structure

Upper lateral structure for the occasional or continuous collection of main-drive or auxiliary electrical power by a land vehicle

The upper lateral collection structure (8) is mounted on a land vehicle (1), notably an urban public transport vehicle, and cooperates, for the purpose of overhead electrical power supply to the vehicle, with fixed contact slippers (16) located along its route. This structure comprises: a conducting track (14) arranged longitudinally (NEW) the upper lateral part of the vehicle and comprising a contact region (15) for the contact slipper; an electrical connection connecting the conducting track to the electrical circuit of the vehicle; an insulating support (24) on which the conducting track is mounted; a means of mechanical connection of the collecting structure to the vehicle; and a damping device which damps out the shocks resulting from the contact slipper and ensures satisfactory contact between the conducting track and the contact slipper. This invention is of benefit to the manufacturers of electrically powered public transport vehicles.




structure

Evaporator surface structure of a circulating fluidized bed boiler and a circulating fluidized bed boiler with such an evaporator surface structure

An evaporator surface structure of a circulating fluidized bed boiler having a furnace that is enclosed by sidewalls and has a bottom and a ceiling. The evaporator surface structure includes at least one vertical and separate evaporator surface unit that is spaced apart from the sidewalls of the furnace. The at least one evaporator surface unit (i) is formed of planar water tube panels that extend from the bottom of the furnace to the ceiling of the furnace, and (ii) consists of two cross-wise joined vertical water tube panels.




structure

Method and apparatus for detecting the three-dimensional structure of a log

A method for detecting the three-dimensional structure of a log comprises the operating steps of: making the log (2) rotate axially, leaving it free to translate during the rotation;during said rotation repeating the step of detecting the relative surface structure of the log (2) at least at one log surface portion (13), so that the relative surface structure of substantially all of the points of at least the log (2) lateral surface is detected at least once; andcombining the relative surface structures detected to reconstruct an overall surface structure for at least the log (2) lateral surface,the detection steps being carried out in such a way that each detection step result shares at least several points with at least one other detection step result, while the step of combining the relative surface structures is carried out in such a way that the shared points are made to coincide with each other.




structure

Method for assembling a structure

A method of assembling a structure of timber lengths, e.g. roof trusses, includes a number of upper and lower structure lengths or pieces, as well as a number of diagonals or braces etc., in which the timber lengths are laid out and fixed to one another. The structure formed from the timber lengths fixed to one another is observed by a first camera for positional determination of the structure and comparison of observation data with structure data and for controlling at least a second camera. The structure is fed into a unit for pressing in place of jointing pieces, e.g. corrugated fasteners, over the joints between the timber lengths by at least one positionable press unit, and the second camera observes the infed structure and positions the press unit at the correct position over a joint for pressing in place of a jointing piece.




structure

Disassembling method of mandrel used for manufacturing composite material structure and disassembling apparatus of mandrel

The present invention provides a technique which can disassemble a mandrel having a substantially cylindrical shape and being dividable into a plurality of segments, easily and efficiently. The disassembling method comprises, in the mandrel adhesively attached with a composite material structure on an outer peripheral surface thereof, a rotation step of rotating the pair of support rings along with the mandrel to position a segment which is a detached target to an uppermost portion; and a segment detaching step of detaching the segment which is the detached target positioned at the uppermost portion, from the pair of support rings; wherein in the segment detaching step, the segment which is the detached target is moved in a vertically downward direction to a position inside of the mandrel, between the pair of support rings, and is carried out from between the pair of support rings.




structure

Method for fabricating a high coercivity hard bias structure for magnetoresistive sensor

A hard bias (HB) structure for longitudinally biasing a free layer in a MR sensor is disclosed that includes a mildly etched seed layer and a hard bias (HB) layer on the etched seed layer. The HB layer may contain one or more HB sub-layers stacked on a lower sub-layer which contacts the etched seed layer. Each HB sub-layer is mildly etched before depositing another HB sub-layer thereon. The etch may be performed in an IBD chamber and creates a higher concentration of nucleation sites on the etched surface thereby promoting a smaller HB average grain size than would be realized with no etch treatments. A smaller HB average grain size is responsible for increasing Hcr in a CoPt HB layer to as high as 2500 to 3000 Oe. Higher Hcr is achieved without changing the seed layer or HB material and without changing the thickness of the aforementioned layers.




structure

Structures for improving current carrying capability of interconnects and methods of fabricating the same

Interconnect structures and methods of fabricating the same are provided. The interconnect structures provide highly reliable copper interconnect structures for improving current carrying capabilities (e.g., current spreading). The structure includes an under bump metallurgy formed in a trench. The under bump metallurgy includes at least: an adhesion layer; a plated barrier layer; and a plated conductive metal layer provided between the adhesion layer and the plated barrier layer. The structure further includes a solder bump formed on the under bump metallurgy.




structure

Filtering film structure

A filtering film structure includes a film, a conductive layer and a dielectric layer. The film includes a plurality of holes. The conductive layer is disposed on the inner surface of the holes, and the dielectric layer is disposed on the conductive layer. When applying a voltage to the conductive layer, an electrical charge layer forms on the surface of the dielectric layer.




structure

Group III nitride based quantum well light emitting device structures with an indium containing capping structure

Group III nitride based light emitting devices and methods of fabricating Group III nitride based light emitting devices are provided. The emitting devices include an n-type Group III nitride layer, a Group III nitride based active region on the n-type Group III nitride layer and comprising at least one quantum well structure, a Group III nitride layer including indium on the active region, a p-type Group III nitride layer including aluminum on the Group III nitride layer including indium, a first contact on the n-type Group III nitride layer and a second contact on the p-type Group III nitride layer. The Group III nitride layer including indium may also include aluminum.




structure

3DIC packages with heat dissipation structures

A package includes a first die and a second die underlying the first die and in a same first die stack as the first die. The second die includes a first portion overlapped by the first die, and a second portion not overlapped by the first die. A first Thermal Interface Material (TIM) is over and contacting a top surface of the first die. A heat dissipating lid has a first bottom surface contacting the first TIM. A second TIM is over and contacting the second portion of the second die. A heat dissipating ring is over and contacting the second TIM.




structure

Defect mitigation structures for semiconductor devices

A method and a semiconductor device for incorporating defect mitigation structures are provided. The semiconductor device comprises a substrate, a defect mitigation structure comprising a combination of layers of doped or undoped group IV alloys and metal or non-metal nitrides disposed over the substrate, and a device active layer disposed over the defect mitigation structure. The defect mitigation structure is fabricated by depositing one or more defect mitigation layers comprising a substrate nucleation layer disposed over the substrate, a substrate intermediate layer disposed over the substrate nucleation layer, a substrate top layer disposed over the substrate intermediate layer, a device nucleation layer disposed over the substrate top layer, a device intermediate layer disposed over the device nucleation layer, and a device top layer disposed over the device intermediate layer. The substrate intermediate layer and the device intermediate layer comprise a distribution in their compositions along a thickness coordinate.




structure

Structure for gunpowder charge in combined fracturing perforation device

This invention provides a structure for gunpowder charge for charging gunpowders of different rates in combined fracturing perforation devices. The structure for gunpowder charge is convenient to mount and transport. In one embodiment, said structure for gunpowder charge comprises an inner gunpowder box located between adjacent perforating charges in the charge frame of a perforation device, and an outer gunpowder box attached to the outer wall of the charge frame, wherein said outer gunpowder box comprises one or two box units (2 or 4) with at least one claw at the inner side of said box unit, said claw can be locked into a groove or installation hole of the charge frame, and wherein said inner gunpowder box and said outer gunpowder box are charged with gunpowders of different burning rates.




structure

Pipe connecting structure of water heater

A pipe connecting structure of a water heater. Individual parts in the water heater are integrally coupled with a pipe body, which is injection-molded, provides paths of tap water and hot water, reduces the number of pipes connecting the individual parts, and simplifies the connection structure of the pipes. The pipe connecting structure of the water heater includes a tap water inlet pipe connected from a tap water inlet to a heat exchanger; a hot water supply pipe connected from the heat exchanger to a hot water outlet; a flow sensor for measuring the flow rate of the tap water introduced via the tap water inlet; and a flow control valve for controlling the flow rate of the hot water discharged via the hot water outlet. The pipe body connects and is integral with the tap water inlet, the tap water inlet pipe, the hot water supply pipe, and the hot water outlet.




structure

Methods of forming a metal telluride material, related methods of forming a semiconductor device structure, and related semiconductor device structures

Accordingly, a method of forming a metal chalcogenide material may comprise introducing at least one metal precursor and at least one chalcogen precursor into a chamber comprising a substrate, the at least one metal precursor comprising an amine or imine compound of an alkali metal, an alkaline earth metal, a transition metal, a post-transition metal, or a metalloid, and the at least one chalcogen precursor comprising a hydride, alkyl, or aryl compound of sulfur, selenium, or tellurium. The at least one metal precursor and the at least one chalcogen precursor may be reacted to form a metal chalcogenide material over the substrate. A method of forming a metal telluride material, a method of forming a semiconductor device structure, and a semiconductor device structure are also described.




structure

Structure of inflatable packaging device

A packaging device includes first and second thermoplastic films superposed with each other, wherein predetermined portions of the thermoplastic films are bonded creating a plurality of fluid containers, a plurality of check valves each connected to a corresponding fluid container, a fluid passage in a first direction connected to the check valves, and a second border between an inflated section including the plurality of fluid containers and an uninflated section, wherein the first and second thermoplastic films are folded and two side edges of the films are bonded and a first portion of a first border connecting the inflated section to a second section is folded and an overlapped portion of the first portion is bonded leaving a remaining portion of the first border unbonded wherein the uninflated section forms a loop, and wherein the uninflated section forming the loop is folded into the inflated section to form a lining.




structure

Printable book binding structure

A book binding structure which includes at least one adhesive binder strip and a pair of supporting sheets for supporting the binder strip during a binder strip printing process. Opposite ends of the binder strip are supported on separate support sheets, which are coupled together only by way of the binder strip to allow independent movement of the ends of the binder strip. The sheets are arranged to support the binder strip as is passes along the paper path of a conventional printer.




structure

Touch apparatus, transparent scan electrode structure, and manufacturing method thereof

A touch apparatus, a transparent scan electrode, a geometric electrode structure and a manufacturing method thereof are disclosed. The transparent scan electrode structure comprises a first transparent scan electrode, a second transparent scan electrode and an isolative layer. The first transparent scan electrode comprises a first resistance region and a second resistance region. A resistance value of the second resistance region is higher than that of the first resistance region. The isolative layer is disposed between the first transparent scan electrode and the second transparent scan electrode.




structure

Support for supporting a structure on a surface

A support for supporting a structure on a surface, comprising at least one support element, each support element comprising a piston, a cylinder in which the piston is moveable, and a brake for maintaining the piston in a position that is stable relative to the cylinder, wherein the piston and the cylinder are arranged so that a loading associated with the structure effects an adjustment of the support element, and wherein an increase in hydraulic pressure within the cylinder, effected by the loading associated with the structure, activates the brake.




structure

Structure of active mount

An active mount structure may include an actuator coupled to an actuator plate coupled to an orifice plate within a housing, wherein the actuator includes a plunger coupled to the actuator plate, a first rod rotatably coupled to a bottom of the plunger and rotated by a first motor unit, wherein the first rod includes a rotating shaft rotatably coupled to the plunger, one side of the rotating shaft extending to form an extending portion, and a rotation retention portion formed at the extending portion, a swash plate defining a center hole therein and having shaft protrusions, wherein the first rod may be disposed in the center hole and the rotation retention portion may be engaged to the swash plate, and a second rod engaged at the swash plate and raised or lowered by a second motor unit, wherein the shaft protrusions may be rotatably coupled to the housing.




structure

Vehicle front structure

Provided is a vehicle front structure including a front bumper and a lower grille. The front bumper includes a front-bumper lower surface extending in a vehicle rear direction, the front-bumper lower surface having a pair of bottom surface portions at respective side portions and a recessed surface at a center portion, the recessed surface extending from the pair of bottom surface portions and being recessed in an upper direction. The lower grille includes an annular portion arranged at the lower side of a rear end of the recessed surface and forming an opening, a protruding portion protruding from a lower portion of the annular portion so as to protrude in a front direction and oppose to the recessed surface, and a reinforcing portion extending from an upper portion of the annular portion to a back surface of the recessed surface and reinforcing the front-bumper lower surface.




structure

Vehicle body structure

There is provided a vehicle body structure that can improve collision performance at the time of a rear collision. The vehicle body structure includes first and second crash boxes that are provided at rear ends of rear side members. Further, the second crash boxes are disposed at positions different from the positions of the first crash boxes in a vertical direction of the vehicle. The second crash boxes, which are disposed at the positions different from the positions of the first crash boxes, can absorb a load applied from bumper reinforcement of another vehicle. Since a load at the time of a rear collision is absorbed by the second crash boxes, it is possible to suppress the deformation of a trunk that is provided at the rear portion of a vehicle body.




structure

Structure for absorbing frontal collision energy of vehicle

A structure for absorbing frontal collision energy of a vehicle absorbs frontal collision energy of a vehicle using both front side members configured to support a bumper beam disposed at a front side of a vehicle body, a shock absorber housing panel disposed outside the front side member, and a fender apron member disposed outside the shock absorber housing panel, and the structure includes: an enlarged member installed to be inclined between an outer surface of the front side member and a rear surface of the fender apron member so as to be spaced forward and apart from the outer surface of the front side member; and an enlarged frame engaged between a lower side of the fender apron member and a front mounting portion of a sub-frame.




structure

Attachment structure for adjustable air diffuser

An adjustable air diffuser is disposed in an airflow channel into which a travelling wind is directed through an opening provided in a bumper face. The diffuser opens and closes the channel by movable louver blades driven by an actuator. An upper part of the diffuser is disposed to face a rear wall of the bumper face and is attached to a bumper beam extending along a vehicle width direction. A lower part of the diffuser is attached to a vehicle body structural member. The attachment structure includes a column that is disposed behind the adjustable air diffuser. A lower end of the column is attached to a lower end of the adjustable air diffuser. Weak portions are provided on the column such that the column breaks when the column interferes with another member behind the column.




structure

Pedestrian-friendly structure for motor vehicle front end

A pedestrian-friendly forward structure of a motor vehicle includes a grill opening reinforcement (GOR), a front fascia located forward of and spaced from the GOR, and a support bracket extending transversely to the vehicle forward of the GOR and rearward of the front fascia. The support bracket has a transverse cross-bar and left and right legs extending rearward from a cross-bar adjacent opposite ends thereof. The legs are attached to respective outboard positions on the GOR, and the cross-bar has an upper flange underlying an upper rear panel of the front fascia. If a pedestrian strikes the forward structure, the fascia and support bracket yield rearward in an injury-reducing manner.




structure

Bumper structure

A bumper structure, that can mitigate impact when a collision body collides with a vehicle transverse direction end portion of an impact absorbing member, is obtained. A bumper structure has a bumper reinforcement that extends along a vehicle transverse direction at a vehicle front-rear direction end portion; an impact absorbing member that is provided at a vehicle front-rear direction outer side of this bumper reinforcement, and at which an outer side surface of a vehicle transverse direction end portion is made to be an inclined surface that is inclined toward a vehicle transverse direction outer side, from a vehicle front-rear direction outer side toward a vehicle front-rear direction inner side; and a plate-shaped member that is provided along the inclined surface, and whose rigidity is higher than the impact absorbing member.




structure

Structure for absorbing energy

A structure for absorbing energy from impacts thereon, the structure being plastically deformable by an impact, with, if appropriate, the possibility that it is at least to some extent disrupted. The structure can include a) ribs for reinforcement, the ribs arranged with respect to one another at an angle with respect to the axial direction such that on failure of a rib a force acting on the structure is immediately absorbed axially by another rib, b) ribs running axially, the ribs being in essence corrugated or of zigzag shape, c) at least one rib running axially in a first plane and connected to at least two ribs running axially in a second plane rotated with respect to the first plane. The structure includes, in the direction of impact, at least two layers, each of which has different compressibility properties and different failure properties.




structure

Bumper reinforcement structure

A bumper reinforcement structure capable of achieving a weight reduction while still securing required bending strength in a bumper reinforcement structure with closed cross-section structure configured by joining together an inside member and an outside member. A bumper reinforcement is formed with two closed cross-sections configured by joining together three top-to-bottom flanges of an inner panel to three top-to-bottom flanges of an outer panel. The flanges of the inner panel are disposed in the same front-rear direction position as that of the wall portions that configure the closed cross-sections.




structure

***WITHDRAWN PATENT AS PER THE LATEST USPTO WITHDRAWN LIST***Front fascia or grill support structure and aerodynamic shutter assembly

A fascia support structure and aerodynamic shutter assembly for a vehicle includes a fascia support structure, comprising: a top portion comprising a substantially U-shaped body comprising a top fascia support member, a first side fascia support member and a second side fascia support member, the first side fascia support member having a first side baffle, the second side fascia support member having a second side baffle; and a bottom portion comprising a bottom baffle, the bottom portion attached to the first and second side fascia support members, the top portion and the bottom portion comprising a fascia support structure opening, at least one of the first side baffle, second side baffle or bottom baffle having a seal member disposed on a leading edge. The assembly also includes an aerodynamic shutter system comprising a shutter frame having a shutter frame opening and a plurality of rotatable shutters disposed therein.




structure

Vehicle-body structure of vehicle

A panel member having a U-shaped cross section includes step portions at an upper face portion and a lower face portion, and a distance, in a vehicle longitudinal direction, of the step potions from a panel member formed substantially in a flat-plate shape, is configured such that the distance at a central portion, in the vehicle width direction, of a bumper reinforcement is the maximum and the distance decreases gradually toward an outward direction of the vehicle. Accordingly, the vehicle-body structure which can properly ensure the bending strength and also attain the light weight of the bumper reinforcement, improving the load transmission from the bumper reinforcement to crash cans, can be provided.




structure

Vehicle front structure

When a collision load is transmitted to a gusset, the load is transmitted to an inner side in a vehicle width direction via an inclined wall. Accordingly, moment that causes a front side member to be projected and bent inward to the inner side in the vehicle width direction with an intersection being a starting point acts on the front side member. Then, the front side member, which has been projected and bent inward, collides with a power unit that is disposed in an engine compartment from an outer side in the vehicle width direction. Accordingly, a lateral force to the inner side in the vehicle width direction can be obtained for a vehicle.




structure

Vehicle-body front structure of vehicle

A first projection portion projecting outward, in a vehicle width direction, from a front side frame is provided. A front end of the first projection portion is located at the same position, in the vehicle longitudinal direction, as a connection portion of a crash can to the front side frame or located in back of the connection portion. An outward side face of the first projection portion is configured to slant rearward and inward in a plan view. The first projection portion and a power unit are arranged to overlap each other in the vehicle longitudinal direction. Accordingly, an impact transmitted to a vehicle-compartment side in a small overlap collision can be reduced, restraining repair costs of the crash can broken in a low-speed collision as well as maintaining appropriate design flexibility of a vehicle-body front portion.




structure

Vehicle bumper mounting structure

A fender front-side step portion has first and second fender front-side fixing portions that engage with and fasten a bumper spacer. The bumper spacer is provided with: a spacer body; a bumper-spacer reinforcing portion that extends toward a fender lower-end portion of a fender panel from the bottom end of the spacer body; and a bumper-spacer rear-side fixing portion which is disposed on the bumper-spacer reinforcing portion, and which overlaps with and fastens the front of the fender lower-end portion. The bumper-spacer rear-side fixing portion is disposed in a position further to the rear than the fender front-side step portion in the longitudinal direction of a vehicle.




structure

Mold structure and bumper

A mold structure used to form a molded object having an undercut portion includes a fixed mold as a first mold having a first molding surface for molding an obverse surface of the molded object; a slide core having an undercut molding surface used to mold the undercut portion as part of the obverse surface of the molded object; and a movable mold as a second mold having a second molding surface used to mold the reverse surface of the molded object. The first molding surface and the undercut molding surface form a cavity surface. A step is formed between the first molding surface and the second molding surface at a parting position between the fixed mold and the slide core on the cavity surface.




structure

***WITHDRAWN PATENT AS PER THE LATEST USPTO WITHDRAWN LIST***Front fascia or grill support structure and aerodynamic shutter assembly

A fascia support structure and aerodynamic shutter assembly for a vehicle includes a fascia support structure, comprising: a top portion comprising a substantially U-shaped body comprising a top fascia support member, a first side fascia support member and a second side fascia support member, the first side fascia support member having a first side baffle, the second side fascia support member having a second side baffle; and a bottom portion comprising a bottom baffle, the bottom portion attached to the first and second side fascia support members, the top portion and the bottom portion comprising a fascia support structure opening, at least one of the first side baffle, second side baffle or bottom baffle having a seal member disposed on a leading edge. The assembly also includes an aerodynamic shutter system comprising a shutter frame having a shutter frame opening and a plurality of rotatable shutters disposed therein.




structure

Railway coupler core structure for increased strength and fatigue life of resulting knuckle

A finger core for forming the front part of a knuckle for a railcar, said finger core comprising a single opening to form a single rib at the horizontal center line of the resulting knuckle.




structure

Car equipment protection structure for railcar

A car includes a car equipment protection structure, The car equipment protection structure includes an underframe, couplers and guide members. Each of the guide members is provided on a railcar inner side of an attached flange portion of the underframe to which the couplers are attached. Moreover, the guide members respectively include inclined surfaces, each of which is opposed to at least a part of the coupler. Each of the inclined surfaces is inclined toward the railcar inner side as it extends downward.




structure

Lightweight compound cab structure for a rail vehicle

An integrated self-supporting and deformation-resistant modular driver's cabin structure for mounting to the front end of a rail vehicle body and for providing a driver space and a windshield opening, is composed of a composite sandwich structure with a single, common, continuous outer skin layer, a single, common, continuous inner skin layer and an internal structure wholly covered with and bonded to the inner and outer skin layers, the internal structure comprising a plurality of core elements. The driver's cabin structure comprises at least: side pillars each having a lower end and an upper end, and an undercarriage structure at the lower end of each of the side pillars. The fiber-reinforced sandwich located in the side pillars is provided with several layers of fibers oriented to provide a high bending stiffness. The fiber-reinforced sandwich of the undercarriage structure is such to transfer static and crash loads without flexural buckling.




structure

Device for electrical characterization of molecules using CNT-nanoparticle-molecule-nanoparticle-CNT structure

A method of forming an electrode is disclosed. A carbon nanotube is deposited on a substrate. A section of the carbon nanotube is removed to form at least one exposed end defining a first gap. A metal is deposited at the at least one exposed end to form the electrode that defines a second gap.




structure

Cleaning structure for floating oil and substance on water surface

A cleaning structure for floating oil and substance on water surface provided by the present invention comprises at least one cleaning ball and a threading rope. The cleaning ball comprises a plurality of yarns arranged in parallel, and a tie is used for bundling the yarns at the middle section to form a ball structure. A fixing ring is threaded with the tie, and the threading rope is threaded through the fixing ring of each of the cleaning balls. The tie of each of the cleaning balls can be threaded with the threading rope in equal intervals beforehand, and the cleaning balls formed by bundling the side by side arranged yarns with the ties are arranged on the threading rope in equal intervals to form the cleaning structure. The yarns of the cleaning ball can be made of water repellent fiber yarn or water repellent reticulated yarn which can be spread as an expanded absorbing surface while floating on water surface, and the gaps of each of the fiber yarns are formed as spaces for absorbing floating oil and substance. The cleaning structure made of the water repellent material can be prevented from absorbing water and sinking. Thereby, floating oil and substance can be cleaned effectively.




structure

Nanostructured sorbent materials for capturing environmental mercury vapor

The present invention is a method and material for using a sorbent material to capture and stabilize mercury. The method for using sorbent material to capture and stabilize mercury contains the following steps. First, the sorbent material is provided. The sorbent material, in one embodiment, is nano-particles. In a preferred embodiment, the nano-particles are unstabilized nano-Se. Next, the sorbent material is exposed to mercury in an environment. As a result, the sorbent material captures and stabilizes mercury from the environment. In the preferred embodiment, the environment is an indoor space in which a fluorescent has broken.




structure

Passive adaptive structures

Embodiments of an aerodynamic structural insert frame comprise a leading edge, a trailing edge opposite the leading edge, and at least one cavity between the leading edge and trailing edge, wherein the aerodynamic structural insert frame is configured to deflect upon activation by an external stimulus; at least one deformable buckling member extending the distance between opposite edges of the cavity, wherein the deflection of the aerodynamic structural insert frame is configured to trigger deflection of the deformable buckling member; a pivot region; and at least one stopper bar attached to and extending from one edge of the cavity a distance less than the distance between opposite edges of the cavity, wherein the stopper bar is configured to stop the deflection of the aerodynamic structural insert and the buckling member when the stopper bar strikes an opposite edge of the cavity.




structure

Sheet structure having at least one colored surface

The present invention relates to a sheet structure for application to a region of the human body, including the face, the structure comprising: a colored matrix;a first substrate situated on a first side of the matrix, a first surface of the sheet structure being defined by the first substrate; anda second substrate situated on a second side of the matrix, opposite the first, a second surface of the sheet structure being defined by the second substrate; the first and second substrates having different opacities, and at least one of the first and second substrates having an opacity that is low enough to enable the subjacent colored matrix to show through in such a manner that the first and second surfaces of the matrix appear to be of different colors.




structure

Protective wire net, a protective structure constructed with the net, and the use of the protective wire net for the construction of a protective structure

A protective wire net including an array of longitudinal wires arranged side by side and each intertwined with at least one respective adjacent longitudinal wire. Each of one or more longitudinal metal cables is also intertwined with at least one adjacent longitudinal wire. One or more transverse wires and/or metal cables may also be provided, arranged in a transverse direction relative to the longitudinal wires and outside intertwining regions defined by portions of adjacent longitudinal wires which are bent around one another, the transverse wires and/or metal cables being intertwined or interlaced with one or more of the longitudinal wires.




structure

Windable steel net reinforcement structure

The present invention relates to a steel net reinforcement structure which is used for a conveyer belt or a shutter screen. The steel net reinforcement structure comprises: a steel net including hooks projecting from both sides thereof; a reinforcement including a slit cut open along a diagonal direction on both sides thereof; and a steel core which can lock the hooks which are inserted on both inner sides of the reinforcement. The steel net reinforcement structure can be wound conveniently and flexibly while reinforcing strength of the steel net.




structure

Tower structure

Embodiments of the invention generally relate a method and apparatus for a tower structure. In one embodiment, the tower structure comprises a first base plate comprising a first hinge device, a first structural section having a first side and a second side, the first structural section coupled to a second base plate comprising a second hinge device, a second structural section coupled to the first structural section, and an aerial component coupled to the second structural section, wherein the first structural section is rotatable relative to the first base plate in a first rotational axis, the second structural section is rotatable relative to the first structural section in a second rotational axis, and at least a portion of the second structural section is received in a channel formed in the first side of the first structural section when the first structural section and the second structural section are substantially parallel.




structure

Beam structure

A beam structure of the present disclosure includes a baffle plate. A plurality of lap strips are attached around outer edges of the baffle plate. An adhesive layer is applied to outer surfaces of the lap strips. A plurality of sidewalls are assembled together around the adhesive layer, the lap strips and the baffle plate, thereby forming the beam structure. In an embodiment, the beam structure may be used as a boom assembly for a machine, such as an excavator machine.




structure

Shaft sealing device and valve structure using the same

A shaft sealing device switches a sealing state and an unsealing state of a fluid, with high sealing performance maintained, because no abrasion accompanies movement of a sealing material or a sealing member, enabling feeding a fluid at a predetermined flow rate, and adjusts the expanding rate of the sealing material with the quantity of an external electric signal and accordingly adjusts the contact face pressure to enable controlling the amount of leakage of the fluid highly precisely, so that it can be used for all applications. The shaft sealing device includes a shaft sealing body formed of a macromolecular material and made expansible or contractible, or deformable, through external electrostimuli applied to a shaft sealing portion disposed in a device body, and flow passages disposed in the shaft sealing portion for feeding the fluid leaked due to the expansion or contraction, or the deformation, of the shaft sealing body.




structure

Tubular structure and method for making the same

A tubular structure and method for making a tubular structure are provided, where the tubular structure includes at least one layer of braided strands. In general, at least one portion of the braided strands exhibits a braid pattern of crests and troughs (e.g., a wave pattern, which may include sinusoidal, square, and/or sawtooth waves) along a length of the tubular structure. The wave pattern can be created by rotating the mandrel onto which the tubular structure is braided during the braiding process, such as by angularly oscillating the mandrel about its longitudinal axis or about its transverse axis. As a result, the tubular structures may have increased radial strength, collapse resistance, torque transmission, column strength, and kink resistance. The tubular structures may be used in medical devices, such as stent-grafts, as well as in other medical and non-medical devices, such as in hoses, tubing, filters, and other devices.




structure

Energy-absorbing textile structure, in particular for use in vehicle construction and method for producing said structure

Energy-absorbing textile structure, in particular for use in vehicle construction, which has high-tensile yarns for absorbing force, is formed by a braided fabric (2) with standing ends (3) in the force input direction and in that the textile structure has at least one region (4) with local modification of the fiber structure (2, 3).




structure

Cables with intertwined strain relief and bifurcation structures

An electrical device such as a headset may have a cable. Wires in the cable may be used to connect speakers in the headset to a connector such as an audio jack. The cable may have a tubular intertwined cable cover that covers the wires. Computer-controlled servo motors in fiber intertwining equipment may be adjusted in real time so that intertwined attributes such as intertwining density and intertwining tension are varied as a function of length along the intertwined cable cover. The fiber intertwining equipment may make these variations to locally increase the strength of the intertwined cable cover and the cable in the vicinity of a bifurcation in the cable and in the vicinity of the portion of the cable that terminates at the audio jack.