pro

Two isostructural 3-(5-ar­yloxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-(thio­phen-2-yl)prop-2-en-1-ones: disorder and supra­molecular assembly

Two new chalcones containing both pyrazole and thio­phene substituents have been prepared and structurally characterized. 3-(3-Methyl-5-phen­oxy-1-phenyl-1H-pyrazol-4-yl)-1-(thio­phen-2-yl)prop-2-en-1-one, C23H18N2O2S (I), and 3-[3-methyl-5-(2-methyl­phen­oxy)-1-phenyl-1H-pyrazol-4-yl]-1-(thio­phen-2-yl)prop-2-en-1-one, C24H20N2O2S (II), are isomorphous as well as isostructural, and in each the thio­phene substituent is disordered over two sets of atomic sites having occupancies 0.844 (3) and 0.156 (3) in (I), and 0.883 (2) and 0.117 (2) in (II). In each structure, the mol­ecules are linked into sheets by a combination of C—H⋯N and C—H⋯O hydrogen bonds. Comparisons are made with some related compounds.




pro

The first coordination compound of deprotonated 2-bromo­nicotinic acid: crystal structure of a dinuclear paddle-wheel copper(II) complex

A copper(II) dimer with the deprotonated anion of 2-bromo­nicotinic acid (2-BrnicH), namely, tetrakis(μ-2-bromonicotinato-κ2O:O')bis[aquacopper(­II)](Cu—Cu), [Cu2(H2O)2(C6H3BrNO2)4] or [Cu2(H2O)2(2-Brnic)4], (1), was prepared by the reaction of copper(II) chloride dihydrate and 2-bromo­nicotinic acid in water. The copper(II) ion in 1 has a distorted square-pyramidal coordination environment, achieved by four carboxyl­ate O atoms in the basal plane and the water mol­ecule in the apical position. The pair of symmetry-related copper(II) ions are connected into a centrosymmetric paddle-wheel dinuclear cluster [Cu⋯Cu = 2.6470 (11) Å] via four O,O'-bridging 2-bromo­nicotinate ligands in the syn-syn coordination mode. In the extended structure of 1, the cluster mol­ecules are assembled into an infinite two-dimensional hydrogen-bonded network lying parallel to the (001) plane via strong O—H⋯O and O—H⋯N hydrogen bonds, leading to the formation of various hydrogen-bond ring motifs: dimeric R22(8) and R22(16) loops and a tetra­meric R44(16) loop. The Hirshfeld surface analysis was also performed in order to better illustrate the nature and abundance of the inter­molecular contacts in the structure of 1.




pro

Tetra­aqua­[3-oxo-1,3-bis­(pyridinium-2-yl)propan-1-olato]nickel(II) tribromide dihydrate

The crystal structure of the title compound, [Ni(C13H11N2O2)(H2O)4]Br3·2H2O, contains an octa­hedral NiII atom coordinated to the enol form of 1,3-di­pyridyl­propane-1,3-dione (dppo) and four water mol­ecules. Both pyridyl rings on the ligand are protonated, forming pyridinium rings and creating an overall ligand charge of +1. The protonated nitro­gen-containing rings are involved in hydrogen-bonding inter­actions with neighoring bromide anions. There are many additional hydrogen-bonding inter­actions involving coordinated water mol­ecules on the NiII atom, bromide anions and hydration water mol­ecules.




pro

Poly[[tetra­deca­kis­(μ-propionato)hepta­barium] propionic acid monosolvate tetra­hydrate]

The title compound, {[Ba7(C3H5O2)14]·0.946C3H6O2·4H2O}n, is represented by a metal–organic framework structure that is held together by Ba—O—Ba bonds, as well as by O—H⋯O hydrogen bonds of moderate strength. The structure comprises of four independent Ba2+ cations (one of which is situated on a twofold rotation axis), seven independent propionate and two independent water mol­ecules. The bond-valence sums of all the cations indicate a slight overbonding. There is also an occupationally, as well as a positionally disordered propionic acid mol­ecule present in the structure. Its occupation is slightly lower than the full occupation while the disordered mol­ecules occupy two positions related by a rotation about a twofold rotation axis. In addition, the methyl group in the symmetry-independent propionic acid mol­ecule is also disordered, and occupies two positions. Each propionic acid mol­ecule coordinates to just one cation from a pair of symmetry-equivalent Ba2+ sites and is simultaneously bonded by an O—H⋯Opropionate hydrogen bond. This means that on a microscopic scale, the coordination number of the corresponding Ba2+ site is either 9 or 10. The methyl as well as hy­droxy hydrogen atoms of the disordered propionic acid mol­ecule were not determined.




pro

Crystal structure, synthesis and thermal properties of bis­(4-benzoyl­pyridine-κN)bis­(iso­thio­cyanato-κN)bis­(methanol-κN)iron(II)

In the crystal structure of the title compound, [Fe(NCS)2(C12H9NO)2(CH4O)2], the FeII cations are octa­hedrally coordinated by two N atoms of 4-benzoyl­pyridine ligands, two N atoms of two terminal iso­thio­cyanate anions and two methanol mol­ecules into discrete complexes that are located on centres of inversion. These complexes are linked via inter­molecular O—H⋯O hydrogen bonds between the methanol O—H H atoms and the carbonyl O atoms of the 4-benzoyl­pyridine ligands, forming layers parallel to (101). Powder X-ray diffraction proved that a pure sample was obtained but that this compound is unstable and transforms into an unknown crystalline phase within several weeks. However, the solvent mol­ecules can be removed by heating in a thermobalance, which for the aged sample as well as the title compound leads to the formation of a compound with the composition Fe(NCS)2(4-benzoyl­pyridine)2, which exhibits a powder pattern that is similar to that of Mn(NCS)2(4-benzoyl­pyridine)2.




pro

Crystal structure, Hirshfeld surface analysis and DFT studies of 1,3-bis­[2-meth­oxy-4-(prop-2-en-1-yl)phen­oxy]propane

The asymmetric unit of the title compound, C23H28O4, comprises two half-mol­ecules, with the other half of each mol­ecule being completed by the application of twofold rotation symmetry. The two completed mol­ecules both have a V-shaped appearance but differ in their conformations. In the crystal, each independent mol­ecule forms chains extending parallel to the b axis with its symmetry-related counterparts through C—H⋯π(ring) inter­actions. Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (65.4%), H⋯C/C⋯H (21.8%) and H⋯O/O⋯H (12.3%) inter­actions. Optimized structures using density functional theory (DFT) at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined mol­ecular structures in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.




pro

Conversion of di­aryl­chalcones into 4,5-di­hydro­pyrazole-1-carbo­thio­amides: mol­ecular and supra­molecular structures of two precursors and three products

Chalcones of type 4-XC6H4C(O)CH=CHC6H4(OCH2CCH)-4, where X = Cl, Br or MeO, have been converted to the corresponding 4,5-di­hydro­pyrazole-1-carbo­thio­amides using a cyclo­condensation reaction with thio­semicarbazide. The chalcones 1-(4-chloro­phen­yl)-3-[4-(prop-2-yn­yloxy)phen­yl]prop-2-en-1-one, C18H13ClO2, (I), and 1-(4-bromo­phen­yl)-3-[4-(prop-2-yn­yloxy)phen­yl]prop-2-en-1-one, C18H13BrO2, (II), are isomorphous, and their mol­ecules are linked into sheets by two independent C—H⋯π(arene) inter­actions, both involving the same aryl ring with one C—H donor approaching each face. In each of the products (RS)-3-(4-chloro­phen­yl)-5-[4-(prop-2-yn­yloxy)phen­yl]-4,5-di­hydro­pyrazole-1-carbo­thio­amide, C19H16ClN3OS, (IV), (RS)-3-(4-bromo­phen­yl)-5-[4-(prop-2-yn­yloxy)phen­yl]-4,5-di­hydro­pyrazole-1-carbo­thio­amide, C19H16BrN3OS, (V), and (RS)-3-(4-meth­oxy­phen­yl)-5-[4-(prop-2-yn­yloxy)phen­yl]-4,5-di­hydro­pyrazole-1-carbo­thio­amide, C20H19N3O2S, (VI), the reduced pyrazole ring adopts an envelope conformation with the C atom bearing the 4-prop-2-yn­yloxy)phenyl substituent, which occupies the axial site, displaced from the plane of the four ring atoms. Compounds (IV) and (V) are isomorphous and their mol­ecules are linked into chains of edge-fused rings by a combination of N—H⋯S and C—H⋯S hydrogen bonds. The mol­ecules of (VI) are linked into sheets by a combination of N—H⋯S, N—H⋯N and C—H⋯π(arene) hydrogen bonds. Comparisons are made with the structures of some related compounds.




pro

Phospho­rescent mono- and diiridium(III) complexes cyclo­metalated by fluorenyl- or phenyl-pyridino ligands with bulky substituents, as prospective OLED dopants

The crystal structures of tris­[9,9-dihexyl-2-(5-meth­oxy­pyridin-2-yl-κN)-9H-fluoren-3-yl-κC3]iridium pentane monosolvate, [Ir(C31H38NO)3]·C5H12, (I), di-μ2-chlorido-bis­{bis­[2-(5-fluoro­pyridin-2-yl)-9,9-dihexyl-9H-fluoren-3-yl]iridium} pentane 0.3-solvate, [Ir2(C30H35FN)4Cl2]·0.3C5H12, (II), di-μ2-cyanato-bis­{bis­[9,9-dihexyl-2-(5-meth­oxy­pyridin-2-yl)-9H-fluoren-1-yl]iridium} pentane monosolvate, [Ir2(C31H38NO)4(NCO)2(NCO)2]·C5H12, (III), and {μ-N,N'-bis­[3,5-bis­(tri­fluoro­meth­yl)phen­yl]oxamidato}bis(bis{2-[4-(2,4,6-trimethylphenyl)pyridin-2-yl]phenyl-κ2C1,N'}iridium)–chloro­benzene–pentane (1/2.3/0.4), [Ir2(C20H19N)4(C18H6F12N2O2)]·2.3C6H5Cl·0.4C5H12, (IV), synthesized in the quest for organic light-emitting devices, were determined. The bis-μ2-chloro and bis-μ2-cyanato complexes have ΔΔ and ΛΛ configurations of the distorted octa­hedral Ir centres in racemic crystals, whereas the oxamido complex has a centrosymmetric (meso) structure with the ΔΛ configuration. The bridging oxamido moiety has a nearly planar anti geometry. All structures show substantial disorder of both host mol­ecules and solvents of crystallization.




pro

Synthesis, crystal structure, and thermal properties of poly[aqua­(μ5-2,5-di­carb­oxy­benzene-1,4-di­carboxyl­ato)strontium]

A coordination polymer formulated as [Sr(H2BTEC)(H2O)]n (H4BTEC = benzene-1,2,4,5-tetra­carb­oxy­lic acid, C10H6O8), was synthesized hydro­thermally and characterized by single-crystal and powder X-ray diffraction, scanning electron microscopy and thermal analysis. Its crystal structure is made up of a zigzag inorganic chain formed by edge-sharing of [SrO8] polyhedra running along [001]. Adjacent chains are connected to each other via the carboxyl­ate groups of the ligand, resulting in a double-layered network extending parallel to (100). O—H⋯O hydrogen bonds of medium-to-weak strength between the layers consolidate the three-dimensional structure. One of the carb­oxy­lic OH functions was found to be disordered over two sets of sites with half-occupancy.




pro

Crystal structure, Hirshfeld surface analysis and DFT studies of 1-[r-2,c-6-diphenyl-t-3-(propan-2-yl)piperidin-1-yl]ethan-1-one

In the title compound, C22H27NO, the piperidine ring adopts a chair conformation. The dihedral angles between the mean plane of the piperidine ring and the phenyl rings are 89.78 (7) and 48.30 (8)°. In the crystal, mol­ecules are linked into chains along the b-axis direction by C—H⋯O hydrogen bonds. The DFT/B3LYP/6–311 G(d,p) method was used to determine the HOMO–LUMO energy levels. The mol­ecular electrostatic potential surfaces were investigated by Hirshfeld surface analysis and two-dimensional fingerprint plots were used to analyse the inter­molecular inter­actions in the mol­ecule.




pro

Crystal structures and Hirshfeld surface analyses of two new tetra­kis-substituted pyrazines and a degredation product

The two new tetra­kis-substituted pyrazines, 1,1',1'',1'''-(pyrazine-2,3,5,6-tetra­yl) tetra­kis­(N,N-di­methyl­methanamine), C16H32N6, (I) and N,N',N'',N'''-[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)]tetra­kis­(N-methyl­aniline), C36H40N6, (II), both crystallize with half a mol­ecule in the asymmetric unit; the whole mol­ecules are generated by inversion symmetry. There are weak intra­molecular C—H⋯N hydrogen bonds present in both mol­ecules and in (II) the pendant N-methyl­aniline rings are linked by a C—H⋯π inter­action. The degredation product, N,N'-[(6-phenyl-6,7-di­hydro-5H-pyrrolo­[3,4-b]pyrazine-2,3-di­yl)bis(methyl­ene)]bis­(N-methyl­aniline), C28H29N5, (III), was obtained several times by reacting (II) with different metal salts. Here, the 6-phenyl ring is almost coplanar with the planar pyrrolo­[3,4-b]pyrazine unit (r.m.s. deviation = 0.029 Å), with a dihedral angle of 4.41 (10)° between them. The two N-meth­yl­aniline rings are inclined to the planar pyrrolo­[3,4-b]pyrazine unit by 88.26 (10) and 89.71 (10)°, and to each other by 72.56 (13)°. There are also weak intra­molecular C—H⋯N hydrogen bonds present involving the pyrazine ring and the two N-methyl­aniline groups. In the crystal of (I), there are no significant inter­molecular contacts present, while in (II) mol­ecules are linked by a pair of C—H⋯π inter­actions, forming chains along the c-axis direction. In the crystal of (III), mol­ecules are linked by two pairs of C—H⋯π inter­actions, forming inversion dimers, which in turn are linked by offset π–π inter­actions [inter­centroid distance = 3.8492 (19) Å], forming ribbons along the b-axis direction.




pro

Structural and luminescent properties of co-crystals of tetra­iodo­ethyl­ene with two aza­phenanthrenes

Two new co-crystals, tetra­iodo­ethyl­ene–phenanthridine (1/2), 0.5C2I4·C13H9N (1) and tetra­iodo­ethyl­ene–benzo[f]quinoline (1/2), 0.5C2I4·C13H9N (2), were obtained from tetra­iodo­ethyl­ene and aza­phenanthrenes, and characterized by IR and fluorescence spectroscopy, elemental analysis and X-ray crystallography. In the crystal structures, C—I⋯π and C—I⋯N halogen bonds link the independent mol­ecules into one-dimensional chains and two-dimensional networks with subloops. In addition, the planar aza­phenanthrenes lend themselves to π–π stacking and C—H⋯π inter­actions, leading to a diversity of supra­molecular three-dimensional structural motifs being formed by these inter­actions. Luminescence studies show that co-crystals 1 and 2 exhibit distinctly different luminescence properties in the solid state at room temperature.




pro

Syntheses and crystal structures of the one-dimensional coordination polymers formed by [Ni(cyclam)]2+ cations and 1,3-bis­(3-carb­oxy­prop­yl)tetra­methyl­disiloxane anions in different degrees of deprotonation

The asymmetric units of the title compounds, namely, catena-poly[[(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N1,N4,N8,N11)nickel(II)]-μ-1,3-bis­(3-carboxyl­ato­prop­yl)tetra­methyl­disiloxane-κ2O:O'], [Ni(C10H24O5Si2)(C12H24N4)]n (I), and catena-poly[[[(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N1,N4,N8,N11)nickel(II)]-μ-4-({[(3-carb­oxy­prop­yl)di­methyl­sil­yl]­oxy}di­methyl­sil­yl)butano­ato-κ2O:O'] per­chlorate], {[Ni(C10H25O5Si2)(C12H24N4)]ClO4}n (II), consist of one (in I) or two crystallographically non-equivalent (in II) centrosymmetric macrocyclic cations and one centrosymmetric dianion (in I) or two centrosymmetric monoanions (in II). In each compound, the metal ion is coordinated by the four secondary N atoms of the macrocyclic ligand, which adopts the most energetically stable trans-III conformation, and the mutually trans O atoms of the carboxyl­ate in a slightly tetra­gonally distorted trans-NiN4O2 octa­hedral coordination geometry. The crystals of both types of compounds are composed of parallel polymeric chains of the macrocyclic cations linked by the anions of the acid running along the [101] and [110] directions in I and II, respectively. In I, each polymeric chain is linked to four neighbouring ones by hydrogen bonding between the NH groups of the macrocycle and the carboxyl­ate O atoms, thus forming a three-dimensional supra­molecular network. In II, each polymeric chain contacts with only two neighbours, forming hydrogen bonds between the partially protonated carb­oxy­lic groups of the bridging ligand. As a result, a lamellar structure is formed with the layers oriented parallel to the (1overline{1}1) plane.




pro

Unexpected formation of a co-crystal containing the chalcone (E)-1-(5-chloro­thio­phen-2-yl)-3-(3-methyl­thio­phen-2-yl)prop-2-en-1-one and the keto–enol tautomer (Z)-1-(5-chloro­thio­phen-2-yl)-3-(3-methyl­thio­phe

The title crystal structure is assembled from the superposition of two mol­ecular structures, (E)-1-(5-chloro­thio­phen-2-yl)-3-(3-methyl­thio­phen-2-yl)prop-2-en-1-one, C12H9ClOS2 (93%), and (Z)-1-(5-chloro­thio­phen-2-yl)-3-(3-methyl­thio­phen-2-yl)prop-1-en-1-ol, C12H11ClOS2 (7%), 0.93C12H9ClOS2·0.07C12H11ClOS2. Both were obtained from the reaction of 3-methyl­thio­phene-2-carbaldehyde and 1-(5-chloro­thio­phen-2-yl)ethanone. In the extended structure of the major chalcone component, mol­ecules are linked by a combination of C—H⋯O/S, Cl⋯Cl, Cl⋯π and π–π inter­actions, leading to a compact three-dimensional supra­molecular assembly.




pro

Crystal structure, Hirshfeld surface analysis and inter­action energy and DFT studies of (S)-10-propargyl­pyrrolo­[2,1-c][1,4]benzodiazepine-5,11-dione

The title compound, C15H14N2O2, consists of pyrrole and benzodiazepine units linked to a propargyl moiety, where the pyrrole and diazepine rings adopt half-chair and boat conformations, respectively. The absolute configuration was assigned on the the basis of l-proline, which was used in the synthesis of benzodiazepine. In the crystal, weak C—HBnz⋯ODiazp and C—HProprg⋯ODiazp (Bnz = benzene, Diazp = diazepine and Proprg = proparg­yl) hydrogen bonds link the mol­ecules into two-dimensional networks parallel to the bc plane, enclosing R44(28) ring motifs, with the networks forming oblique stacks along the a-axis direction. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (49.8%), H⋯C/C⋯H (25.7%) and H⋯O/O⋯H (20.1%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, C—H⋯O hydrogen-bond energies are 38.8 (for C—HBnz⋯ODiazp) and 27.1 (for C—HProprg⋯ODiazp) kJ mol−1. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.




pro

Crystal structure and photoluminescent properties of bis­(4'-chloro-2,2':6',2''-terpyrid­yl)cobalt(II) dichloride tetra­hydrate

In the title hydrated complex, [Co(C15H10ClN3)2]Cl2·4H2O, the complete dication is generated by overline{4} symmetry. The CoN6 moiety shows distortion from regular octa­hedral geometry with the trans bond angles of two N—Co—N units being 160.62 (9)°. In the crystal, O—H⋯Cl and C—H⋯O inter­actions link the components into (001) sheets. The title compound exhibits blue-light emission, as indicated by photoluminescence data, and a HOMO–LUMO energy separation of 2.23 eV was obtained from its diffuse reflectance spectrum.




pro

Bis(4-hy­droxy-N-isopropyl-N-methyl­trypt­ammo­nium) fumarate: a new crystalline form of miprocin

The title compound, bis­(4-hy­droxy-N-isopropyl-N-methyl­tryptammonium) (4-HO-MiPT) fumarate (systematic name: bis­{[2-(4-hy­droxy-1H-indol-3-yl)eth­yl](meth­yl)propan-2-yl­aza­nium} but-2-enedioate), 2C14H21N2O+·C4H2O42−, has a singly protonated tryptammonium cation and one half of a fumarate dianion in the asymmetric unit. The tryptammonium and fumarate ions are held together in one-dimensional chains by N—H⋯O and O—H⋯O hydrogen bonds. These chains are a combination of R42(20) rings, and C22(15) and C44(30) parallel chains along (110). They are further consolidated by N—H⋯π inter­actions. There are two two-component types of disorder impacting the tryptammonium fragment with a 0.753 (7):0.247 (7) occupancy ratio and one of the fumarate oxygen atoms with a 0.73 (8):0.27 (8) ratio.




pro

Functionalized 3-(5-ar­yloxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-(4-substituted-phen­yl)prop-2-en-1-ones: synthetic pathway, and the structures of six examples

Five examples each of 3-(5-ar­yloxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-[4-(prop-2-yn-1-yl­oxy)phen­yl]prop-2-en-1-ones and the corresponding 1-(4-azido­phen­yl)-3-(5-ar­yloxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)prop-2-en-1-ones have been synthesized in a highly efficient manner, starting from a common source precursor, and structures have been determined for three examples of each type. In each of 3-[5-(2-chloro­phen­oxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-yn-1-yl­oxy)phen­yl]prop-2-en-1-one, C28H21ClN2O3, (Ib), the isomeric 3-[5-(2-chloro­phen­oxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-yn-1-yl­oxy)phen­yl]prop-2-en-1-one, (Ic), and 3-[3-methyl-5-(naphthalen-2-yl­oxy)-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-yn­yloxy)phen­yl]prop-2-en-1-one, C32H24N2O3, (Ie), the mol­ecules are linked into chains of rings, formed by two independent C—H⋯O hydrogen bonds in (Ib) and by a combination of C—H⋯O and C—H⋯π(arene) hydrogen bonds in each of (Ic) and (Ie). There are no direction-specific inter­molecular inter­actions in the structure of 1-(4-azido­phen­yl)-3-[3-methyl-5-(2-methyl­phen­oxy)-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one, C26H21N5O2, (IIa). In 1-(4-azido­phen­yl)-3-[5-(2,4-di­chloro­phen­oxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one, C25H17Cl2N5O2, (IId), the di­chloro­phenyl group is disordered over two sets of atomic sites having occupancies 0.55 (4) and 0.45 (4), and the mol­ecules are linked by a single C—H⋯O hydrogen bond to form cyclic, centrosymmetric R22(20) dimers. Similar dimers are formed in 1-(4-azido­phen­yl)-3-[3-methyl-5-(naphthalen-2-yl­oxy)-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one, C29H21N5O2, (IIe), but here the dimers are linked into a chain of rings by two independent C—H..π(arene) hydrogen bonds. Comparisons are made between the mol­ecular conformations within both series of compounds.




pro

Hydrogen-bonding patterns in 2,2-bis­(4-methyl­phen­yl)hexa­fluoro­propane pyridinium and ethyl­enedi­ammonium salt crystals

The crystal structures of two salt crystals of 2,2-bis­(4-methyl­phen­yl)hexa­fluoro­propane (Bmphfp) with amines, namely, dipyridinium 4,4'-(1,1,1,3,3,3-hexa­fluoro­propane-2,2-di­yl)dibenzoate 4,4'-(1,1,1,3,3,3-hexa­fluoro­propane-2,2-di­yl)di­benzoic acid, 2C5H6N+·C17H8F6O42−·C17H10F6O4, (1), and a monohydrated ethyl­enedi­ammonium salt ethane-1,2-diaminium 4,4'-(1,1,1,3,3,3-hexa­fluoro­propane-2,2-di­yl)dibenzoate monohydrate, C2H10N22+·C17H8F6O42−·H2O, (2), are reported. Compounds 1 and 2 crystallize, respectively, in space group P21/c with Z' = 2 and in space group Pbca with Z' = 1. The crystals of compound 1 contain neutral and anionic Bmphfp mol­ecules, and form a one-dimensional hydrogen-bonded chain motif. The crystals of compound 2 contain anionic Bmphfp mol­ecules, which form a complex three-dimensional hydrogen-bonded network with the ethyl­enedi­amine and water mol­ecules.




pro

Synthesis, crystal structure and Hirshfeld surface analysis of N-(4-chloro­phen­yl)-5-cyclo­propyl-1-(4-meth­oxy­phen­yl)-1H-1,2,3-triazole-4-carboxamide

The title compound, C19H17ClN4O2, was obtained via a two-step synthesis involving the enol-mediated click Dimroth reaction of 4-azido­anisole with methyl 3-cyclo­propyl-3-oxo­propano­ate leading to the 5-cyclo­propyl-1-(4-meth­oxy­phen­yl)-1H-1,2,3-triazole-4-carb­oxy­lic acid and subsequent acid amidation with 4-chloro­aniline by 1,1'-carbonyl­diimidazole (CDI). It crystallizes in space group P21/n, with one mol­ecule in the asymmetric unit. In the extended structure, two mol­ecules arranged in a near coplanar fashion relative to the triazole ring planes are inter­connected by N—H⋯N and C—H⋯N hydrogen bonds into a homodimer. The formation of dimers is a consequence of the above inter­action and the edge-to-face stacking of aromatic rings, which are turned by 58.0 (3)° relative to each other. The dimers are linked by C—H⋯O inter­actions into ribbons. DFT calculations demonstrate that the frontier mol­ecular orbitals are well separated in energy and the HOMO is largely localized on the 4-chloro­phenyl amide motif while the LUMO is associated with aryl­triazole grouping. A Hirshfeld surface analysis was performed to further analyse the inter­molecular inter­actions.




pro

SVAT4: a computer program for visualization and analysis of crystal structures

SVAT4 is a computer program for interactive visualization of three-dimensional crystal structures, including chemical bonds and magnetic moments. A wide range of functions, e.g. revealing atomic layers and polyhedral clusters, are available for further structural analysis. Atomic sizes, colors, appearance, view directions and view modes (orthographic or perspective views) are adjustable. Customized work for the visualization and analysis can be saved and then reloaded. SVAT4 provides a template to simplify the process of preparation of a new data file. SVAT4 can generate high-quality images for publication and animations for presentations. The usability of SVAT4 is broadened by a software suite for simulation and analysis of electron diffraction patterns.




pro

A thermal-gradient approach to variable-temperature measurements resolved in space

Temperature is a ubiquitous environmental variable used to explore materials structure, properties and reactivity. This article reports a new paradigm for variable-temperature measurements that varies the temperature continuously across a sample such that temperature is measured as a function of sample position and not time. The gradient approach offers advantages over conventional variable-temperature studies, in which temperature is scanned during a series measurement, in that it improves the efficiency with which a series of temperatures can be probed and it allows the sample evolution at multiple temperatures to be measured in parallel to resolve kinetic and thermodynamic effects. Applied to treat samples at a continuum of temperatures prior to measurements at ambient temperature, the gradient approach enables parametric studies of recovered systems, eliminating temperature-dependent structural and chemical variations to simplify interpretation of the data. The implementation of spatially resolved variable-temperature measurements presented here is based on a gradient-heater design that uses a 3D-printed ceramic template to guide the variable pitch of the wire in a resistively heated wire-wound heater element. The configuration of the gradient heater was refined on the basis of thermal modelling. Applications of the gradient heater to quantify thermal-expansion behaviour, to map metastable polymorphs recovered to ambient temperature, and to monitor the time- and temperature-dependent phase evolution in a complex solid-state reaction are demonstrated.




pro

Full reciprocal-space mapping up to 2000 K under controlled atmosphere: the multipurpose QMAX furnace

A furnace that covers the temperature range from room temperature up to 2000 K has been designed, built and implemented on the D2AM beamline at the ESRF. The QMAX furnace is devoted to the full exploration of the reciprocal hemispace located above the sample surface. It is well suited for symmetric and asymmetric 3D reciprocal space mapping. Owing to the hemispherical design of the furnace, 3D grazing-incidence small- and wide-angle scattering and diffraction measurements are possible. Inert and reactive experiments can be performed at atmospheric pressure under controlled gas flux. It is demonstrated that the QMAX furnace allows monitoring of structural phase transitions as well as microstructural evolution at the nanoscale, such as self-organization processes, crystal growth and strain relaxation. A time-resolved in situ oxidation experiment illustrates the capability to probe the high-temperature reactivity of materials.




pro

Formation of a highly dense tetra-rhenium cluster in a protein crystal and its implications in medical imaging

The fact that a protein crystal can serve as a chemical reaction vessel is intrinsically fascinating. That it can produce an electron-dense tetranuclear rhenium cluster compound from a rhenium tri­carbonyl tri­bromo starting compound adds to the fascination. Such a cluster has been synthesized previously in vitro, where it formed under basic conditions. Therefore, its synthesis in a protein crystal grown at pH 4.5 is even more unexpected. The X-ray crystal structures presented here are for the protein hen egg-white lysozyme incubated with a rhenium tri­carbonyl tri­bromo compound for periods of one and two years. These reveal a completed, very well resolved, tetra-rhenium cluster after two years and an intermediate state, where the carbonyl ligands to the rhenium cluster are not yet clearly resolved, after one year. A dense tetranuclear rhenium cluster, and its technetium form, offer enhanced contrast in medical imaging. Stimulated by these crystallography results, the unusual formation of such a species directly in an in vivo situation has been considered. It offers a new option for medical imaging compounds, particularly when considering the application of the pre-formed tetranuclear cluster, suggesting that it may be suitable for medical diagnosis because of its stability, preference of formation and biological compatibility.




pro

Structures of three ependymin-related proteins suggest their function as a hydrophobic molecule binder

Ependymin was first discovered as a predominant protein in brain extracellular fluid in fish and was suggested to be involved in functions mostly related to learning and memory. Orthologous proteins to ependymin called ependymin-related proteins (EPDRs) have been found to exist in various tissues from sea urchins to humans, yet their functional role remains to be revealed. In this study, the structures of EPDR1 from frog, mouse and human were determined and analyzed. All of the EPDR1s fold into a dimer using a monomeric subunit that is mostly made up of two stacking antiparallel β-sheets with a curvature on one side, resulting in the formation of a deep hydrophobic pocket. All six of the cysteine residues in the monomeric subunit participate in the formation of three intramolecular disulfide bonds. Other interesting features of EPDR1 include two asparagine residues with glycosylation and a Ca2+-binding site. The EPDR1 fold is very similar to the folds of bacterial VioE and LolA/LolB, which also use a similar hydrophobic pocket for their respective functions as a hydrophobic substrate-binding enzyme and a lipoprotein carrier, respectively. A further fatty-acid binding assay using EPDR1 suggests that it indeed binds to fatty acids, presumably via this pocket. Additional interactome analysis of EPDR1 showed that EPDR1 interacts with insulin-like growth factor 2 receptor and flotillin proteins, which are known to be involved in protein and vesicle translocation.




pro

Symmetry-mode analysis for intuitive observation of structure–property relationships in the lead-free antiferroelectric (1−x)AgNbO3–xLiTaO3

Functional materials are of critical importance to electronic and smart devices. A deep understanding of the structure–property relationship is essential for designing new materials. In this work, instead of utilizing conventional atomic coordinates, a symmetry-mode approach is successfully used to conduct structure refinement of the neutron powder diffraction data of (1−x)AgNbO3–xLiTaO3 (0 ≤ x ≤ 0.09) ceramics. This provides rich structural information that not only clarifies the controversial symmetry assigned to pure AgNbO3 but also explains well the detailed structural evolution of (1−x)AgNbO3–xLiTaO3 (0 ≤ x ≤ 0.09) ceramics, and builds a comprehensive and straightforward relationship between structural distortion and electrical properties. It is concluded that there are four relatively large-amplitude major modes that dominate the distorted Pmc21 structure of pure AgNbO3, namely a Λ3 antiferroelectric mode, a T4+ a−a−c0 octahedral tilting mode, an H2 a0a0c+/a0a0c− octahedral tilting mode and a Γ4− ferroelectric mode. The H2 and Λ3 modes become progressively inactive with increasing x and their destabilization is the driving force behind the composition-driven phase transition between the Pmc21 and R3c phases. This structural variation is consistent with the trend observed in the measured temperature-dependent dielectric properties and polarization–electric field (P-E) hysteresis loops. The mode crystallography applied in this study provides a strategy for optimizing related properties by tuning the amplitudes of the corresponding modes in these novel AgNbO3-based (anti)ferroelectric materials.




pro

A comparative anatomy of protein crystals: lessons from the automatic processing of 56 000 samples

The fully automatic processing of crystals of macromolecules has presented a unique opportunity to gather information on the samples that is not usually recorded. This has proved invaluable in improving sample-location, characterization and data-collection algorithms. After operating for four years, MASSIF-1 has now processed over 56 000 samples, gathering information at each stage, from the volume of the crystal to the unit-cell dimensions, the space group, the quality of the data collected and the reasoning behind the decisions made in data collection. This provides an unprecedented opportunity to analyse these data together, providing a detailed landscape of macromolecular crystals, intimate details of their contents and, importantly, how the two are related. The data show that mosaic spread is unrelated to the size or shape of crystals and demonstrate experimentally that diffraction intensities scale in proportion to crystal volume and molecular weight. It is also shown that crystal volume scales inversely with molecular weight. The results set the scene for the development of X-ray crystallography in a changing environment for structural biology.




pro

X-ray photon correlation spectroscopy of protein dynamics at nearly diffraction-limited storage rings

This study explores the possibility of measuring the dynamics of proteins in solution using X-ray photon correlation spectroscopy (XPCS) at nearly diffraction-limited storage rings (DLSRs). We calculate the signal-to-noise ratio (SNR) of XPCS experiments from a concentrated lysozyme solution at the length scale of the hydrodynamic radius of the protein molecule. We take into account limitations given by the critical X-ray dose and find expressions for the SNR as a function of beam size, sample-to-detector distance and photon energy. Specifically, we show that the combined increase in coherent flux and coherence lengths at the DLSR PETRA IV yields an increase in SNR of more than one order of magnitude. The resulting SNR values indicate that XPCS experiments of biological macromolecules on nanometre length scales will become feasible with the advent of a new generation of synchrotron sources. Our findings provide valuable input for the design and construction of future XPCS beamlines at DLSRs.




pro

Conformational characterization of full-length X-chromosome-linked inhibitor of apoptosis protein (XIAP) through an integrated approach

The X-chromosome-linked inhibitor of apoptosis protein (XIAP) is a multidomain protein whose main function is to block apoptosis by caspase inhibition. XIAP is also involved in other signalling pathways, including NF-κB activation and copper homeostasis. XIAP is overexpressed in tumours, potentiating cell survival and resistance to chemotherapeutics, and has therefore become an important target for the treatment of malignancy. Despite the fact that the structure of each single domain is known, the conformation of the full-length protein has never been determined. Here, the first structural model of the full-length XIAP dimer, determined by an integrated approach using nuclear magnetic resonance, small-angle X-ray scattering and electron paramagnetic resonance data, is presented. It is shown that XIAP adopts a compact and relatively rigid conformation, implying that the spatial arrangement of its domains must be taken into account when studying the interactions with its physiological partners and in developing effective inhibitors.




pro

Why is interoperability between the two fields of chemical crystallography and protein crystallography so difficult?

The interoperability of chemical and biological crystallographic data is a key challenge to research and its application to pharmaceutical design. Research attempting to combine data from the two disciplines, small-molecule or chemical crystallography (CX) and macromolecular crystallography (MX), will face unique challenges including variations in terminology, software development, file format and databases which differ significantly from CX to MX. This perspective overview spans the two disciplines and originated from the investigation of protein binding to model radiopharmaceuticals. The opportunities of interlinked research while utilizing the two databases of the CSD (Cambridge Structural Database) and the PDB (Protein Data Bank) will be highlighted. The advantages of software that can handle multiple file formats and the circuitous route to convert organometallic small-molecule structural data for use in protein refinement software will be discussed. In addition some pointers to avoid being shipwrecked will be shared, such as the care which must be taken when interpreting data precision involving small molecules versus proteins.




pro

Engineering a surrogate human heteromeric α/β glycine receptor orthosteric site exploiting the structural homology and stability of acetylcholine-binding protein

Protein-engineering methods have been exploited to produce a surrogate system for the extracellular neurotransmitter-binding site of a heteromeric human ligand-gated ion channel, the glycine receptor. This approach circumvents two major issues: the inherent experimental difficulties in working with a membrane-bound ion channel and the complication that a heteromeric assembly is necessary to create a key, physiologically relevant binding site. Residues that form the orthosteric site in a highly stable ortholog, acetylcholine-binding protein, were selected for substitution. Recombinant proteins were prepared and characterized in stepwise fashion exploiting a range of biophysical techniques, including X-ray crystallography, married to the use of selected chemical probes. The decision making and development of the surrogate, which is termed a glycine-binding protein, are described, and comparisons are provided with wild-type and homomeric systems that establish features of molecular recognition in the binding site and the confidence that the system is suited for use in early-stage drug discovery targeting a heteromeric α/β glycine receptor.




pro

High-throughput structures of protein–ligand complexes at room temperature using serial femtosecond crystallography

High-throughput X-ray crystal structures of protein–ligand complexes are critical to pharmaceutical drug development. However, cryocooling of crystals and X-ray radiation damage may distort the observed ligand binding. Serial femtosecond crystallography (SFX) using X-ray free-electron lasers (XFELs) can produce radiation-damage-free room-temperature structures. Ligand-binding studies using SFX have received only modest attention, partly owing to limited beamtime availability and the large quantity of sample that is required per structure determination. Here, a high-throughput approach to determine room-temperature damage-free structures with excellent sample and time efficiency is demonstrated, allowing complexes to be characterized rapidly and without prohibitive sample requirements. This yields high-quality difference density maps allowing unambiguous ligand placement. Crucially, it is demonstrated that ligands similar in size or smaller than those used in fragment-based drug design may be clearly identified in data sets obtained from <1000 diffraction images. This efficiency in both sample and XFEL beamtime opens the door to true high-throughput screening of protein–ligand complexes using SFX.




pro

CryoEM at 100 keV: a demonstration and prospects

100 kV is investigated as the operating voltage for single-particle electron cryomicroscopy (cryoEM). Reducing the electron energy from the current standard of 300 or 200 keV offers both cost savings and potentially improved imaging. The latter follows from recent measurements of radiation damage to biological specimens by high-energy electrons, which show that at lower energies there is an increased amount of information available per unit damage. For frozen hydrated specimens around 300 Å in thickness, the predicted optimal electron energy for imaging is 100 keV. Currently available electron cryomicroscopes in the 100–120 keV range are not optimized for cryoEM as they lack both the spatially coherent illumination needed for the high defocus used in cryoEM and imaging detectors optimized for 100 keV electrons. To demonstrate the potential of imaging at 100 kV, the voltage of a standard, commercial 200 kV field-emission gun (FEG) microscope was reduced to 100 kV and a side-entry cryoholder was used. As high-efficiency, large-area cameras are not currently available for 100 keV electrons, a commercial hybrid pixel camera designed for X-ray detection was attached to the camera chamber and was used for low-dose data collection. Using this configuration, five single-particle specimens were imaged: hepatitis B virus capsid, bacterial 70S ribosome, catalase, DNA protection during starvation protein and haemoglobin, ranging in size from 4.5 MDa to 64 kDa with corresponding diameters from 320 to 72 Å. These five data sets were used to reconstruct 3D structures with resolutions between 8.4 and 3.4 Å. Based on this work, the practical advantages and current technological limitations to single-particle cryoEM at 100 keV are considered. These results are also discussed in the context of future microscope development towards the goal of rapid, simple and widely available structure determination of any purified biological specimen.




pro

Toward G protein-coupled receptor structure-based drug design using X-ray lasers

Rational structure-based drug design (SBDD) relies on the availability of a large number of co-crystal structures to map the ligand-binding pocket of the target protein and use this information for lead-compound optimization via an iterative process. While SBDD has proven successful for many drug-discovery projects, its application to G protein-coupled receptors (GPCRs) has been limited owing to extreme difficulties with their crystallization. Here, a method is presented for the rapid determination of multiple co-crystal structures for a target GPCR in complex with various ligands, taking advantage of the serial femtosecond crystallography approach, which obviates the need for large crystals and requires only submilligram quantities of purified protein. The method was applied to the human β2-adrenergic receptor, resulting in eight room-temperature co-crystal structures with six different ligands, including previously unreported structures with carvedilol and propranolol. The generality of the proposed method was tested with three other receptors. This approach has the potential to enable SBDD for GPCRs and other difficult-to-crystallize membrane proteins.




pro

Synthesis, structure, magnetic and half-metallic properties of Co2−xRuxMnSi (x = 0, 0.25, 0.5, 0.75, 1) compounds

A series of Co2−xRuxMnSi (x = 0, 0.25, 0.5, 0.75, 1) Heusler compounds were successfully synthesized. The heat-treatment conditions were crucial to make the materials form a single phase with a Heusler structure. With increasing Ru content, the half-metallic gap, lattice parameters and magnetization are continuously adjustable in a wide range. The Co2−xRuxMnSi (x = 0, 0.25) compounds are rigorous half-metals and show a T3 dependence of resistance at low temperature. The Co2−xRuxMnSi (x = 0.5, 0.75, 1) Heusler compounds are the nearly half-metallic materials and show a semiconductive dependence of resistance at low temperature. The experimental magnetization is consistent with that in theory and follows the Slater–Pauling rule. The Curie temperature is higher than 750 K for all Co2−xRuxMnSi Heusler compounds.




pro

fragHAR: towards ab initio quantum-crystallographic X-ray structure refinement for polypeptides and proteins

The first ab initio aspherical structure refinement against experimental X-ray structure factors for polypeptides and proteins using a fragmentation approach to break up the protein into residues and solvent, thereby speeding up quantum-crystallographic Hirshfeld atom refinement (HAR) calculations, is described. It it found that the geometric and atomic displacement parameters from the new fragHAR method are essentially unchanged from a HAR on the complete unfragmented system when tested on dipeptides, tripeptides and hexapeptides. The largest changes are for the parameters describing H atoms involved in hydrogen-bond interactions, but it is shown that these discrepancies can be removed by including the interacting fragments as a single larger fragment in the fragmentation scheme. Significant speed-ups are observed for the larger systems. Using this approach, it is possible to perform a highly parallelized HAR in reasonable times for large systems. The method has been implemented in the TONTO software.




pro

Small-angle neutron scattering studies suggest the mechanism of BinAB protein internalization

Small-angle neutron scattering (SANS) is one of the most widely used neutron-based approaches to study the solution structure of biological macromolecular systems. The selective deuterium labelling of different protein components of a complex provides a means to probe conformational changes in multiprotein complexes. The Lysinibacillus sphaericus mosquito-larvicidal BinAB proteins exert toxicity through interaction with the receptor Cqm1 protein; however, the nature of the complex is not known. Rationally engineered deuterated BinB (dBinB) protein from the L. sphaericus ISPC-8 species was synthesized using an Escherichia coli-based protein-expression system in M9 medium in D2O for `contrast-matched' SANS experiments. SANS data were independently analysed by ab initio indirect Fourier transform-based modelling and using crystal structures. These studies confirm the dimeric status of Cqm1 in 100% D2O with a longest intramolecular vector (Dmax) of ∼94 Å and a radius of gyration (Rg) of ∼31 Å. Notably, BinB binds to Cqm1, forming a heterodimeric complex (Dmax of ∼129 Å and Rg of ∼40 Å) and alters its oligomeric status from a dimer to a monomer, as confirmed by matched-out Cqm1–dBinB (Dmax of ∼70 Å and Rg of ∼22 Å). The present study thus provides the first insight into the events involved in the internalization of larvicidal proteins, likely by raft-dependent endocytosis.




pro

The predictive power of data-processing statistics

This study describes a method to estimate the likelihood of success in determining a macromolecular structure by X-ray crystallography and experimental single-wavelength anomalous dispersion (SAD) or multiple-wavelength anomalous dispersion (MAD) phasing based on initial data-processing statistics and sample crystal properties. Such a predictive tool can rapidly assess the usefulness of data and guide the collection of an optimal data set. The increase in data rates from modern macromolecular crystallography beamlines, together with a demand from users for real-time feedback, has led to pressure on computational resources and a need for smarter data handling. Statistical and machine-learning methods have been applied to construct a classifier that displays 95% accuracy for training and testing data sets compiled from 440 solved structures. Applying this classifier to new data achieved 79% accuracy. These scores already provide clear guidance as to the effective use of computing resources and offer a starting point for a personalized data-collection assistant.




pro

Structure of the MICU1–MICU2 heterodimer provides insights into the gatekeeping threshold shift

Mitochondrial calcium uptake proteins 1 and 2 (MICU1 and MICU2) mediate mitochondrial Ca2+ influx via the mitochondrial calcium uniporter (MCU). Its molecular action for Ca2+ uptake is tightly controlled by the MICU1–MICU2 heterodimer, which comprises Ca2+ sensing proteins which act as gatekeepers at low [Ca2+] or facilitators at high [Ca2+]. However, the mechanism underlying the regulation of the Ca2+ gatekeeping threshold for mitochondrial Ca2+ uptake through the MCU by the MICU1–MICU2 heterodimer remains unclear. In this study, we determined the crystal structure of the apo form of the human MICU1–MICU2 heterodimer that functions as the MCU gatekeeper. MICU1 and MICU2 assemble in the face-to-face heterodimer with salt bridges and me­thio­nine knobs stabilizing the heterodimer in an apo state. Structural analysis suggests how the heterodimer sets a higher Ca2+ threshold than the MICU1 homodimer. The structure of the heterodimer in the apo state provides a framework for understanding the gatekeeping role of the MICU1–MICU2 heterodimer.




pro

Probing the structural pathway of conformational polymorph nucleation by comparing a series of α,ω-alkanedicarboxylic acids

Herein the nucleation pathway of conformational polymorphs was revealed by studying the relationships and distinctions among a series of α,ω-alkanedicarboxylic acids [HOOC–(CH2)n−2–COOH, named DAn, where n = 5, 7, 9, 11, 13, 15] in the solid state and in solution. Their polymorphic outcomes, with the exception of DA5, show solvent dependence: form I with conformation I crystallizes from solvents with hydrogen-bond donating (HBD) ability, whereas form II with conformation II crystallizes preferentially from solvents with no HBD ability. In contrast, form II of DA5 does not crystallize in any of the solvents used. Quantum mechanical computation showed that there is no direct conformational link between the solvents and the resultant polymorphic outcomes. Surprisingly, solute aggregates were found in no-HBD solvents by Fourier transform infrared spectroscopy, and only monomers could be detected in HBD solvents, suggesting stronger solvation. Furthermore, it was found that all six compounds including DA5 followed the same pattern in solution. Moreover, crystal-packing efficiency calculations and stability tests stated that dimorphs of DA5 bear a greater stability difference than others. These suggest that the rearrangement from conformation II to I could not be limited by hard desolvation in HBD solvents, where form I was also obtained. In other systems, metastable II was produced in the same solvents, probably as a result of the rearrangement being limited by hard desolvation. In this work, a comparative study uncovers the proposed nucleation pathway: difficulty in desolvation has a remarkable effect on the result of rearrangement and nucleation outcome.




pro

Scanning electron microscopy as a method for sample visualization in protein X-ray crystallography

Developing methods to determine high-resolution structures from micrometre- or even submicrometre-sized protein crystals has become increasingly important in recent years. This applies to both large protein complexes and membrane proteins, where protein production and the subsequent growth of large homogeneous crystals is often challenging, and to samples which yield only micro- or nanocrystals such as amyloid or viral polyhedrin proteins. The versatile macromolecular crystallography microfocus (VMXm) beamline at Diamond Light Source specializes in X-ray diffraction measurements from micro- and nanocrystals. Because of the possibility of measuring data from crystalline samples that approach the resolution limit of visible-light microscopy, the beamline design includes a scanning electron microscope (SEM) to visualize, locate and accurately centre crystals for X-ray diffraction experiments. To ensure that scanning electron microscopy is an appropriate method for sample visualization, tests were carried out to assess the effect of SEM radiation on diffraction quality. Cytoplasmic polyhedrosis virus polyhedrin protein crystals cryocooled on electron-microscopy grids were exposed to SEM radiation before X-ray diffraction data were collected. After processing the data with DIALS, no statistically significant difference in data quality was found between datasets collected from crystals exposed and not exposed to SEM radiation. This study supports the use of an SEM as a tool for the visualization of protein crystals and as an integrated visualization tool on the VMXm beamline.




pro

Fast and accurate defocus modulation for improved tunability of cryo-EM experiments

Current data collection strategies in electron cryo-microscopy (cryo-EM) record multiframe movies with static optical settings. This limits the number of adjustable parameters that can be used to optimize the experiment. Here, a method for fast and accurate defocus (FADE) modulation during movie acquisition is proposed. It uses the objective lens aperture as an electrostatic pole that locally modifies the electron beam potential. The beam potential variation is converted to defocus change by the typically undesired chromatic aberration of the objective lens. The simplicity, electrostatic principle and low electrical impedance of the device allow fast switching speeds that will enable per-frame defocus modulation of cryo-EM movies. Researchers will be able to define custom defocus `recipes' and tailor the experiment for optimal information extraction from the sample. The FADE method could help to convert the microscope into a more dynamic and flexible optical platform that delivers better performance in cryo-EM single-particle analysis and electron cryo-tomography.




pro

Structures of substrate- and product-bound forms of a multi-domain copper nitrite reductase shed light on the role of domain tethering in protein complexes

Copper-containing nitrite reductases (CuNiRs) are found in all three kingdoms of life and play a major role in the denitrification branch of the global nitro­gen cycle where nitrate is used in place of di­oxy­gen as an electron acceptor in respiratory energy metabolism. Several C- and N-terminal redox domain tethered CuNiRs have been identified and structurally characterized during the last decade. Our understanding of the role of tethered domains in these new classes of three-domain CuNiRs, where an extra cytochrome or cupredoxin domain is tethered to the catalytic two-domain CuNiRs, has remained limited. This is further compounded by a complete lack of substrate-bound structures for these tethered CuNiRs. There is still no substrate-bound structure for any of the as-isolated wild-type tethered enzymes. Here, structures of nitrite and product-bound states from a nitrite-soaked crystal of the N-terminal cupredoxin-tethered enzyme from the Hyphomicrobium denitrificans strain 1NES1 (Hd1NES1NiR) are provided. These, together with the as-isolated structure of the same species, provide clear evidence for the role of the N-terminal peptide bearing the conserved His27 in water-mediated anchoring of the substrate at the catalytic T2Cu site. Our data indicate a more complex role of tethering than the intuitive advantage for a partner-protein electron-transfer complex by narrowing the conformational search in such a combined system.




pro

Prediction of models for ordered solvent in macromolecular structures by a classifier based upon resolution-independent projections of local feature data

Current software tools for the automated building of models for macro­molecular X-ray crystal structures are capable of assembling high-quality models for ordered macromolecule and small-molecule scattering components with minimal or no user supervision. Many of these tools also incorporate robust functionality for modelling the ordered water molecules that are found in nearly all macromolecular crystal structures. However, no current tools focus on differentiating these ubiquitous water molecules from other frequently occurring multi-atom solvent species, such as sulfate, or the automated building of models for such species. PeakProbe has been developed specifically to address the need for such a tool. PeakProbe predicts likely solvent models for a given point (termed a `peak') in a structure based on analysis (`probing') of its local electron density and chemical environment. PeakProbe maps a total of 19 resolution-dependent features associated with electron density and two associated with the local chemical environment to a two-dimensional score space that is independent of resolution. Peaks are classified based on the relative frequencies with which four different classes of solvent (including water) are observed within a given region of this score space as determined by large-scale sampling of solvent models in the Protein Data Bank. Designed to classify peaks generated from difference density maxima, PeakProbe also incorporates functionality for identifying peaks associated with model errors or clusters of peaks likely to correspond to multi-atom solvent, and for the validation of existing solvent models using solvent-omit electron-density maps. When tasked with classifying peaks into one of four distinct solvent classes, PeakProbe achieves greater than 99% accuracy for both peaks derived directly from the atomic coordinates of existing solvent models and those based on difference density maxima. While the program is still under development, a fully functional version is publicly available. PeakProbe makes extensive use of cctbx libraries, and requires a PHENIX licence and an up-to-date phenix.python environment for execution.




pro

Sequence assignment for low-resolution modelling of protein crystal structures

The performance of automated model building in crystal structure determination usually decreases with the resolution of the experimental data, and may result in fragmented models and incorrect side-chain assignment. Presented here are new methods for machine-learning-based docking of main-chain fragments to the sequence and for their sequence-independent connection using a dedicated library of protein fragments. The combined use of these new methods noticeably increases sequence coverage and reduces fragmentation of the protein models automatically built with ARP/wARP.




pro

Structural comparison of protiated, H/D-exchanged and deuterated human carbonic anhydrase IX

Human carbonic anhydrase IX (CA IX) expression is upregulated in hypoxic solid tumours, promoting cell survival and metastasis. This observation has made CA IX a target for the development of CA isoform-selective inhibitors. To enable structural studies of CA IX–inhibitor complexes using X-ray and neutron crystallography, a CA IX surface variant (CA IXSV; the catalytic domain with six surface amino-acid substitutions) has been developed that can be routinely crystallized. Here, the preparation of protiated (H/H), H/D-exchanged (H/D) and deuterated (D/D) CA IXSV for crystallographic studies and their structural comparison are described. Four CA IXSV X-ray crystal structures are compared: two H/H crystal forms, an H/D crystal form and a D/D crystal form. The overall active-site organization in each version is essentially the same, with only minor positional changes in active-site solvent, which may be owing to deuteration and/or resolution differences. Analysis of the crystal unit-cell packing reveals different crystallographic and noncrystallographic dimers of CA IXSV compared with previous reports. To our knowledge, this is the first report comparing three different deuterium-labelled crystal structures of the same protein, marking an important step in validating the active-site structure of CA IXSV for neutron protein crystallography.




pro

Non-merohedral twinning: from minerals to proteins

In contrast to twinning by merohedry, the reciprocal lattices of the different domains of non-merohedral twins do not overlap exactly. This leads to three kinds of reflections: reflections with no overlap, reflections with an exact overlap and reflections with a partial overlap of a reflection from a second domain. This complicates the unit-cell determination, indexing, data integration and scaling of X-ray diffraction data. However, with hindsight it is possible to detwin the data because there are reflections that are not affected by the twinning. In this article, the successful solution and refinement of one mineral, one organometallic and two protein non-merohedral twins using a common strategy are described. The unit-cell constants and the orientation matrices were determined by the program CELL_NOW. The data were then integrated with SAINT. TWINABS was used for scaling, empirical absorption corrections and the generation of two different data files, one with detwinned data for structure solution and refinement and a second one for (usually more accurate) structure refinement against total integrated intensities. The structures were solved by experimental phasing using SHELXT for the first two structures and SHELXC/D/E for the two protein structures; all models were refined with SHELXL.




pro

Calcium-ligand variants of the myocilin olfactomedin propeller selected from invertebrate phyla reveal cross-talk with N-terminal blade and surface helices

Olfactomedins are a family of modular proteins found in multicellular organisms that all contain five-bladed β-propeller olfactomedin (OLF) domains. In support of differential functions for the OLF propeller, the available crystal structures reveal that only some OLF domains harbor an internal calcium-binding site with ligands derived from a triad of residues. For the myocilin OLF domain (myoc-OLF), ablation of the ion-binding site (triad Asp, Asn, Asp) by altering the coordinating residues affects the stability and overall structure, in one case leading to misfolding and glaucoma. Bioinformatics analysis reveals a variety of triads with possible ion-binding characteristics lurking in OLF domains in invertebrate chordates such as Arthropoda (Asp–Glu–Ser), Nematoda (Asp–Asp–His) and Echinodermata (Asp–Glu–Lys). To test ion binding and to extend the observed connection between ion binding and distal structural rearrangements, consensus triads from these phyla were installed in the myoc-OLF. All three protein variants exhibit wild-type-like or better stability, but their calcium-binding properties differ, concomitant with new structural deviations from wild-type myoc-OLF. Taken together, the results indicate that calcium binding is not intrinsically destabilizing to myoc-OLF or required to observe a well ordered side helix, and that ion binding is a differential feature that may underlie the largely elusive biological function of OLF propellers.




pro

Structures of the substrate-binding protein YfeA in apo and zinc-reconstituted holo forms

In the structural biology of bacterial substrate-binding proteins (SBPs), a growing number of comparisons between substrate-bound and substrate-free forms of metal atom-binding (cluster A-I) SBPs have revealed minimal structural differences between forms. These observations contrast with SBPs that bind substrates such as amino acids or nucleic acids and may undergo >60° rigid-body rotations. Substrate transfer in these SBPs is described by a Venus flytrap model, although this model may not apply to all SBPs. In this report, structures are presented of substrate-free (apo) and reconstituted substrate-bound (holo) YfeA, a polyspecific cluster A-I SBP from Yersinia pestis. It is demonstrated that an apo cluster A-I SBP can be purified by fractionation when co-expressed with its cognate transporter, adding an alternative strategy to the mutagenesis or biochemical treatment used to generate other apo cluster A-I SBPs. The apo YfeA structure contains 111 disordered protein atoms in a mobile helix located in the flexible carboxy-terminal lobe. Metal binding triggers a 15-fold reduction in the solvent-accessible surface area of the metal-binding site and reordering of the 111 protein atoms in the mobile helix. The flexible lobe undergoes a 13.6° rigid-body rotation that is driven by a spring-hammer metal-binding mechanism. This asymmetric rigid-body rotation may be unique to metal atom-binding SBPs (i.e. clusters A-I, A-II and D-IV).




pro

X-ray structure of the direct electron transfer-type FAD glucose dehydrogenase catalytic subunit complexed with a hitchhiker protein

The bacterial flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase complex derived from Burkholderia cepacia (BcGDH) is a representative molecule of direct electron transfer-type FAD-dependent dehydrogenase complexes. In this study, the X-ray structure of BcGDHγα, the catalytic subunit (α-subunit) of BcGDH complexed with a hitchhiker protein (γ-subunit), was determined. The most prominent feature of this enzyme is the presence of the 3Fe–4S cluster, which is located at the surface of the catalytic subunit and functions in intramolecular and intermolecular electron transfer from FAD to the electron-transfer subunit. The structure of the complex revealed that these two molecules are connected through disulfide bonds and hydrophobic interactions, and that the formation of disulfide bonds is required to stabilize the catalytic subunit. The structure of the complex revealed the putative position of the electron-transfer subunit. A comparison of the structures of BcGDHγα and membrane-bound fumarate reductases suggested that the whole BcGDH complex, which also includes the membrane-bound β-subunit containing three heme c moieties, may form a similar overall structure to fumarate reductases, thus accomplishing effective electron transfer.