anc Therapeutic and Prophylactic Antitumor Activity of an Oral Inhibitor of Fucosylation in Spontaneous Mammary Cancers By mct.aacrjournals.org Published On :: 2020-05-04T05:39:42-07:00 2-fluorofucose (2FF) inhibits protein and cellular fucosylation. Afucosylation of IgG antibodies enhances antibody-dependent cell-mediated cytotoxicity by modulating antibody affinity for FcRIIIa, which can impact secondary T-cell activation. Immune responses toward most common solid tumors are dominated by a humoral immune response rather than the presence of tumor-infiltrating cytotoxic T cells. IgG antibodies directed against numerous tumor-associated proteins are found in the sera of both patients with breast cancer and transgenic mice bearing mammary cancer. We questioned whether 2FF would have antitumor activity in two genetically distinct transgenic models; TgMMTV-neu (luminal B) and C3(1)-Tag (basal) mammary cancer. 2FF treatment significantly improved overall survival. The TgMMTV-neu doubled survival time compared with controls [P < 0.0001; HR, 7.04; 95% confidence interval (CI), 3.31–15.0], and survival was significantly improved in C3(1)-Tag (P = 0.0013; HR, 3.36; 95% CI, 1.58–7.14). 2FF treated mice, not controls, developed delayed-type hypersensitivity and T-cell responses specific for syngeneic tumor lysates (P < 0.0001). Serum IgG from 2FF-treated mice enhanced tumor lysis more efficiently than control sera (P = 0.004). Administration of 2FF for prophylaxis, at two different doses, significantly delayed tumor onset in both TgMMTV-neu; 20 mmol/L (P = 0.0004; HR, 3.55; 95% CI, 1.60–7.88) and 50 mmol/L (P = 0.0002; HR: 3.89; 95% CI, 1.71–8.86) and C3(1)-Tag; 20 mmol/L (P = 0.0020; HR, 2.51; 95% CI, 1.22–5.18), and 50 mmol/L (P = 0.0012; HR, 3.36; 95% CI, 1.57–7.18). Mammary cancer was prevented in 33% of TgMMTV-neu and 26% of C3(1)-Tag. 2FF has potent antitumor effects in mammary cancer models. The agent shows preclinical efficacy for both cancer treatment and prevention. Full Article
anc Learning and Teaching Together to Advance Evidence-Based Clinical Education: A Faculty Learning Community By www.jdentaled.org Published On :: 2019-12-01T06:00:18-08:00 Clinical teaching is a cornerstone of health sciences education; it is also the most challenging aspect. The University of Pittsburgh Schools of Dental Medicine, Nursing, and Pharmacy developed a new evidence-based interprofessional course framed as a faculty learning community (FLC) around the principles of learning in a clinical environment. The aim of this study was to assess the overall effectiveness of this two-semester FLC at four health professions schools in academic year 2014-15. The assessment included anonymous participant surveys in each session and an anonymous end-of-course survey. Thirty-five faculty members from dental, health and rehabilitation sciences, nursing, and pharmacy enrolled in the FLC, with six to 32 enrollees attending each session. All attendees at each session completed the session evaluation surveys, but the attendance rate at each session ranged from 17.1% to 91.4%. Sixteen participants (46%) completed the end-of-course survey. The results showed overall positive responses to the FLC and changes in the participants’ self-reported knowledge. Session surveys showed that the participants found the FLC topics helpful and appreciated the opportunity to learn from each other and the interprofessional nature of the FLC. Responses to the end-of-course survey were in alignment with the individual session surveys and cited specific benefits as being the content, teaching materials, and structured discussions. In additional feedback, participants reported interest to continue as a cohort and to extend the peer-support system beyond the FLC. This outcomes assessment of the first round of the FLC confirmed that this cohort-based faculty development in an interprofessional setting was well received by its participants. Their feedback provided valuable insights for changes to future offerings. Full Article
anc Lipid rafts as signaling hubs in cancer cell survival/death and invasion: implications in tumor progression and therapy [Thematic Reviews] By www.jlr.org Published On :: 2020-05-01T00:05:27-07:00 Cholesterol/sphingolipid-rich membrane domains, known as lipid rafts or membrane rafts, play a critical role in the compartmentalization of signaling pathways. Physical segregation of proteins in lipid rafts may modulate the accessibility of proteins to regulatory or effector molecules. Thus, lipid rafts serve as sorting platforms and hubs for signal transduction proteins. Cancer cells contain higher levels of intracellular cholesterol and lipid rafts than their normal non-tumorigenic counterparts. Many signal transduction processes involved in cancer development (insulin-like growth factor system and phosphatidylinositol 3-kinase-AKT) and metastasis [cluster of differentiation (CD)44] are dependent on or modulated by lipid rafts. Additional proteins playing an important role in several malignant cancers (e.g., transmembrane glycoprotein mucin 1) are also being detected in association with lipid rafts, suggesting a major role of lipid rafts in tumor progression. Conversely, lipid rafts also serve as scaffolds for the recruitment and clustering of Fas/CD95 death receptors and downstream signaling molecules leading to cell death-promoting raft platforms. The partition of death receptors and downstream signaling molecules in aggregated lipid rafts has led to the formation of the so-called cluster of apoptotic signaling molecule-enriched rafts, or CASMER, which leads to apoptosis amplification and can be pharmacologically modulated. These death-promoting rafts can be viewed as a linchpin from which apoptotic signals are launched. In this review, we discuss the involvement of lipid rafts in major signaling processes in cancer cells, including cell survival, cell death, and metastasis, and we consider the potential of lipid raft modulation as a promising target in cancer therapy. Full Article
anc Emergence of a Plasmid-Encoded Resistance-Nodulation-Division Efflux Pump Conferring Resistance to Multiple Drugs, Including Tigecycline, in Klebsiella pneumoniae By mbio.asm.org Published On :: 2020-03-03T01:30:27-08:00 ABSTRACT Transporters belonging to the chromosomally encoded resistance-nodulation-division (RND) superfamily mediate multidrug resistance in Gram-negative bacteria. However, the cotransfer of large gene clusters encoding RND-type pumps from the chromosome to a plasmid appears infrequent, and no plasmid-mediated RND efflux pump gene cluster has yet been found to confer resistance to tigecycline. Here, we identified a novel RND efflux pump gene cluster, designated tmexCD1-toprJ1, on plasmids from five pandrug-resistant Klebsiella pneumoniae isolates of animal origin. TMexCD1-TOprJ1 increased (by 4- to 32-fold) the MICs of tetracyclines (including tigecycline and eravacycline), quinolones, cephalosporins, and aminoglycosides for K. pneumoniae, Escherichia coli, and Salmonella. TMexCD1-TOprJ1 is closely related (64.5% to 77.8% amino acid identity) to the MexCD-OprJ efflux pump encoded on the chromosome of Pseudomonas aeruginosa. In an IncFIA plasmid, pHNAH8I, the tmexCD1-toprJ1 gene cluster lies adjacent to two genes encoding site-specific integrases, which may have been responsible for its acquisition. Expression of TMexCD1-TOprJ1 in E. coli resulted in increased tigecycline efflux and in K. pneumoniae negated the efficacy of tigecycline in an in vivo infection model. Expression of TMexCD1-TOprJ1 reduced the growth of E. coli and Salmonella but not K. pneumoniae. tmexCD1-toprJ1-positive Enterobacteriaceae isolates were rare in humans (0.08%) but more common in chicken fecal (14.3%) and retail meat (3.4%) samples. Plasmid-borne tmexCD1-toprJ1-like gene clusters were identified in sequences in GenBank from Enterobacteriaceae and Pseudomonas strains from multiple continents. The possibility of further global dissemination of the tmexCD1-toprJ1 gene cluster and its analogues in Enterobacteriaceae via plasmids may be an important consideration for public health planning. IMPORTANCE In an era of increasing concerns about antimicrobial resistance, tigecycline is likely to have a critically important role in the treatment of carbapenem-resistant Enterobacteriaceae, the most problematic pathogens in human clinical settings—especially carbapenem-resistant K. pneumoniae. Here, we identified a new plasmid-borne RND-type tigecycline resistance determinant, TMexCD1-TOprJ1, which is widespread among K. pneumoniae isolates from food animals. tmexCD1-toprJ1 appears to have originated from the chromosome of a Pseudomonas species and may have been transferred onto plasmids by adjacent site-specific integrases. Although tmexCD1-toprJ1 still appears to be rare in human clinical isolates, considering the transferability of the tmexCD1-toprJ1 gene cluster and the broad substrate spectrum of TMexCD1-TOprJ1, further dissemination of this mobile tigecycline resistance determinant is possible. Therefore, from a "One Health" perspective, measures are urgently needed to monitor and control its further spread. The current low prevalence in human clinical isolates provides a precious time window to design and implement measures to tackle this. Full Article
anc The Multifunctional Long-Distance Movement Protein of Pea Enation Mosaic Virus 2 Protects Viral and Host Transcripts from Nonsense-Mediated Decay By mbio.asm.org Published On :: 2020-03-10T01:30:41-07:00 ABSTRACT The nonsense-mediated decay (NMD) pathway presents a challenge for RNA viruses with termination codons that precede extended 3' untranslated regions (UTRs). The umbravirus Pea enation mosaic virus 2 (PEMV2) is a nonsegmented, positive-sense RNA virus with an unusually long 3' UTR that is susceptible to NMD. To establish a systemic infection, the PEMV2 long-distance movement protein p26 was previously shown to both stabilize viral RNAs and bind them for transport through the plant’s vascular system. The current study demonstrated that p26 protects both viral and nonviral messenger RNAs from NMD. Although p26 localizes to both the cytoplasm and nucleolus, p26 exerts its anti-NMD effects exclusively in the cytoplasm independently of long-distance movement. Using a transcriptome-wide approach in the model plant Nicotiana benthamiana, p26 protected a subset of cellular NMD target transcripts, particularly those containing long, structured, GC-rich 3' UTRs. Furthermore, transcriptome sequencing (RNA-seq) revealed that the NMD pathway is highly dysfunctional during PEMV2 infection, with 1,820 (48%) of NMD targets increasing in abundance. Widespread changes in the host transcriptome are common during plant RNA virus infections, and these results suggest that, in at least some instances, virus-mediated NMD inhibition may be a major contributing factor. IMPORTANCE Nonsense-mediated decay (NMD) represents an RNA regulatory pathway that degrades both natural and faulty messenger RNAs with long 3' untranslated regions. NMD targets diverse families of RNA viruses, requiring that viruses counteract the NMD pathway for successful amplification in host cells. A protein required for long-distance movement of Pea enation mosaic virus 2 (PEMV2) is shown to also protect both viral and host mRNAs from NMD. RNA-seq analyses of the Nicotiana benthamiana transcriptome revealed that PEMV2 infection significantly impairs the host NMD pathway. RNA viruses routinely induce large-scale changes in host gene expression, and, like PEMV2, may use NMD inhibition to alter the host transcriptome in an effort to increase virus amplification. Full Article
anc RNA Binding Motif Protein RBM45 Regulates Expression of the 11-Kilodalton Protein of Parvovirus B19 through Binding to Novel Intron Splicing Enhancers By mbio.asm.org Published On :: 2020-03-10T01:30:41-07:00 ABSTRACT During infection of human parvovirus B19 (B19V), one viral precursor mRNA (pre-mRNA) is transcribed by a single promoter and is alternatively spliced and alternatively polyadenylated. Here, we identified a novel cis-acting sequence (5'-GUA AAG CUA CGG GAC GGU-3'), intronic splicing enhancer 3 (ISE3), which lies 72 nucleotides upstream of the second splice acceptor (A2-2) site of the second intron that defines the exon of the mRNA encoding the 11-kDa viral nonstructural protein. RNA binding motif protein 45 (RBM45) specifically binds to ISE3 with high affinity (equilibrium dissociation constant [KD] = 33 nM) mediated by its RNA recognition domain and 2-homo-oligomer assembly domain (RRM2-HOA). Knockdown of RBM45 expression or ectopic overexpression of RRM2-HOA in human erythroid progenitor cells (EPCs) expanded ex vivo significantly decreased the level of viral mRNA spliced at the A2-2 acceptor but not that of the mRNA spliced at A2-1 that encodes VP2. Moreover, silent mutations of ISE3 in an infectious DNA of B19V significantly reduced 11-kDa expression. Notably, RBM45 also specifically interacts in vitro with ISE2, which shares the octanucleotide (GGGACGGU) with ISE3. Taken together, our results suggest that RBM45, through binding to both ISE2 and ISE3, is an essential host factor for maturation of 11-kDa-encoding mRNA. IMPORTANCE Human parvovirus B19 (B19V) is a human pathogen that causes severe hematological disorders in immunocompromised individuals. B19V infection has a remarkable tropism with respect to human erythroid progenitor cells (EPCs) in human bone marrow and fetal liver. During B19V infection, only one viral precursor mRNA (pre-mRNA) is transcribed by a single promoter of the viral genome and is alternatively spliced and alternatively polyadenylated, a process which plays a key role in expression of viral proteins. Our studies revealed that a cellular RNA binding protein, RBM45, binds to two intron splicing enhancers and is essential for the maturation of the small nonstructural protein 11-kDa-encoding mRNA. The 11-kDa protein plays an important role not only in B19V infection-induced apoptosis but also in viral DNA replication. Thus, the identification of the RBM45 protein and its cognate binding site in B19V pre-mRNA provides a novel target for antiviral development to combat B19V infection-caused severe hematological disorders. Full Article
anc Gamma Interferon Is Required for Chlamydia Clearance but Is Dispensable for T Cell Homing to the Genital Tract By mbio.asm.org Published On :: 2020-03-17T01:30:14-07:00 ABSTRACT While there is no effective vaccine against Chlamydia trachomatis infection, previous work has demonstrated the importance of C. trachomatis-specific CD4+ T cells (NR1 T cells) in pathogen clearance. Specifically, NR1 T cells have been shown to be protective in mice, and this protection depends on the host’s ability to sense the cytokine gamma interferon (IFN-). However, it is unclear what role NR1 production or sensing of IFN- plays in T cell homing to the genital tract or T cell-mediated protection against C. trachomatis. Using two-photon microscopy and flow cytometry, we found that naive wild-type (WT), IFN-–/–, and IFN-R–/– NR1 T cells specifically home to sections in the genital tract that contain C. trachomatis. We also determined that protection against infection requires production of IFN- from either NR1 T cells or endogenous cells, further highlighting the importance of IFN- in clearing C. trachomatis infection. IMPORTANCE Chlamydia trachomatis is an important mucosal pathogen that is the leading cause of sexually transmitted bacterial infections in the United States. Despite this, there is no vaccine currently available. In order to develop such a vaccine, it is necessary to understand the components of the immune response that can lead to protection against this pathogen. It is well known that antigen-specific CD4+ T cells are critical for Chlamydia clearance, but the contexts in which they are protective or not protective are unknown. Here, we aimed to characterize the importance of gamma interferon production and sensing by T cells and the effects on the immune response to C. trachomatis. Our work here helps to define the contexts in which antigen-specific T cells can be protective, which is critical to our ability to design an effective and protective vaccine against C. trachomatis. Full Article
anc A Solution to Antifolate Resistance in Group B Streptococcus: Untargeted Metabolomics Identifies Human Milk Oligosaccharide-Induced Perturbations That Result in Potentiation of Trimethoprim By mbio.asm.org Published On :: 2020-03-17T01:30:14-07:00 ABSTRACT Adjuvants can be used to potentiate the function of antibiotics whose efficacy has been reduced by acquired or intrinsic resistance. In the present study, we discovered that human milk oligosaccharides (HMOs) sensitize strains of group B Streptococcus (GBS) to trimethoprim (TMP), an antibiotic to which GBS is intrinsically resistant. Reductions in the MIC of TMP reached as high as 512-fold across a diverse panel of isolates. To better understand HMOs’ mechanism of action, we characterized the metabolic response of GBS to HMO treatment using ultrahigh-performance liquid chromatography–high-resolution tandem mass spectrometry (UPLC-HRMS/MS) analysis. These data showed that when challenged by HMOs, GBS undergoes significant perturbations in metabolic pathways related to the biosynthesis and incorporation of macromolecules involved in membrane construction. This study represents reports the metabolic characterization of a cell that is perturbed by HMOs. IMPORTANCE Group B Streptococcus is an important human pathogen that causes serious infections during pregnancy which can lead to chorioamnionitis, funisitis, premature rupture of gestational membranes, preterm birth, neonatal sepsis, and death. GBS is evolving antimicrobial resistance mechanisms, and the work presented in this paper provides evidence that prebiotics such as human milk oligosaccharides can act as adjuvants to restore the utility of antibiotics. Full Article
anc Evolution of Host Specificity by Malaria Parasites through Altered Mechanisms Controlling Genome Maintenance By mbio.asm.org Published On :: 2020-03-17T01:30:15-07:00 ABSTRACT The protozoan parasites that cause malaria infect a wide variety of vertebrate hosts, including birds, reptiles, and mammals, and the evolutionary pressures inherent to the host-parasite relationship have profoundly shaped the genomes of both host and parasite. Here, we report that these selective pressures have resulted in unexpected alterations to one of the most basic aspects of eukaryotic biology, the maintenance of genome integrity through DNA repair. Malaria parasites that infect humans continuously generate genetic diversity within their antigen-encoding gene families through frequent ectopic recombination between gene family members, a process that is a crucial feature of the persistence of malaria globally. The continuous generation of antigen diversity ensures that different parasite isolates are antigenically distinct, thus preventing extensive cross-reactive immunity and enabling parasites to maintain stable transmission within human populations. However, the molecular basis of the recombination between gene family members is not well understood. Through computational analyses of the antigen-encoding, multicopy gene families of different Plasmodium species, we report the unexpected observation that malaria parasites that infect rodents do not display the same degree of antigen diversity as observed in Plasmodium falciparum and appear to undergo significantly less ectopic recombination. Using comparative genomics, we also identify key molecular components of the diversification process, thus shedding new light on how malaria parasites balance the maintenance of genome integrity with the requirement for continuous genetic diversification. IMPORTANCE Malaria remains one of the most prevalent and deadly infectious diseases of the developing world, causing approximately 228 million clinical cases and nearly half a million deaths annually. The disease is caused by protozoan parasites of the genus Plasmodium, and of the five species capable of infecting humans, infections with P. falciparum are the most severe. In addition to the parasites that infect people, there are hundreds of additional species that infect birds, reptiles, and other mammals, each exquisitely evolved to meet the specific challenges inherent to survival within their respective hosts. By comparing the unique strategies that each species has evolved, key insights into host-parasite interactions can be gained, including discoveries regarding the pathogenesis of human disease. Here, we describe the surprising observation that closely related parasites with different hosts have evolved remarkably different methods for repairing their genomes. This observation has important implications for the ability of parasites to maintain chronic infections and for the development of host immunity. Full Article
anc Phosphoric Metabolites Link Phosphate Import and Polysaccharide Biosynthesis for Candida albicans Cell Wall Maintenance By mbio.asm.org Published On :: 2020-03-17T01:30:15-07:00 ABSTRACT The Candida albicans high-affinity phosphate transporter Pho84 is required for normal Target of Rapamycin (TOR) signaling, oxidative stress resistance, and virulence of this fungal pathogen. It also contributes to C. albicans’ tolerance of two antifungal drug classes, polyenes and echinocandins. Echinocandins inhibit biosynthesis of a major cell wall component, beta-1,3-glucan. Cells lacking Pho84 were hypersensitive to other forms of cell wall stress beyond echinocandin exposure, while their cell wall integrity signaling response was weak. Metabolomics experiments showed that levels of phosphoric intermediates, including nucleotides like ATP and nucleotide sugars, were low in pho84 mutant compared to wild-type cells recovering from phosphate starvation. Nonphosphoric precursors like nucleobases and nucleosides were elevated. Outer cell wall phosphomannan biosynthesis requires a nucleotide sugar, GDP-mannose. The nucleotide sugar UDP-glucose is the substrate of enzymes that synthesize two major structural cell wall polysaccharides, beta-1,3- and beta-1,6-glucan. Another nucleotide sugar, UDP-N-acetylglucosamine, is the substrate of chitin synthases which produce a stabilizing component of the intercellular septum and of lateral cell walls. Lack of Pho84 activity, and phosphate starvation, potentiated pharmacological or genetic perturbation of these enzymes. We posit that low substrate concentrations of beta-d-glucan- and chitin synthases, together with pharmacologic inhibition of their activity, diminish enzymatic reaction rates as well as the yield of their cell wall-stabilizing products. Phosphate import is not conserved between fungal and human cells, and humans do not synthesize beta-d-glucans or chitin. Hence, inhibiting these processes simultaneously could yield potent antifungal effects with low toxicity to humans. IMPORTANCE Candida species cause hundreds of thousands of invasive infections with high mortality each year. Developing novel antifungal agents is challenging due to the many similarities between fungal and human cells. Maintaining phosphate balance is essential for all organisms but is achieved completely differently by fungi and humans. A protein that imports phosphate into fungal cells, Pho84, is not present in humans and is required for normal cell wall stress resistance and cell wall integrity signaling in C. albicans. Nucleotide sugars, which are phosphate-containing building block molecules for construction of the cell wall, are diminished in cells lacking Pho84. Cell wall-constructing enzymes may be slowed by lack of these building blocks, in addition to being inhibited by drugs. Combined targeting of Pho84 and cell wall-constructing enzymes may provide a strategy for antifungal therapy by which two sequential steps of cell wall maintenance are blocked for greater potency. Full Article
anc Sulfamoyl Heteroarylcarboxylic Acids as Promising Metallo-{beta}-Lactamase Inhibitors for Controlling Bacterial Carbapenem Resistance By mbio.asm.org Published On :: 2020-03-17T01:30:15-07:00 ABSTRACT Production of metallo-β-lactamases (MBLs), which hydrolyze carbapenems, is a cause of carbapenem resistance in Enterobacteriaceae. Development of effective inhibitors for MBLs is one approach to restore carbapenem efficacy in carbapenem-resistant Enterobacteriaceae (CRE). We report here that sulfamoyl heteroarylcarboxylic acids (SHCs) can competitively inhibit the globally spreading and clinically relevant MBLs (i.e., IMP-, NDM-, and VIM-type MBLs) at nanomolar to micromolar orders of magnitude. Addition of SHCs restored meropenem efficacy against 17/19 IMP-type and 7/14 NDM-type MBL-producing Enterobacteriaceae to satisfactory clinical levels. SHCs were also effective against IMP-type MBL-producing Acinetobacter spp. and engineered Escherichia coli strains overproducing individual minor MBLs (i.e., TMB-2, SPM-1, DIM-1, SIM-1, and KHM-1). However, SHCs were less effective against MBL-producing Pseudomonas aeruginosa. Combination therapy with meropenem and SHCs successfully cured mice infected with IMP-1-producing E. coli and dually NDM-1/VIM-1-producing Klebsiella pneumoniae clinical isolates. X-ray crystallographic analyses revealed the inhibition mode of SHCs against MBLs; the sulfamoyl group of SHCs coordinated to two zinc ions, and the carboxylate group coordinated to one zinc ion and bound to positively charged amino acids Lys224/Arg228 conserved in MBLs. Preclinical testing revealed that the SHCs showed low toxicity in cell lines and mice and high stability in human liver microsomes. Our results indicate that SHCs are promising lead compounds for inhibitors of MBLs to combat MBL-producing CRE. IMPORTANCE Carbapenem antibiotics are the last resort for control of severe infectious diseases, bloodstream infections, and pneumonia caused by Gram-negative bacteria, including Enterobacteriaceae. However, carbapenem-resistant Enterobacteriaceae (CRE) strains have spread globally and are a critical concern in clinical settings because CRE infections are recognized as a leading cause of increased mortality among hospitalized patients. Most CRE produce certain kinds of serine carbapenemases (e.g., KPC- and GES-type β-lactamases) or metallo-β-lactamases (MBLs), which can hydrolyze carbapenems. Although effective MBL inhibitors are expected to restore carbapenem efficacy against MBL-producing CRE, no MBL inhibitor is currently clinically available. Here, we synthesized 2,5-diethyl-1-methyl-4-sulfamoylpyrrole-3-carboxylic acid (SPC), which is a potent inhibitor of MBLs. SPC is a remarkable lead compound for clinically useful MBL inhibitors and can potentially provide a considerable benefit to patients receiving treatment for lethal infectious diseases caused by MBL-producing CRE. Full Article
anc The Hypercomplex Genome of an Insect Reproductive Parasite Highlights the Importance of Lateral Gene Transfer in Symbiont Biology By mbio.asm.org Published On :: 2020-03-24T01:31:01-07:00 ABSTRACT Mobile elements—plasmids and phages—are important components of microbial function and evolution via traits that they encode and their capacity to shuttle genetic material between species. We here report the unusually rich array of mobile elements within the genome of Arsenophonus nasoniae, the son-killer symbiont of the parasitic wasp Nasonia vitripennis. This microbe’s genome has the highest prophage complement reported to date, with over 50 genomic regions that represent either intact or degraded phage material. Moreover, the genome is predicted to include 17 extrachromosomal genetic elements, which carry many genes predicted to be important at the microbe-host interface, derived from a diverse assemblage of insect-associated gammaproteobacteria. In our system, this diversity was previously masked by repetitive mobile elements that broke the assembly derived from short reads. These findings suggest that other complex bacterial genomes will be revealed in the era of long-read sequencing. IMPORTANCE The biology of many bacteria is critically dependent on genes carried on plasmid and phage mobile elements. These elements shuttle between microbial species, thus providing an important source of biological innovation across taxa. It has recently been recognized that mobile elements are also important in symbiotic bacteria, which form long-lasting interactions with their host. In this study, we report a bacterial symbiont genome that carries a highly complex array of these elements. Arsenophonus nasoniae is the son-killer microbe of the parasitic wasp Nasonia vitripennis and exists with the wasp throughout its life cycle. We completed its genome with the aid of recently developed long-read technology. This assembly contained over 50 chromosomal regions of phage origin and 17 extrachromosomal elements within the genome, encoding many important traits at the host-microbe interface. Thus, the biology of this symbiont is enabled by a complex array of mobile elements. Full Article
anc Lipid Anchoring of Archaeosortase Substrates and Midcell Growth in Haloarchaea By mbio.asm.org Published On :: 2020-03-24T01:31:01-07:00 ABSTRACT The archaeal cytoplasmic membrane provides an anchor for many surface proteins. Recently, a novel membrane anchoring mechanism involving a peptidase, archaeosortase A (ArtA), and C-terminal lipid attachment of surface proteins was identified in the model archaeon Haloferax volcanii. ArtA is required for optimal cell growth and morphogenesis, and the S-layer glycoprotein (SLG), the sole component of the H. volcanii cell wall, is one of the targets for this anchoring mechanism. However, how exactly ArtA function and regulation control cell growth and morphogenesis is still elusive. Here, we report that archaeal homologs to the bacterial phosphatidylserine synthase (PssA) and phosphatidylserine decarboxylase (PssD) are involved in ArtA-dependent protein maturation. Haloferax volcanii strains lacking either HvPssA or HvPssD exhibited motility, growth, and morphological phenotypes similar to those of an artA mutant. Moreover, we showed a loss of covalent lipid attachment to SLG in the hvpssA mutant and that proteolytic cleavage of the ArtA substrate HVO_0405 was blocked in the hvpssA and hvpssD mutant strains. Strikingly, ArtA, HvPssA, and HvPssD green fluorescent protein (GFP) fusions colocalized to the midcell position of H. volcanii cells, strongly supporting that they are involved in the same pathway. Finally, we have shown that the SLG is also recruited to the midcell before being secreted and lipid anchored at the cell outer surface. Collectively, our data suggest that haloarchaea use the midcell as the main surface processing hot spot for cell elongation, division, and shape determination. IMPORTANCE The subcellular organization of biochemical processes in space and time is still one of the most mysterious topics in archaeal cell biology. Despite the fact that haloarchaea largely rely on covalent lipid anchoring to coat the cell envelope, little is known about how cells coordinate de novo synthesis and about the insertion of this proteinaceous layer throughout the cell cycle. Here, we report the identification of two novel contributors to ArtA-dependent lipid-mediated protein anchoring to the cell surface, HvPssA and HvPssD. ArtA, HvPssA, and HvPssD, as well as SLG, showed midcell localization during growth and cytokinesis, indicating that haloarchaeal cells confine phospholipid processing in order to promote midcell elongation. Our findings have important implications for the biogenesis of the cell surface. Full Article
anc Avoiding Drug Resistance by Substrate Envelope-Guided Design: Toward Potent and Robust HCV NS3/4A Protease Inhibitors By mbio.asm.org Published On :: 2020-03-31T01:30:58-07:00 ABSTRACT Hepatitis C virus (HCV) infects millions of people worldwide, causing chronic liver disease that can lead to cirrhosis, hepatocellular carcinoma, and liver transplant. In the last several years, the advent of direct-acting antivirals, including NS3/4A protease inhibitors (PIs), has remarkably improved treatment outcomes of HCV-infected patients. However, selection of resistance-associated substitutions and polymorphisms among genotypes can lead to drug resistance and in some cases treatment failure. A proactive strategy to combat resistance is to constrain PIs within evolutionarily conserved regions in the protease active site. Designing PIs using the substrate envelope is a rational strategy to decrease the susceptibility to resistance by using the constraints of substrate recognition. We successfully designed two series of HCV NS3/4A PIs to leverage unexploited areas in the substrate envelope to improve potency, specifically against resistance-associated substitutions at D168. Our design strategy achieved better resistance profiles over both the FDA-approved NS3/4A PI grazoprevir and the parent compound against the clinically relevant D168A substitution. Crystallographic structural analysis and inhibition assays confirmed that optimally filling the substrate envelope is critical to improve inhibitor potency while avoiding resistance. Specifically, inhibitors that enhanced hydrophobic packing in the S4 pocket and avoided an energetically frustrated pocket performed the best. Thus, the HCV substrate envelope proved to be a powerful tool to design robust PIs, offering a strategy that can be translated to other targets for rational design of inhibitors with improved potency and resistance profiles. IMPORTANCE Despite significant progress, hepatitis C virus (HCV) continues to be a major health problem with millions of people infected worldwide and thousands dying annually due to resulting complications. Recent antiviral combinations can achieve >95% cure, but late diagnosis, low access to treatment, and treatment failure due to drug resistance continue to be roadblocks against eradication of the virus. We report the rational design of two series of HCV NS3/4A protease inhibitors with improved resistance profiles by exploiting evolutionarily constrained regions of the active site using the substrate envelope model. Optimally filling the S4 pocket is critical to avoid resistance and improve potency. Our results provide drug design strategies to avoid resistance that are applicable to other quickly evolving viral drug targets. Full Article
anc Histidine-Triad Hydrolases Provide Resistance to Peptide-Nucleotide Antibiotics By mbio.asm.org Published On :: 2020-04-07T01:31:16-07:00 ABSTRACT The Escherichia coli microcin C (McC) and related compounds are potent Trojan horse peptide-nucleotide antibiotics. The peptide part facilitates transport into sensitive cells. Inside the cell, the peptide part is degraded by nonspecific peptidases releasing an aspartamide-adenylate containing a phosphoramide bond. This nonhydrolyzable compound inhibits aspartyl-tRNA synthetase. In addition to the efficient export of McC outside the producing cells, special mechanisms have evolved to avoid self-toxicity caused by the degradation of the peptide part inside the producers. Here, we report that histidine-triad (HIT) hydrolases encoded in biosynthetic clusters of some McC homologs or by standalone genes confer resistance to McC-like compounds by hydrolyzing the phosphoramide bond in toxic aspartamide-adenosine, rendering them inactive. IMPORTANCE Uncovering the mechanisms of resistance is a required step for countering the looming antibiotic resistance crisis. In this communication, we show how universally conserved histidine-triad hydrolases provide resistance to microcin C, a potent inhibitor of bacterial protein synthesis. Full Article
anc The WblC/WhiB7 Transcription Factor Controls Intrinsic Resistance to Translation-Targeting Antibiotics by Altering Ribosome Composition By mbio.asm.org Published On :: 2020-04-14T01:31:22-07:00 ABSTRACT Bacteria that encounter antibiotics can efficiently change their physiology to develop resistance. This intrinsic antibiotic resistance is mediated by multiple pathways, including a regulatory system(s) that activates specific genes. In some Streptomyces and Mycobacterium spp., the WblC/WhiB7 transcription factor is required for intrinsic resistance to translation-targeting antibiotics. Wide conservation of WblC/WhiB7 within Actinobacteria indicates a critical role of WblC/WhiB7 in developing resistance to such antibiotics. Here, we identified 312 WblC target genes in Streptomyces coelicolor, a model antibiotic-producing bacterium, using a combined analysis of RNA sequencing and chromatin immunoprecipitation sequencing. Interestingly, WblC controls many genes involved in translation, in addition to previously identified antibiotic resistance genes. Moreover, WblC promotes translation rate during antibiotic stress by altering the ribosome-associated protein composition. Our genome-wide analyses highlight a previously unappreciated antibiotic resistance mechanism that modifies ribosome composition and maintains the translation rate in the presence of sub-MIC levels of antibiotics. IMPORTANCE The emergence of antibiotic-resistant bacteria is one of the top threats in human health. Therefore, we need to understand how bacteria acquire resistance to antibiotics and continue growth even in the presence of antibiotics. Streptomyces coelicolor, an antibiotic-producing soil bacterium, intrinsically develops resistance to translation-targeting antibiotics. Intrinsic resistance is controlled by the WblC/WhiB7 transcription factor that is highly conserved within Actinobacteria, including Mycobacterium tuberculosis. Here, identification of the WblC/WhiB7 regulon revealed that WblC/WhiB7 controls ribosome maintenance genes and promotes translation in the presence of antibiotics by altering the composition of ribosome-associated proteins. Also, the WblC-mediated ribosomal alteration is indeed required for resistance to translation-targeting antibiotics. This suggests that inactivation of the WblC/WhiB7 regulon could be a potential target to treat antibiotic-resistant mycobacteria. Full Article
anc EspFu-Mediated Actin Assembly Enhances Enteropathogenic Escherichia coli Adherence and Activates Host Cell Inflammatory Signaling Pathways By mbio.asm.org Published On :: 2020-04-14T01:31:22-07:00 ABSTRACT The translocation of effectors into the host cell through type 3 secretion systems (T3SS) is a sophisticated strategy employed by pathogenic bacteria to subvert host responses and facilitate colonization. Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) utilize the Tir and EspFu (also known as TccP) effectors to remodel the host cytoskeleton, culminating in the formation of attaching and effacing (AE) lesions on enterocytes. While some EPEC strains require tyrosine phosphorylation of Tir and recruitment of the host Nck to trigger actin polymerization, EHEC and certain EPEC strains, whose Tir is not phosphorylated, rely on the effector EspFu for efficient actin remodeling. Here, we investigated the role played by Tir-Nck and Tir-EspFu actin polymerization pathways during the infection of epithelial cells, as well as the host transcriptional response to the AE lesion formation induced by EPEC. We found that EspFu-mediated actin assembly promotes bacterial attachment and epithelial colonization more efficiently than Tir-Nck. Moreover, we showed that both actin polymerization mechanisms can activate inflammatory pathways and reverse the anti-inflammatory response induced by EPEC in epithelial cells. However, this activity is remarkably more evident in infections with EspFu-expressing EPEC strains. This study demonstrates the complex interactions between effector-mediated actin remodeling and inflammation. Different strains carry different combinations of these two effectors, highlighting the plasticity of pathogenic E. coli enteric infections. IMPORTANCE EPEC is among the leading causes of diarrheal disease worldwide. The colonization of the gut mucosa by EPEC results in actin pedestal formation at the site of bacterial attachment. These pedestals are referred to as attaching and effacing (AE) lesions. Here, we exploit the different molecular mechanisms used by EPEC to induce AE lesions on epithelial cells, showing that the effector EspFu is associated with increased bacterial attachment and enhanced epithelial colonization compared to the Tir-Nck pathway. Moreover, we also showed that actin pedestal formation can counterbalance the anti-inflammatory activity induced by EPEC, especially when driven by EspFu. Collectively, our findings provide new insights into virulence mechanisms employed by EPEC to colonize epithelial cells, as well as the host response to this enteric pathogen. Full Article
anc Burkholderia ubonensis Meropenem Resistance: Insights into Distinct Properties of Class A {beta}-Lactamases in Burkholderia cepacia Complex and Burkholderia pseudomallei Complex Bacteria By mbio.asm.org Published On :: 2020-04-14T01:31:22-07:00 ABSTRACT Burkholderia pseudomallei, the founding member of the B. pseudomallei complex (Bpc), is a biothreat agent and causes melioidosis, a disease whose treatment mainly relies on ceftazidime and meropenem. The concern is that B. pseudomallei could enhance its drug resistance repertoire by the acquisition of DNA from resistant near-neighbor species. Burkholderia ubonensis, a member of the B. cepacia complex (Bcc), is commonly coisolated from environments where B. pseudomallei is present. Unlike B. pseudomallei, in which significant primary carbapenem resistance is rare, it is not uncommon in B. ubonensis, but the underlying mechanisms are unknown. We established that carbapenem resistance in B. ubonensis is due to an inducible class A PenB β-lactamase, as has been shown for other Bcc bacteria. Inducibility is not sufficient for high-level resistance but also requires other determinants, such as a PenB that is more robust than that present in susceptible isolates, as well as other resistance factors. Curiously and diagnostic for the two complexes, both Bpc and Bcc bacteria contain distinct annotated PenA class A β-lactamases. However, the protein from Bcc bacteria is missing its essential active-site serine and, therefore, is not a β-lactamase. Regulated expression of a transcriptional penB'-lacZ (β-galactosidase) fusion in the B. pseudomallei surrogate B. thailandensis confirms that although Bpc bacteria lack an inducible β-lactamase, they contain the components required for responding to aberrant peptidoglycan synthesis resulting from β-lactam challenge. Understanding the diversity of antimicrobial resistance in Burkholderia species is informative about how the challenges arising from potential resistance transfer between them can be met. IMPORTANCE Burkholderia pseudomallei causes melioidosis, a tropical disease that is highly fatal if not properly treated. Our data show that, in contrast to B. pseudomallei, B. ubonensis β-lactam resistance is fundamentally different because intrinsic resistance is mediated by an inducible class A β-lactamase. This includes resistance to carbapenems. Our work demonstrates that studies with near-neighbor species are informative about the diversity of antimicrobial resistance in Burkholderia and can also provide clues about the potential of resistance transfer between bacteria inhabiting the same environment. Knowledge about potential adverse challenges resulting from the horizontal transfer of resistance genes between members of the two complexes enables the design of effective countermeasures. Full Article
anc Coping with COVID: How a Research Team Learned To Stay Engaged in This Time of Physical Distancing By mbio.asm.org Published On :: 2020-04-17T14:59:27-07:00 ABSTRACT Physical distancing imposed by the COVID-19 pandemic has led to alterations in routines and new responsibilities for much of the research community. We provide some tips for how research teams can cope with physical distancing, some of which require a change in how we define productivity. Importantly, we need to maintain and strengthen social connections in this time when we can’t be physically together. Full Article
anc Conductance Mechanisms of Rapidly Desensitizing Cation Channelrhodopsins from Cryptophyte Algae By mbio.asm.org Published On :: 2020-04-21T01:31:26-07:00 ABSTRACT Channelrhodopsins guide algal phototaxis and are widely used as optogenetic probes for control of membrane potential with light. "Bacteriorhodopsin-like" cation channelrhodopsins (BCCRs) from cryptophytes differ in primary structure from other CCRs, lacking usual residues important for their cation conductance. Instead, the sequences of BCCR match more closely those of rhodopsin proton pumps, containing residues responsible for critical proton transfer reactions. We report 19 new BCCRs which, together with the earlier 6 known members of this family, form three branches (subfamilies) of a phylogenetic tree. Here, we show that the conductance mechanisms in two subfamilies differ with respect to involvement of the homolog of the proton donor in rhodopsin pumps. Two BCCRs from the genus Rhodomonas generate photocurrents that rapidly desensitize under continuous illumination. Using a combination of patch clamp electrophysiology, absorption, Raman spectroscopy, and flash photolysis, we found that the desensitization is due to rapid accumulation of a long-lived nonconducting intermediate of the photocycle with unusually blue-shifted absorption with a maximum at 330 nm. These observations reveal diversity within the BCCR family and contribute to deeper understanding of their independently evolved cation channel function. IMPORTANCE Cation channelrhodopsins, light-gated channels from flagellate green algae, are extensively used as optogenetic photoactivators of neurons in research and recently have progressed to clinical trials for vision restoration. However, the molecular mechanisms of their photoactivation remain poorly understood. We recently identified cryptophyte cation channelrhodopsins, structurally different from those of green algae, which have separately evolved to converge on light-gated cation conductance. This study reveals diversity within this new protein family and describes a subclade with unusually rapid desensitization that results in short transient photocurrents in continuous light. Such transient currents have not been observed in the green algae channelrhodopsins and are potentially useful in optogenetic protocols. Kinetic UV-visible (UV-vis) spectroscopy and photoelectrophysiology reveal that the desensitization is caused by rapid accumulation of a nonconductive photointermediate in the photochemical reaction cycle. The absorption maximum of the intermediate is 330 nm, the shortest wavelength reported in any rhodopsin, indicating a novel chromophore structure. Full Article
anc Complete Structure of the Enterococcal Polysaccharide Antigen (EPA) of Vancomycin-Resistant Enterococcus faecalis V583 Reveals that EPA Decorations Are Teichoic Acids Covalently Linked to a Rhamnopolysaccharide Backbone By mbio.asm.org Published On :: 2020-04-28T01:30:42-07:00 ABSTRACT All enterococci produce a complex polysaccharide called the enterococcal polysaccharide antigen (EPA). This polymer is required for normal cell growth and division and for resistance to cephalosporins and plays a critical role in host-pathogen interaction. The EPA contributes to host colonization and is essential for virulence, conferring resistance to phagocytosis during the infection. Recent studies revealed that the "decorations" of the EPA polymer, encoded by genetic loci that are variable between isolates, underpin the biological activity of this surface polysaccharide. In this work, we investigated the structure of the EPA polymer produced by the high-risk enterococcal clonal complex Enterococcus faecalis V583. We analyzed purified EPA from the wild-type strain and a mutant lacking decorations and elucidated the structure of the EPA backbone and decorations. We showed that the rhamnan backbone of EPA is composed of a hexasaccharide repeat unit of C2- and C3-linked rhamnan chains, partially substituted in the C3 position by α-glucose (α-Glc) and in the C2 position by β-N-acetylglucosamine (β-GlcNAc). The so-called "EPA decorations" consist of phosphopolysaccharide chains corresponding to teichoic acids covalently bound to the rhamnan backbone. The elucidation of the complete EPA structure allowed us to propose a biosynthetic pathway, a first essential step toward the design of antimicrobials targeting the synthesis of this virulence factor. IMPORTANCE Enterococci are opportunistic pathogens responsible for hospital- and community-acquired infections. All enterococci produce a surface polysaccharide called EPA (enterococcal polysaccharide antigen) required for biofilm formation, antibiotic resistance, and pathogenesis. Despite the critical role of EPA in cell growth and division and as a major virulence factor, no information is available on its structure. Here, we report the complete structure of the EPA polymer produced by the model strain E. faecalis V583. We describe the structure of the EPA backbone, made of a rhamnan hexasaccharide substituted by Glc and GlcNAc residues, and show that teichoic acids are covalently bound to this rhamnan chain, forming the so-called "EPA decorations" essential for host colonization and pathogenesis. This report represents a key step in efforts to identify the structural properties of EPA that are essential for its biological activity and to identify novel targets to develop preventive and therapeutic approaches against enterococci. Full Article
anc Advances in Understanding the Human Urinary Microbiome and Its Potential Role in Urinary Tract Infection By mbio.asm.org Published On :: 2020-04-28T01:30:42-07:00 ABSTRACT Recent advances in the analysis of microbial communities colonizing the human body have identified a resident microbial community in the human urinary tract (UT). Compared to many other microbial niches, the human UT harbors a relatively low biomass. Studies have identified many genera and species that may constitute a core urinary microbiome. However, the contribution of the UT microbiome to urinary tract infection (UTI) and recurrent UTI (rUTI) pathobiology is not yet clearly understood. Evidence suggests that commensal species within the UT and urogenital tract (UGT) microbiomes, such as Lactobacillus crispatus, may act to protect against colonization with uropathogens. However, the mechanisms and fundamental biology of the urinary microbiome-host relationship are not understood. The ability to measure and characterize the urinary microbiome has been enabled through the development of next-generation sequencing and bioinformatic platforms that allow for the unbiased detection of resident microbial DNA. Translating technological advances into clinical insight will require further study of the microbial and genomic ecology of the urinary microbiome in both health and disease. Future diagnostic, prognostic, and therapeutic options for the management of UTI may soon incorporate efforts to measure, restore, and/or preserve the native, healthy ecology of the urinary microbiomes. Full Article
anc Minnesota association acknowledges states ancestral lands, residents By thenationshealth.aphapublications.org Published On :: 2020-05-01T05:00:17-07:00 In a nod to the people who came before them — and those who still live among them — the Minnesota Public Health Association is acknowledging ancestral lands. Full Article
anc A Cohort Comparison of Differences Between Regional and Buncombe County Patients of a Comprehensive Perinatal Substance Use Disorders Program in Western North Carolina By www.ncmedicaljournal.com Published On :: 2020-05-04T06:50:30-07:00 BACKGROUND Pregnant patients from rural counties of Western North Carolina face additional barriers when accessing comprehensive perinatal substance use disorders care at Project CARA as compared to patients local to the program in Buncombe County. We hypothesized regional patients would be less engaged in care. METHOD Using a retrospective cohort design, univariate analyses (2, t-test; P < .05) compared patients' characteristics, engagement in care, and delivery outcomes. Engagement in care, the primary outcome, was operationalized as: attendance at expected, program-specific prenatal and postpartum visits, utilization of in-house counseling, community-based and/or inpatient substance use disorders treatment, and maternal urine drug screen at delivery negative for illicit substances. RESULTS Regional patients (n = 324) were more likely than Buncombe County patients (n = 284) to have opioid [209 (64.5%) versus 162 (57.0%)] or amphetamine/methamphetamine use disorders (25 [7.7%] versus 13 [4.6%]), but less likely to have cannabis use (19 [5.9%] versus 38 [13.4%]; P = .009) and concurrent psychiatric disorders (214 [66.0%] versus 220 [77.5%]; P = .002). Engagement at postpartum visits was the significantly different outcome between patients (110/221 [49.8%] versus 146/226 [64.6%]; P = .002). LIMITATIONS Outcomes were available for 66.8% of regional and 79.6% of Buncombe County patients of one program in one predominately white, non-Hispanic region of the state. CONCLUSION Contrary to our hypothesis, regional and Buncombe County women engaged in prenatal care equally. However, a more formal transition into the postpartum period is needed, especially for regional women. A "hub-and-spokes" model that extends delivery of perinatal substance use disorders care into rural communities may be more effective for engagement retention. Full Article
anc A new cheiracanthid acanthodian from the Middle Devonian (Givetian) Orcadian Basin of Scotland and its biostratigraphic and biogeographical significance By sjg.lyellcollection.org Published On :: 2019-11-29T02:21:48-08:00 A number of partial articulated specimens of Cheiracanthus peachi nov. sp. have been collected from the Mey Flagstone Formation and Rousay Flagstone Formation within the Orcadian Basin of northern Scotland. The new, robust-bodied species is mainly distinguished by the scale ornament of radiating grooves rather than ridges. Compared to other Cheiracanthus species in the Orcadian Basin, C. peachi nov. sp. has quite a short range making it a useful zone fossil. As well as describing the general morphology of the specimens, we have also described and figured SEM images of scales and histological sections of all elements, enabling identification of other, isolated remains. Of particular biological interest is the identification of relatively robust, tooth-like gill rakers. Finally, the species has also been identified from isolated scales in Belarus, where it appears earlier and has a longer stratigraphical range, implying the species evolved in the marine deposits of the east and migrated west into the Orcadian Basin via the river systems. Full Article
anc WRKY13 Enhances Cadmium Tolerance by Promoting D-CYSTEINE DESULFHYDRASE and Hydrogen Sulfide Production By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 Hydrogen sulfide (H2S), a plant gasotransmitter, functions in the plant response to cadmium (Cd) stress, implying a role for cysteine desulfhydrase in producing H2S in this process. Whether d-CYSTEINE DESULFHYDRASE (DCD) acts in the plant Cd response remains to be identified, and if it does, how DCD is regulated in this process is also unknown. Here, we report that DCD-mediated H2S production enhances plant Cd tolerance in Arabidopsis (Arabidopsis thaliana). When subjected to Cd stress, a dcd mutant accumulated more Cd and reactive oxygen species and showed increased Cd sensitivity, whereas transgenic lines overexpressing DCD had decreased Cd and reactive oxygen species levels and were more tolerant to Cd stress compared with wild-type plants. Furthermore, the expression of DCD was stimulated by Cd stress, and this up-regulation was mediated by a Cd-induced transcription factor, WRKY13, which bound to the DCD promoter. Consistently, the higher Cd sensitivity of the wrky13-3 mutant was rescued by the overexpression of DCD. Together, our results demonstrate that Cd-induced WRKY13 activates DCD expression to increase the production of H2S, leading to higher Cd tolerance in plants. Full Article
anc Phototropin2 Contributes to the Chloroplast Avoidance Response at the Chloroplast-Plasma Membrane Interface By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 Blue-light-induced chloroplast movements play an important role in maximizing light utilization for photosynthesis in plants. Under a weak light condition, chloroplasts accumulate to the cell surface to capture light efficiently (chloroplast accumulation response). Conversely, chloroplasts escape from strong light and move to the side wall to reduce photodamage (chloroplast avoidance response). The blue light receptor phototropin (phot) regulates these chloroplast movements and optimizes leaf photosynthesis by controlling other responses in addition to chloroplast movements. Seed plants such as Arabidopsis (Arabidopsis thaliana) have phot1 and phot2. They redundantly mediate phototropism, stomatal opening, leaf flattening, and the chloroplast accumulation response. However, the chloroplast avoidance response is induced by strong blue light and regulated primarily by phot2. Phots are localized mainly on the plasma membrane. However, a substantial amount of phot2 resides on the chloroplast outer envelope. Therefore, differentially localized phot2 might have different functions. To determine the functions of plasma membrane- and chloroplast envelope-localized phot2, we tethered it to these structures with their respective targeting signals. Plasma membrane-localized phot2 regulated phototropism, leaf flattening, stomatal opening, and chloroplast movements. Chloroplast envelope-localized phot2 failed to mediate phototropism, leaf flattening, and the chloroplast accumulation response but partially regulated the chloroplast avoidance response and stomatal opening. Based on the present and previous findings, we propose that phot2 localized at the interface between the plasma membrane and the chloroplasts is required for the chloroplast avoidance response and possibly for stomatal opening as well. Full Article
anc SUMOylation Stabilizes the Transcription Factor DREB2A to Improve Plant Thermotolerance By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 Heat stress (HS) has serious effects on plant development, resulting in heavy agricultural losses. A critical transcription factor network is involved in plant adaptation to high temperature. DEHYDRATION RESPONSIVE ELEMENT-BINDING PROTEIN2A (DREB2A) is a key transcription factor that functions in plant thermotolerance. The DREB2A protein is unstable under normal temperature and is degraded by the 26S proteasome; however, the mechanism by which DREB2A protein stability dramatically increases in response to HS remains poorly understood. In this study, we found that the DREB2A protein of Arabidopsis (Arabidopsis thaliana) is stabilized under high temperature by the posttranslational modification SUMOylation. Biochemical data indicated that DREB2A is SUMOylated at K163, a conserved residue adjacent to the negative regulatory domain during HS. SUMOylation of DREB2A suppresses its interaction with BPM2, a ubiquitin ligase component, consequently increasing DREB2A protein stability under high temperature. In addition, analysis of plant heat tolerance and marker gene expression indicated that DREB2A SUMOylation is essential for its function in the HS response. Collectively, our data reveal a role for SUMOylation in the maintenance of DREB2A stability under high temperature, thus improving our understanding of the regulatory mechanisms underlying HS response in plant cells. Full Article
anc EPSIN1 Contributes to Plant Immunity by Modulating the Abundance of Pattern Recognition Receptors at the Plasma Membrane By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 Full Article
anc Magnetic resonance imaging of pulmonary arterial compliance after pulmonary endarterectomy By erj.ersjournals.com Published On :: 2020-05-07T01:15:55-07:00 Pulmonary endarterectomy (PEA) is the treatment of choice of chronic thromboembolic pulmonary hypertension (CTEPH) [1]. However, successfully operated patients may continue to suffer from dyspnoea and limitation of exercise capacity, despite improvement or even normalisation of pulmonary artery pressure (PAP), cardiac output (CO) and pulmonary vascular resistance (PVR) [2]. This absence of complete symptomatic recovery has been explained by a decreased right ventricular (RV) function reserve due to persistent increased afterload [3, 4], related to decreased pulmonary arterial compliance (PCa) more than to mildly increased PVR [5, 6]. There is therefore interest in assessing PCa in patients during the follow-up of PEA. Full Article
anc Early and Often: The Need for Comprehensive Discussion of Treatment-Induced Cancer Late Effects By pediatrics.aappublications.org Published On :: 2020-05-01T01:00:46-07:00 Full Article
anc Every Child Counts: The Importance of the 2020 Census for Pediatric Health Equity By pediatrics.aappublications.org Published On :: 2020-05-01T01:00:46-07:00 Full Article
anc Providing the Evidence for Managing Depression in Pregnancy By pediatrics.aappublications.org Published On :: 2020-05-01T01:00:46-07:00 Full Article
anc Parental Considerations Regarding Cure and Late Effects for Children With Cancer By pediatrics.aappublications.org Published On :: 2020-05-01T01:00:46-07:00 BACKGROUND: More than 80% of children with cancer become long-term survivors, yet most survivors experience late effects of treatment. Little is known about how parents and physicians consider late-effects risks against a potential survival benefit when making treatment decisions. METHODS: We used a discrete choice experiment to assess the importance of late effects on treatment decision-making and acceptable trade-offs between late-effects risks and survival benefit. We surveyed 95 parents of children with cancer and 41 physicians at Dana-Farber/Boston Children’s Cancer and Blood Disorders Center to assess preferences for 5 late effects of treatment: neurocognitive impairment, infertility, cardiac toxicity, second malignancies, and impaired growth and development. RESULTS: Each late effect had a statistically significant association with treatment choice, as did survival benefit (P < .001). Avoidance of severe cognitive impairment was the most important treatment consideration to parents and physicians. Parents also valued cure and decreased risk of second malignancies; physician decision-making was driven by avoidance of second malignancies and infertility. Both parents and physicians accepted a high risk of infertility (parents, a 137% increased risk; physicians, an 80% increased risk) in exchange for a 10% greater chance of cure. CONCLUSIONS: Avoidance of severe neurocognitive impairment was the predominant driver of parent and physician treatment preferences, even over an increased chance of cure. This highlights the importance of exploring parental late-effects priorities when discussing treatment options. Full Article
anc ACA Medicaid Expansion and Insurance Coverage Among New Mothers Living in Poverty By pediatrics.aappublications.org Published On :: 2020-05-01T01:00:46-07:00 BACKGROUND: Medicaid plays a critical role during the perinatal period, but pregnancy-related Medicaid eligibility only extends for 60 days post partum. In 2014, the Affordable Care Act’s (ACA’s) Medicaid expansions increased adult Medicaid eligibility to 138% of the federal poverty level in participating states, allowing eligible new mothers to remain covered after pregnancy-related coverage expires. We investigate the impact of ACA Medicaid expansions on insurance coverage among new mothers living in poverty. METHODS: We define new mothers living in poverty as women ages 19 to 44 with incomes below the federal poverty level who report giving birth in the past 12 months. We use 2010–2017 American Community Survey data and a difference-in-differences approach using parental Medicaid-eligibility thresholds to estimate the effect of ACA Medicaid expansions on insurance coverage among poor new mothers. RESULTS: A 100-percentage-point increase in parental Medicaid-eligibility is associated with an 8.8-percentage-point decrease (P < .001) in uninsurance, a 13.2-percentage-point increase (P < .001) in Medicaid coverage, and a 4.4-percentage-point decrease in private or other coverage (P = .001) among poor new mothers. The average increase in Medicaid eligibility is associated with a 28% decrease in uninsurance, a 13% increase in Medicaid coverage, and an 18% decline in private or other insurance among poor new mothers in expansion states. However, in 2017, there were ~142 000 remaining uninsured, poor new mothers. CONCLUSIONS: ACA Medicaid expansions are associated with increased Medicaid coverage and reduced uninsurance among poor new mothers. Opportunities remain for expansion and nonexpansion states to increase insurance coverage among new mothers living in poverty. Full Article
anc Enhancing CPR During Transition From Prehospital to Emergency Department: A QI Initiative By pediatrics.aappublications.org Published On :: 2020-05-01T01:00:46-07:00 BACKGROUND AND OBJECTIVES: High-quality cardiopulmonary resuscitation (CPR) increases the likelihood of survival of pediatric out-of-hospital cardiac arrest (OHCA). Maintenance of high-quality CPR during transition of care between prehospital and pediatric emergency department (PED) providers is challenging. Our objective for this initiative was to minimize pauses in compressions, in alignment with American Heart Association recommendations, for patients with OHCA during the handoffs from prehospital to PED providers. We aimed to decrease interruptions in compressions during the first 2 minutes of PED care from 17 seconds (baseline data) to 10 seconds over 12 months. Our secondary aims were to decrease the length of the longest pause in compressions to <10 seconds and eliminate encounters in which time to defibrillator pad placement was >120 seconds. METHODS: Our multidisciplinary team outlined our theory for improvement and designed interventions aimed at key drivers. Interventions included specific roles and responsibilities, CPR handoff choreography, and empowerment of frontline providers. Data were abstracted from video recordings of patients with OHCA receiving manual CPR on arrival. RESULTS: We analyzed 33 encounters between March 2018 and July 2019. We decreased total interruptions from 17 to 12 seconds during the first 2 minutes and decreased the time of the longest single pause from 14 to 7 seconds. We saw a decrease in variability of time to defibrillator pad placement. CONCLUSIONS: Implementation of a quality improvement initiative involving CPR transition choreography resulted in decreased interruptions in compressions and decreased variability of time to defibrillator pad placement. Full Article
anc Peanut Allergy: New Advances and Ongoing Controversies By pediatrics.aappublications.org Published On :: 2020-05-01T01:00:46-07:00 Peanut allergy is one of the most common food allergies in children, with increasing prevalence over time. The dual-allergen exposure hypothesis now supports transcutaneous sensitization to peanut as a likely pathophysiologic mechanism for peanut allergy development. As a result, there is emerging evidence that early peanut introduction has a role in peanut allergy prevention. Current first-line diagnostic tests for peanut allergy have limited specificity, which may be enhanced with emerging tools such as component-resolved diagnostics. Although management of peanut allergy includes avoidance and carrying an epinephrine autoinjector, risk of fatal anaphylaxis is extremely low, and there is minimal risk related to cutaneous or inhalational exposure. Quality of life in children with peanut allergy requires significant focus. Moving forward, oral and epicutaneous immunotherapy are emerging and exciting tools that may have a role to play in desensitization to peanut. Full Article
anc Dominance Effects and Functional Enrichments Improve Prediction of Agronomic Traits in Hybrid Maize [Genomic Prediction] By www.genetics.org Published On :: 2020-05-05T06:43:41-07:00 Single-cross hybrids have been critical to the improvement of maize (Zea mays L.), but the characterization of their genetic architectures remains challenging. Previous studies of hybrid maize have shown the contribution of within-locus complementation effects (dominance) and their differential importance across functional classes of loci. However, they have generally considered panels of limited genetic diversity, and have shown little benefit from genomic prediction based on dominance or functional enrichments. This study investigates the relevance of dominance and functional classes of variants in genomic models for agronomic traits in diverse populations of hybrid maize. We based our analyses on a diverse panel of inbred lines crossed with two testers representative of the major heterotic groups in the U.S. (1106 hybrids), as well as a collection of 24 biparental populations crossed with a single tester (1640 hybrids). We investigated three agronomic traits: days to silking (DTS), plant height (PH), and grain yield (GY). Our results point to the presence of dominance for all traits, but also among-locus complementation (epistasis) for DTS and genotype-by-environment interactions for GY. Consistently, dominance improved genomic prediction for PH only. In addition, we assessed enrichment of genetic effects in classes defined by genic regions (gene annotation), structural features (recombination rate and chromatin openness), and evolutionary features (minor allele frequency and evolutionary constraint). We found support for enrichment in genic regions and subsequent improvement of genomic prediction for all traits. Our results suggest that dominance and gene annotations improve genomic prediction across diverse populations in hybrid maize. Full Article
anc Complexes between C-Reactive Protein and Very Low Density Lipoprotein Delay Bacterial Clearance in Sepsis [INFECTIOUS DISEASE AND HOST RESPONSE] By www.jimmunol.org Published On :: 2020-05-04T13:00:27-07:00 Key Points Kupffer cells phagocytose both bacteria and CRP–VLDL complexes. High levels of CRP–VLDL complexes delay bacterial clearance. Pch disrupts CRP–VLDL complexes to improve bacterial clearance. Full Article
anc Intertwined signatures of desiccation and drought tolerance in grasses [Plant Biology] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 Grasses are among the most resilient plants, and some can survive prolonged desiccation in semiarid regions with seasonal rainfall. However, the genetic elements that distinguish grasses that are sensitive versus tolerant to extreme drying are largely unknown. Here, we leveraged comparative genomic approaches with the desiccation-tolerant grass Eragrostis nindensis and... Full Article
anc Transposon mobilization in the human fungal pathogen Cryptococcus is mutagenic during infection and promotes drug resistance in vitro [Microbiology] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 When transitioning from the environment, pathogenic microorganisms must adapt rapidly to survive in hostile host conditions. This is especially true for environmental fungi that cause opportunistic infections in immunocompromised patients since these microbes are not well adapted human pathogens. Cryptococcus species are yeastlike fungi that cause lethal infections, especially in... Full Article
anc Triptolide suppresses IDH1-mutated malignancy via Nrf2-driven glutathione metabolism [Medical Sciences] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 Isocitrate dehydrogenase (IDH) mutation is a common genetic abnormality in human malignancies characterized by remarkable metabolic reprogramming. Our present study demonstrated that IDH1-mutated cells showed elevated levels of reactive oxygen species and higher demands on Nrf2-guided glutathione de novo synthesis. Our findings showed that triptolide, a diterpenoid epoxide from Tripterygium... Full Article
anc Landscape analysis of adȷacent gene rearrangements reveals BCL2L14-ETV6 gene fusions in more aggressive triple-negative breast cancer [Genetics] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 Triple-negative breast cancer (TNBC) accounts for 10 to 20% of breast cancer, with chemotherapy as its mainstay of treatment due to lack of well-defined targets, and recent genomic sequencing studies have revealed a paucity of TNBC-specific mutations. Recurrent gene fusions comprise a class of viable genetic targets in solid tumors;... Full Article
anc NRF3-POMP-20S Proteasome Assembly Axis Promotes Cancer Development via Ubiquitin-Independent Proteolysis of p53 and Retinoblastoma Protein [Research Article] By mcb.asm.org Published On :: 2020-04-28T08:00:17-07:00 Proteasomes are essential protease complexes that maintain cellular homeostasis, and aberrant proteasomal activity supports cancer development. The regulatory mechanisms and biological function of the ubiquitin-26S proteasome have been studied extensively, while those of the ubiquitin-independent 20S proteasome system remain obscure. Here, we show that the cap ’n’ collar (CNC) family transcription factor NRF3 specifically enhances 20S proteasome assembly in cancer cells and that 20S proteasomes contribute to colorectal cancer development through ubiquitin-independent proteolysis of the tumor suppressor p53 and retinoblastoma (Rb) proteins. The NRF3 gene is highly expressed in many cancer tissues and cell lines and is important for cancer cell growth. In cancer cells, NRF3 upregulates the assembly of the 20S proteasome by directly inducing the gene expression of the 20S proteasome maturation protein POMP. Interestingly, NRF3 knockdown not only increases p53 and Rb protein levels but also increases p53 activities for tumor suppression, including cell cycle arrest and induction of apoptosis. Furthermore, protein stability and cell viability assays using two distinct proteasome inhibitor anticancer drugs, the 20S proteasome inhibitor bortezomib and the ubiquitin-activating enzyme E1 inhibitor TAK-243, show that the upregulation of the NRF3-POMP axis leads to ubiquitin-independent proteolysis of p53 and Rb and to impaired sensitivity to bortezomib but not TAK-243. More importantly, the NRF3-POMP axis supports tumorigenesis and metastasis, with higher NRF3/POMP expression levels correlating with poor prognoses in patients with colorectal or rectal adenocarcinoma. These results suggest that the NRF3-POMP-20S proteasome assembly axis is significant for cancer development via ubiquitin-independent proteolysis of tumor suppressor proteins. Full Article
anc Prognostic Indices for Advance Care Planning in Primary Care: A Scoping Review By www.jabfm.org Published On :: 2020-03-16T09:31:37-07:00 Background: Patient identification is an important step for advance care planning (ACP) discussions. Objectives: We conducted a scoping review to identify prognostic indices potentially useful for initiating ACP. Methods: We included studies that developed and/or validated a multivariable prognostic index for all-cause mortality between 6 months and 5 years in community-dwelling adults. PubMed was searched in October 2018 for articles meeting our search criteria. If a systematic review was identified from the search, we checked for additional eligible articles in its references. We abstracted data on population studied, discrimination, calibration, where to find the index, and variables included. Each index was further assessed for clinical usability. Results: We identified 18 articles with a total of 17 unique prognostic indices after screening 9154 titles. The majority of indices (88%) had c-statistics greater than or equal to 0.70. Only 1 index was externally validated. Ten indices, 8 developed in the United States and 2 in the United Kingdom, were considered clinically usable. Conclusion: Of the 17 unique prognostic indices, 10 may be useful for implementation in the primary care setting to identify patients who may benefit from ACP discussions. An index classified as "clinically usable" may not be easy to use because of a large number of variables that are not routinely collected and the need to program the index into the electronic medical record. Full Article
anc Successful Health Care Provider Strategies to Overcome Psychological Insulin Resistance in United States and Canada By www.jabfm.org Published On :: 2020-03-16T09:31:37-07:00 Purpose: To identify specific actions and characteristics of health care providers (HCPs) in the United States and Canada that influenced patients with type 2 diabetes who were initially reluctant to begin insulin. Methods: Patients from the United States (n = 120) and Canada (n = 74) were recruited via registry, announcements, and physician referrals to complete a 30-minute online survey based on interviews with patients and providers regarding specific HCP actions that contributed to the decision to begin insulin. Results: The most helpful HCP actions were patient-centered approaches to improve patients’ understanding of the injection process (ie, "My HCP walked me through the whole process of exactly how to take insulin" [helped moderately or a lot, United States: 79%; Canada: 83%]) and alleviate concerns ("My HCP encouraged me to contact his/her office immediately if I ran into any problems or had questions after starting insulin" [United States: 76%; Canada: 82%]). Actions that were the least helpful included referrals to other sources (ie, "HCP referred patient to a class to help learn more about insulin" [United States: 40%; Canada: 58%]). Conclusions: The study provides valuable insight that HCPs can use to help patients overcome psychological insulin resistance, which is a critical step in the design of effective intervention protocols. Full Article
anc Microclimate buffering and thermal tolerance across elevations in a tropical butterfly [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-04-16T05:35:47-07:00 Gabriela Montejo-Kovacevich, Simon H. Martin, Joana I. Meier, Caroline N. Bacquet, Monica Monllor, Chris D. Jiggins, and Nicola J. Nadeau Microclimatic variability in tropical forests plays a key role in shaping species distributions and their ability to cope with environmental change, especially for ectotherms. Nonetheless, currently available climatic datasets lack data from the forest interior and, furthermore, our knowledge of thermal tolerance among tropical ectotherms is limited. We therefore studied natural variation in the microclimate experienced by tropical butterflies in the genus Heliconius across their Andean range in a single year. We found that the forest strongly buffers temperature and humidity in the understorey, especially in the lowlands, where temperatures are more extreme. There were systematic differences between our yearly records and macroclimate databases (WorldClim2), with lower interpolated minimum temperatures and maximum temperatures higher than expected. We then assessed thermal tolerance of 10 Heliconius butterfly species in the wild and found that populations at high elevations had significantly lower heat tolerance than those at lower elevations. However, when we reared populations of the widespread H. erato from high and low elevations in a common-garden environment, the difference in heat tolerance across elevations was reduced, indicating plasticity in this trait. Microclimate buffering is not currently captured in publicly available datasets, but could be crucial for enabling upland shifting of species sensitive to heat such as highland Heliconius. Plasticity in thermal tolerance may alleviate the effects of global warming on some widespread ectotherm species, but more research is needed to understand the long-term consequences of plasticity on populations and species. Full Article
anc Emergent properties of branching morphologies modulate the sensitivity of coral calcification to high PCO2 [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-04-14T02:37:46-07:00 Peter J. Edmunds and Scott C. Burgess Experiments with coral fragments (i.e. nubbins) have shown that net calcification is depressed by elevated PCO2. Evaluating the implications of this finding requires scaling of results from nubbins to colonies, yet the experiments to codify this process have not been carried out. Building from our previous research demonstrating that net calcification of Pocillopora verrucosa (2–13 cm diameter) was unaffected by PCO2 (400 and 1000 µatm) and temperature (26.5 and 29.7°C), we sought generality to this outcome by testing how colony size modulates PCO2 and temperature sensitivity in a branching acroporid. Together, these taxa represent two of the dominant lineages of branching corals on Indo-Pacific coral reefs. Two trials conducted over 2 years tested the hypothesis that the seasonal range in seawater temperature (26.5 and 29.2°C) and a future PCO2 (1062 µatm versus an ambient level of 461 µatm) affect net calcification of an ecologically relevant size range (5–20 cm diameter) of colonies of Acropora hyacinthus. As for P. verrucosa, the effects of temperature and PCO2 on net calcification (mg day–1) of A. verrucosa were not statistically detectable. These results support the generality of a null outcome on net calcification of exposing intact colonies of branching corals to environmental conditions contrasting seasonal variation in temperature and predicted future variation in PCO2. While there is a need to expand beyond an experimental culture relying on coral nubbins as tractable replicates, rigorously responding to this need poses substantial ethical and logistical challenges. Full Article
anc Human recreation decreases antibody titre in bird nestlings: an overlooked transgenerational effect of disturbance [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-04-27T00:18:53-07:00 Yves Bötsch, Zulima Tablado, Bettina Almasi, and Lukas Jenni Outdoor recreational activities are booming and most animals perceive humans as predators, which triggers behavioural and/or physiological reactions [e.g. heart rate increase, activation of the hypothalamic–pituitary–adrenal (HPA) axis]. Physiological stress reactions have been shown to affect the immune system of an animal and therefore may also affect the amount of maternal antibodies a female transmits to her offspring. A few studies have revealed that the presence of predators affects the amount of maternal antibodies deposited into eggs of birds. In this study, using Eurasian blue and great tit offspring (Cyanistes caeruleus and Parus major) as model species, we experimentally tested whether human recreation induces changes in the amount of circulating antibodies in young nestlings and whether this effect is modulated by habitat and competition. Moreover, we investigated whether these variations in antibody titre in turn have an impact on hatching success and offspring growth. Nestlings of great tit females that had been disturbed by experimental human recreation during egg laying had lower antibody titres compared with control nestlings. Antibody titre of nestling blue tits showed a negative correlation with the presence of great tits, rather than with human disturbance. The hatching success was positively correlated with the average amount of antibodies in great tit nestlings, independent of the treatment. Antibody titre in the first days of life in both species was positively correlated with body mass, but this relationship disappeared at fledging and was independent of treatment. We suggest that human recreation may have caused a stress-driven activation of the HPA axis in breeding females, chronically increasing their circulating corticosterone, which is known to have an immunosuppressive function. Either, lower amounts of antibodies are transmitted to nestlings or impaired transfer mechanisms lead to lower amounts of immunoglobulins in the eggs. Human disturbance could, therefore, have negative effects on nestling survival at early life-stages, when nestlings are heavily reliant on maternal antibodies, and in turn lead to lower breeding success and parental fitness. This is a so far overlooked effect of disturbance on early life in birds. Full Article