfeld surface analysis. The mol­ecular structure optimized by density functional theory (DFT) at the B3LYP/6–311++G(d,p)level is compared with the experimentally determined mol­ecular structure in the solid state.




ana

Synthesis, crystal structure, and Hirshfeld surface analysis of 1,3-di­hydro-2H-benzimidazol-2-iminium 3-carb­oxy-4-hy­droxy­benzene­sulfonate

The asymmetric unit of the title salt, C7H8N3+·C7H5O6S−, comprises two 1,3-di­hydro-2H-benzimidazol-2-iminium cations and two 2-hy­droxy-5-sulfobenzoate anions (Z' = 2). In the crystal, the mol­ecules inter­act through N—H⋯O, O—H⋯O hydrogen bonds and C—O⋯π contacts. The hydrogen-bonding inter­actions lead to the formation of layers parallel to (overline{1}01). Hirshfeld surface analysis revealed that H⋯H contacts contribute to most of the crystal packing with 38.9%, followed by H⋯O contacts with 36.2%.




ana

Synthesis, crystal structure and Hirshfeld surface analysis of 4'-cyano-[1,1'-biphen­yl]-4-yl 3-(benz­yloxy)benzoate

In the title compound, C27H19O3N, the dihedral angle between the aromatic rings of the biphenyl unit is 38.14 (2)° and the C—O—C—C torsion angle in the benz­yloxy benzene fragment is 179.1 (2)°. In the crystal, the mol­ecules are linked by weak C—H⋯O inter­actions forming S(9) chains propagating along [010]. The most important contributions to the Hirshfeld surface arise from H⋯H (32.4%) and C⋯H/H⋯C (37.0%) contacts.




ana

Crystal structure, Hirshfeld surface analysis, and calculations of inter­molecular inter­action energies and energy frameworks of 1-[(1-hexyl-1H-1,2,3-triazol-4-yl)meth­yl]-3-(1-methyl­ethen­yl)-benzimidazol-2-one

The benzimidazole moiety in the title mol­ecule, C19H25N5O, is almost planar and oriented nearly perpendicular to the triazole ring. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules into a network structure. There are no π–π inter­actions present but two weak C—H⋯π(ring) inter­actions are observed. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (62.0%), H⋯C/C⋯H (16.1%), H⋯N/N⋯H (13.7%) and H⋯O/O⋯H (7.5%) inter­actions. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated via the dispersion energy contributions in the title compound.




ana

Coupling between 2-pyridyl­selenyl chloride and phenyl­seleno­cyanate: synthesis, crystal structure and non-covalent inter­actions

A new pyridine-fused seleno­diazo­lium salt, 3-(phenyl­selan­yl)[1,2,4]selena­diazolo[4,5-a]pyridin-4-ylium chloride di­chloro­methane 0.352-solvate, C12H9N2Se2+·Cl−·0.352CH2Cl2, was obtained from the reaction between 2-pyridyl­selenenyl chloride and phenyl­seleno­cyanate. Single-crystal structural analysis revealed the presence of C—H⋯N, C—H⋯Cl−, C—H⋯Se hydrogen bonds as well as chalcogen–chalcogen (Se⋯Se) and chalcogen–halogen (Se⋯Cl−) inter­actions. Non-covalent inter­actions were explored by DFT calculations followed by topological analysis of the electron density distribution (QTAIM analysis). The structure consists of pairs of seleno­diazo­lium moieties arranged in a head-to-tail fashion surrounding disordered di­chloro­methane mol­ecules. The assemblies are connected by C—H⋯Cl− and C—H⋯N hydrogen bonds, forming layers, which stack along the c-axis direction connected by bifurcated Se⋯Cl−⋯H—C inter­actions.




ana

Crystal structure and Hirshfeld surface analysis of (E)-N-(2-styrylphen­yl)benzene­sulfonamide

The crystal structure of the title compound C20H17NO2S features hydrogen-bonding and C—H⋯π inter­actions. Hirshfeld surface analysis revealed that H⋯H, C⋯H/H⋯C and O⋯H/H⋯O inter­actions make a major contribution to the crystal packing. Docking studies were carried out to determine the binding affinity and inter­action profile of the title compound with EGFR kinase, a member of the ErbB family of receptor tyrosine kinases, which is crucial for processes such as cell proliferation and differentiation. The title compound shows a strong binding affinity with EGFR kinase, with the most favourable conformation having a binding energy of −8.27 kcal mol−1 and a predicted IC50 of 870.34 nM, indicating its potential as a promising candidate for targeted lung cancer therapy.




ana

Synthesis, crystal structure and Hirshfeld surface analysis of (2-amino-1-methyl­benzimidazole-κN3)aqua­bis­(4-oxopent-2-en-2-olato-κ2O,O')nickel(II) ethanol monosolvate

The mol­ecule of the title compound, [Ni(C5H7O2)2(C8H9N3)(H2O)]·C2H5OH, has triclinic (Poverline{1}) symmetry. This compound is of inter­est for its anti­microbial properties. The asymmetric unit comprises two independent complex mol­ecules, which are linked by N—H⋯O and O—H⋯O hydrogen bonds along [111]. Hirshfeld surface analysis indicates that 71.7% of inter­mol­ecular inter­actions come from H⋯H contacts, 17.7% from C⋯H/H⋯C contacts and 7.6% from O⋯H/H⋯O contacts, with the remaining contribution coming from N⋯H/H⋯N, C⋯N/N⋯C, C⋯C and O⋯O contacts.




ana

Synthesis and crystal structure of poly[ethanol(μ-4-methyl­pyridine N-oxide)di-μ-thio­cyanato-cobalt(II)]

Reaction of 4-methyl­pyridine N-oxide and Co(NCS)2 in ethanol as solvent accidentally leads to the formation of single crystals of Co(NCS)2(4-methyl­pyridine N-oxide)(ethanol) or [Co(NCS)2(C6H7NO)(C2H6O)]n. The asymmetric unit of the title compound consists of one CoII cation, two crystallographically independent thio­cyanate anions, one 4-methyl­pyridine N-oxide coligand and one ethanol mol­ecule on general positions. The cobalt cations are sixfold coordinated by one terminal and two bridging thio­cyanate anions, two bridging 4-methyl­pyridine N-oxide coligands and one ethanol mol­ecule, with a slightly distorted octa­hedral geometry. The cobalt cations are linked by single μ-1,3(N,S)-bridging thio­cyanate anions into corrugated chains, that are further connected into layers by pairs of μ-1,1(O,O)-bridging 4-methyl­pyridine N-oxide coligands. The layers are parallel to the bc plane and are separated by the methyl groups of the 4-methyl­pyridine N-oxide coligands. Within the layers, intra­layer hydrogen bonding is observed.




ana

Synthesis, non-spherical structure refinement and Hirshfeld surface analysis of racemic 2,2'-diisobut­oxy-1,1'-bi­naphthalene

In the racemic title compound, C28H30O2, the naphthyl ring systems subtend a dihedral angle of 68.59 (1)° and the mol­ecular conformation is consolidated by a pair of intra­molecular C—H⋯π contacts. The crystal packing features a weak C—H⋯π contact and van der Waals forces. A Hirshfeld surface analysis of the crystal structure reveals that the most significant contributions are from H⋯H (73.2%) and C⋯H/H⋯C (21.2%) contacts.




ana

Crystal structure and Hirshfeld surface analysis of tri­chlorido­(1,10-phenanthroline-κ2N,N')phenyltin(IV)

The title compound, [Sn(C6H5)Cl3(C12H8N2)], which was obtained by the reaction between 1,10-phenanthroline and phenyl­tin trichloride in methanol, exhibits intra­molecular hydrogen-bonding inter­actions involving the chlorine and hydrogen atoms. Crystal cohesion is ensured by inter­molecular C—H⋯Cl hydrogen bonds, as well as Y—X⋯π and π-stacking inter­actions involving three different aromatic rings with centroid–centroid distances of 3.6605 (13), 3.9327 (14) and 3.6938 (12) Å]. Hirshfeld surface analysis and the associated two-dimensional fingerprint plots reveal significant contributions from H⋯H (30.7%), Cl⋯H/H⋯Cl (32.4%), and C⋯H/H⋯C (24.0%) contacts to the crystal packing while the C⋯C (6.2%), C⋯Cl/Cl⋯C (4.1%), and N⋯H/H⋯N (1.7%) inter­actions make smaller contributions.




ana

Crystal structure and Hirshfeld surface analysis of {2-[bis­(pyridin-2-ylmeth­yl)amino]­ethane-1-thiol­ato}­chlorido­cadmium(II)

The title compound, [Cd(C14H16N3S)Cl] or [CdLCl] (1), where LH = 2-[bis­(pyridin-2-ylmeth­yl)amino]­ethane-1-thiol, was prepared and structurally characterized. The Cd2+ complex crystallizes in P21/c with a distorted trigonal–bipyramidal metal coordination geometry. Supra­molecular inter­actions in 1 include parallel offset face-to-face inter­actions between inversion-related pyridyl rings and potential hydrogen bonds with chlorine or sulfur as the acceptor. Additional cooperative pyrid­yl–pyridyl inter­actions with roughly 45° tilt angles and centroid–centroid distances of less than 5.5 Å likely also contribute to the overall solid-state stability. Hirshfeld surface analysis indicates that H⋯H (51.2%), Cl⋯H/H⋯Cl (13.9%), C⋯H/H⋯C (12.3%) and S⋯H/H⋯S (11.8%) inter­actions are dominant in the solid state.




ana

Synthesis, crystal structure and Hirshfeld surface analysis of sulfamethoxazolium methyl­sulfate monohydrate

The mol­ecular salt sulfamethoxazolium {or 4-[(5-methyl-1,2-oxazol-3-yl)sulf­amo­yl]anilinium methyl sulfate monohydrate}, C10H12N3O3S+·CH3O4S−·H2O, was prepared by the reaction of sulfamethoxazole and H2SO4 in methanol and crystallized from methanol–ether–water. Protonation takes place at the nitro­gen atom of the primary amino group. In the crystal, N—H⋯O hydrogen bonds (water and methyl­sulfate anion) and inter­molecular N—H⋯N inter­actions involving the sulfonamide and isoxazole nitro­gen atoms, link the components into a tri-dimensional network, additional cohesion being provided by face-to-face π–π inter­actions between the phenyl rings of adjacent mol­ecules. A Hirshfeld surface analysis was used to verify the contributions of the different inter­molecular inter­actions, showing that the three most important contributions for the crystal packing are from H⋯O (54.1%), H⋯H (29.2%) and H⋯N (5.0%) inter­actions.




ana

Crystal structure and Hirshfeld surface analyses, crystal voids, inter­molecular inter­action energies and energy frameworks of 3-benzyl-1-(3-bromoprop­yl)-5,5-di­phenyl­imidazolidine-2,4-dione

The title mol­ecule, C25H23BrN2O2, adopts a cup shaped conformation with the distinctly ruffled imidazolidine ring as the base. In the crystal, weak C—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions form helical chains of mol­ecules extending along the b-axis direction that are linked by additional weak C—H⋯π(ring) inter­actions across inversion centres. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (51.0%), C⋯H/H⋯C (21.3%), Br⋯H/H⋯Br (12.8%) and O⋯H/H⋯O (12.4%) inter­actions. The volume of the crystal voids and the percentage of free space were calculated to be 251.24 Å3 and 11.71%, respectively, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated by the dispersion energy.




ana

Crystal structure and Hirshfeld surface analysis of (nitrato-κ2O,O')(1,4,7,10-tetra­aza­cyclo­dodecane-κ4N)nickel(II) nitrate

The crystal structure of the title compound, [Ni(C8H20N4)(NO3)]NO3, at room temperature, has monoclinic (P21/n) symmetry. The structure displays inter­molecular hydrogen bonding. The nickel displays a distorted bipyramidal geometry with the symmetric bidentate bonded nitrate occupying an equatorial site. The 1,4,7,10-tetra­aza­cyclo­dodecane (cyclen) backbone has the [4,8] configuration, with three nitro­gen-bound H atoms directed above the plane of the nitro­gen atoms towards the offset nickel atom with the fourth nitro­gen-bound hydrogen directed below from the plane of the nitro­gen atoms. The nitrate anion O atoms are seen to hydrogen bond to the H atoms bound to the N atoms of the ligand.




ana

Synthesis, structures and Hirshfeld surface analyses of 2-hy­droxy-N'-methyl­acetohydrazide and 2-hy­droxy-N-methyl­acetohydrazide

The structures of the title compounds 2-hy­droxy-N'-methyl­acetohydrazide, 1, and 2-hy­droxy-N-methyl­acetohydrazide, 2, both C3H8N2O2, as regioisomers differ in the position of the methyl group relative to the N atoms in 2-hy­droxy-acetohydrazide. In the structure of 1, the 2-hy­droxy-acetohydrazide core [OH—C—C(=O)—NH—NH] is almost planar and the methyl group is rotated relative to this plane. As opposed to 1, in the structure of 2 all non-hydrogen atoms lie in the same plane. The hydroxyl and carbonyl groups in structures 1 and 2 are in trans and cis positions, respectively. The methyl amino group and carbonyl group are in the cis position relative to the C—N bond in structure 1, while the amino group and carbonyl group are in the trans position relative to the C—N bond in stucture 2. In the crystal, mol­ecules of 1 are linked by N—H⋯O and O—H⋯N inter­molecular hydrogen bonds, forming layers parallel to the ab crystallographic plane. A Hirshfeld surface analysis showed that the H⋯H contacts dominate the crystal packing with a contribution of 55.3%. The contribution of the H⋯O/O⋯H inter­action is somewhat smaller, amounting to 30.8%. In the crystal, as a result of the inter­molecular O—H⋯O hydrogen bonds, mol­ecules of 2 form dimers, which are linked by N—H⋯O hydrogen bonds and a three-dimensional supra­molecular network The major contributors to the Hirshfeld surface are H⋯H (58.5%) and H⋯O/O⋯H contacts (31.7%).




ana

The crystal structures determination and Hirshfeld surface analysis of N-(4-bromo-3-meth­oxy­phen­yl)- and N-{[3-bromo-1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}- derivatives of N-{[3-bromo-1-(phenylsulfon­yl)-1H-indol-

Two new phenyl­sulfonyl­indole derivatives, namely, N-{[3-bromo-1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}-N-(4-bromo-3-meth­oxy­phen­yl)benzene­sulfonamide, C28H22Br2N2O5S2, (I), and N,N-bis­{[3-bromo-1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}benzene­sulfonamide, C36H27Br2N3O6S3, (II), reveal the impact of intra­molecular π–π inter­actions of the indole moieties as a factor not only governing the conformation of N,N-bis­(1H-indol-2-yl)meth­yl)amines, but also significantly influencing the crystal patterns. For I, the crystal packing is dominated by C—H⋯π and π–π bonding, with a particular significance of mutual indole–indole inter­actions. In the case of II, the mol­ecules adopt short intra­molecular π–π inter­actions between two nearly parallel indole ring systems [with the centroids of their pyrrole rings separated by 3.267 (2) Å] accompanied by a set of forced Br⋯O contacts. This provides suppression of similar inter­actions between the mol­ecules, while the importance of weak C—H⋯O hydrogen bonding to the packing naturally increases. Short contacts of the latter type [C⋯O = 3.389 (6) Å] assemble pairs of mol­ecules into centrosymmetric dimers with a cyclic R22(13) ring motif. These findings are consistent with the results of a Hirshfeld surface analysis and together they suggest a tool for modulating the supra­molecular behavior of phenyl­sulfonyl­ated indoles.




ana

Crystal structure, Hirshfeld surface analysis, and DFT and mol­ecular docking studies of 6-cyanona­phthalen-2-yl 4-(benz­yloxy)benzoate

In the title compound, C25H17NO3, the torsion angle associated with the phenyl benzoate group is −173.7 (2)° and that for the benz­yloxy group is −174.8 (2)° establishing an anti-type conformation. The dihedral angles between the ten-membered cyanona­phthalene ring and the aromatic ring of the phenyl benzoate and the benz­yloxy fragments are 40.70 (10) and 87.51 (11)°, respectively, whereas the dihedral angle between the aromatic phenyl benzoate and the benz­yloxy fragments is 72.30 (13)°. In the crystal, the mol­ecules are linked by weak C—H⋯O inter­actions forming S(4) chains propagating parallel to [010]. The packing is consolidated by three C—H⋯π inter­actions and two π–π stacking inter­actions between the aromatic rings of naphthalene and phenyl benzoate with centroid-to-centroid distances of 3.9698 (15) and 3.8568 (15) Å, respectively. Inter­molecular inter­actions were qu­anti­fied using Hirshfeld surface analysis. The mol­ecular structure was further optimized by density functional theory (DFT) at the B3LYP/6–311+ G(d,p) level, revealing that the energy gap between HOMO and LUMO is 3.17 eV. Mol­ecular docking studies were carried out for the title compound as a ligand and SARS-Covid-2(PDB ID:7QF0) protein as a receptor giving a binding affinity of −9.5 kcal mol−1.




ana

Synthesis, crystal structure and Hirshfeld surface analysis of 2-{4-[(2-chloro­phen­yl)meth­yl]-3-methyl-6-oxopyridazin-1-yl}-N-phenyl­acetamide

In the title mol­ecule, C20H18ClN3O2, the 2-chloro­phenyl group is disordered to a small extent [occupancies 0.875 (2)/0.125 (2)]. The phenyl­acetamide moiety is nearly planar due to a weak, intra­molecular C—H⋯O hydrogen bond. In the crystal, N—H⋯O hydrogen bonds and π-stacking inter­actions between pyridazine and phenyl rings form helical chains of mol­ecules in the b-axis direction, which are linked by C—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions. A Hirshfeld surface analysis was performed, which showed that H⋯H, C⋯H/H⋯C and O⋯H/H⋯O inter­actions to dominate the inter­molecular contacts in the crystal.




ana

Crystal structure and Hirshfeld surface analysis of the salt 2-iodo­ethyl­ammonium iodide – a possible side product upon synthesis of hybrid perovskites

The title organic–inorganic hybrid salt, C2H7IN+·I−, is isotypic with its bromine analog, C2H7BrN+·Br− [Semenikhin et al. (2024). Acta Cryst. E80, 738–741]. Its asymmetric unit consists of one 2-iodo­ethyl­ammonium cation and one iodide anion. The NH3+ group of the organic cation forms weak hydrogen bonds with four neighboring iodide anions, leading to the formation of supra­molecular layers propagating parallel to the bc plane. Hirshfeld surface analysis reveals that the most important contribution to the crystal packing is from N—H⋯I inter­actions (63.8%). The crystal under investigation was twinned by a 180° rotation around [001].




ana

Crystal structure and Hirshfeld surface analysis of bis­(benzoyl­acetonato)(ethanol)dioxidouranium(VI)

A new uranium metal–organic complex salt, [U(C10H9O2)2O2(C2H6O)], with benzoyl acetone, namely, bis­(benzoyl­acetonato)(ethanol)dioxidouranium(VI), was synthesized. The compound has monoclinic P21/n symmetry. The geometry of the seven-coordinate U atom is penta­gonal bipyramidal, with the uranyl oxygen atoms in apical positions. In the complex, the ligands bind to the metal through oxygen atoms. Additional weak O—H⋯O contacts between the cations and anions consolidate the three-dimensional arrangement of the structure. On the Hirshfeld surface, the largest contributions come from the short contacts such as van der Waals forces, including H⋯H, O⋯H and C⋯H. Inter­actions including C⋯C and O⋯C contacts were also observed; however, their contribution to the overall cohesion of the crystal structure is minor. A packing analysis was performed to check the strength of the crystal packing.




ana

Synthesis and structure of penta­kis­(2-aminopyridinium) nona­vanado(V)tellurate(VI)

In the title compound, (C5H7N2)5[TeV9O28], the tellurium and vanadium atoms are statistically disordered over two of the ten metal-atom sites in the [TeV9O28]5– heteropolyanion. The anions stack along [100] and are extended into a three-dimensional supra­molecular network through N—H⋯O and weak C—H⋯O hydrogen bonds involving the self-assembled 2-amino­pyridinium penta­mers, which are linked by C—H⋯π and π–π stacking inter­actions. The most important contributions to the Hirshfeld surface arise from O⋯H/H⋯O (54.8%), H⋯H (17.8%) and C⋯H/H⋯C (13.4%) contacts.




ana

Texture measurements on quartz single crystals to validate coordinate systems for neutron time-of-flight texture analysis

In crystallographic texture analysis, ensuring that sample directions are preserved from experiment to the resulting orientation distribution is crucial to obtain physical meaning from diffraction data. This work details a procedure to ensure instrument and sample coordinates are consistent when analyzing diffraction data with a Rietveld refinement using the texture analysis software MAUD. A quartz crystal is measured on the HIPPO diffractometer at Los Alamos National Laboratory for this purpose. The methods described here can be applied to any diffraction instrument measuring orientation distributions in polycrystalline materials.




ana

Van Vleck analysis of angularly distorted octahedra using VanVleckCalculator

Van Vleck modes describe all possible displacements of octahedrally coordinated ligands about a core atom. They are a useful analytical tool for analysing the distortion of octahedra, particularly for first-order Jahn–Teller distortions, but determination of the Van Vleck modes of an octahedron is complicated by the presence of angular distortion of the octahedron. This problem is most commonly resolved by calculating the bond distortion modes (Q2, Q3) along the bond axes of the octahedron, disregarding the angular distortion and losing information on the octahedral shear modes (Q4, Q5 and Q6) in the process. In this paper, the validity of assuming bond lengths to be orthogonal in order to calculate the Van Vleck modes is discussed, and a method is described for calculating Van Vleck modes without disregarding the angular distortion. A Python package for doing this, VanVleckCalculator, is introduced and some examples of its use are given. Finally, it is shown that octahedral shear and angular distortion are often, but not always, correlated, and a parameter η is proposed as the shear fraction. It is demonstrated that η can be used to predict whether the values will be correlated when varying a tuning parameter such as temperature or pressure.




ana

Using XAS to monitor radiation damage in real time and post-analysis, and investigation of systematic errors of fluorescence XAS for Cu-bound amyloid-β

X-ray absorption spectroscopy (XAS) is a promising technique for determining structural information from sensitive biological samples, but high-accuracy X-ray absorption fine structure (XAFS) requires corrections of systematic errors in experimental data. Low-temperature XAS and room-temperature X-ray absorption spectro-electrochemical (XAS-EC) measurements of N-truncated amyloid-β samples were collected and corrected for systematic effects such as dead time, detector efficiencies, monochromator glitches, self-absorption, radiation damage and noise at higher wavenumber (k). A new protocol was developed using extended X-ray absorption fine structure (EXAFS) data analysis for monitoring radiation damage in real time and post-analysis. The reliability of the structural determinations and consistency were validated using the XAS measurement experimental uncertainty. The correction of detector pixel efficiencies improved the fitting χ2 by 12%. An improvement of about 2.5% of the structural fitting was obtained after dead-time corrections. Normalization allowed the elimination of 90% of the monochromator glitches. The remaining glitches were manually removed. The dispersion of spectra due to self-absorption was corrected. Standard errors of experimental measurements were propagated from pointwise variance of the spectra after systematic corrections. Calculated uncertainties were used in structural refinements for obtaining precise and reliable values of structural parameters including atomic bond lengths and thermal parameters. This has permitted hypothesis testing.




ana

BioXTAS RAW 2: new developments for a free open-source program for small-angle scattering data reduction and analysis

BioXTAS RAW is a free open-source program for reduction, analysis and modelling of biological small-angle scattering data. Here, the new developments in RAW version 2 are described. These include improved data reduction using pyFAI; updated automated Guinier fitting and Dmax finding algorithms; automated series (e.g. size-exclusion chromatography coupled small-angle X-ray scattering or SEC-SAXS) buffer- and sample-region finding algorithms; linear and integral baseline correction for series; deconvolution of series data using regularized alternating least squares (REGALS); creation of electron-density reconstructions using electron density via solution scattering (DENSS); a comparison window showing residuals, ratios and statistical comparisons between profiles; and generation of PDF reports with summary plots and tables for all analysis. Furthermore, there is now a RAW API, which can be used without the graphical user interface (GUI), providing full access to all of the functionality found in the GUI. In addition to these new capabilities, RAW has undergone significant technical updates, such as adding Python 3 compatibility, and has entirely new documentation available both online and in the program.




ana

Refinement of X-ray and electron diffraction crystal structures using analytical Fourier transforms of Slater-type atomic wavefunctions in Olex2

An implementation of Slater-type spherical scattering factors for X-ray and electron diffraction for elements in the range Z = 1–103 is presented within the software Olex2. Both high- and low-angle Fourier behaviour of atomic electron density and electrostatic potential can thus be addressed, in contrast to the limited flexibility of the four Gaussian plus constant descriptions which are currently the most widely used method for calculating atomic scattering factors during refinement. The implementation presented here accommodates the increasing complexity of the electronic structure of heavier elements by using complete atomic wavefunctions without any interpolation between precalculated tables or intermediate fitting functions. Atomic wavefunctions for singly charged ions are implemented and made accessible, and these show drastic changes in electron diffraction scattering factors compared with the neutral atom. A comparison between the two different spherical models of neutral atoms is presented as an example for four different kinds of X-ray and two electron diffraction structures, and comparisons of refinement results using the existing diffraction data are discussed. A systematic but slight improvement in R values and residual densities can be observed when using the new scattering factors, and this is discussed relative to effects on the atomic displacement parameters and atomic positions, which are prominent near the heavier elements in a structure.




ana

Millisecond X-ray reflectometry and neural network analysis: unveiling fast processes in spin coating

X-ray reflectometry (XRR) is a powerful tool for probing the structural characteristics of nanoscale films and layered structures, which is an important field of nanotechnology and is often used in semiconductor and optics manufacturing. This study introduces a novel approach for conducting quantitative high-resolution millisecond monochromatic XRR measurements. This is an order of magnitude faster than in previously published work. Quick XRR (qXRR) enables real time and in situ monitoring of nanoscale processes such as thin film formation during spin coating. A record qXRR acquisition time of 1.4 ms is demonstrated for a static gold thin film on a silicon sample. As a second example of this novel approach, dynamic in situ measurements are performed during PMMA spin coating onto silicon wafers and fast fitting of XRR curves using machine learning is demonstrated. This investigation primarily focuses on the evolution of film structure and surface morphology, resolving for the first time with qXRR the initial film thinning via mass transport and also shedding light on later thinning via solvent evaporation. This innovative millisecond qXRR technique is of significance for in situ studies of thin film deposition. It addresses the challenge of following intrinsically fast processes, such as thin film growth of high deposition rate or spin coating. Beyond thin film growth processes, millisecond XRR has implications for resolving fast structural changes such as photostriction or diffusion processes.




ana

DLSIA: Deep Learning for Scientific Image Analysis

DLSIA (Deep Learning for Scientific Image Analysis) is a Python-based machine learning library that empowers scientists and researchers across diverse scientific domains with a range of customizable convolutional neural network (CNN) architectures for a wide variety of tasks in image analysis to be used in downstream data processing. DLSIA features easy-to-use architectures, such as autoencoders, tunable U-Nets and parameter-lean mixed-scale dense networks (MSDNets). Additionally, this article introduces sparse mixed-scale networks (SMSNets), generated using random graphs, sparse connections and dilated convolutions connecting different length scales. For verification, several DLSIA-instantiated networks and training scripts are employed in multiple applications, including inpainting for X-ray scattering data using U-Nets and MSDNets, segmenting 3D fibers in X-ray tomographic reconstructions of concrete using an ensemble of SMSNets, and leveraging autoencoder latent spaces for data compression and clustering. As experimental data continue to grow in scale and complexity, DLSIA provides accessible CNN construction and abstracts CNN complexities, allowing scientists to tailor their machine learning approaches, accelerate discoveries, foster interdisciplinary collaboration and advance research in scientific image analysis.




ana

Neural network analysis of neutron and X-ray reflectivity data incorporating prior knowledge

Due to the ambiguity related to the lack of phase information, determining the physical parameters of multilayer thin films from measured neutron and X-ray reflectivity curves is, on a fundamental level, an underdetermined inverse problem. This ambiguity poses limitations on standard neural networks, constraining the range and number of considered parameters in previous machine learning solutions. To overcome this challenge, a novel training procedure has been designed which incorporates dynamic prior boundaries for each physical parameter as additional inputs to the neural network. In this manner, the neural network can be trained simultaneously on all well-posed subintervals of a larger parameter space in which the inverse problem is underdetermined. During inference, users can flexibly input their own prior knowledge about the physical system to constrain the neural network prediction to distinct target subintervals in the parameter space. The effectiveness of the method is demonstrated in various scenarios, including multilayer structures with a box model parameterization and a physics-inspired special parameterization of the scattering length density profile for a multilayer structure. In contrast to previous methods, this approach scales favourably when increasing the complexity of the inverse problem, working properly even for a five-layer multilayer model and a periodic multilayer model with up to 17 open parameters.