abi

Liam Payne's luxury manor up for rental availability for astonishing sum

Liam Payne moved in to his new house with GF Kate Cassidy in SeptemberLate singer, Liam Payne’s luxury mansion has been put on rent within a month of the Teardrops singer’s passing. Payne shifted to his new manor with girlfriend, Kate Cassidy located in the South Florida in...




abi

21st Annual Meeting of the Independent Accountability Mechanisms of Multilateral Banks and International Financial Institutions - Masatsugu Asakawa

Remarks by Masatsugu Asakawa, President, Asian Development Bank, at the 21st Annual Meeting of the Independent Accountability Mechanisms of Multilateral Banks and International Financial Institutions, 1 October 2024, ADB headquarters, Manila, Philippines




abi

Development Asia: Enhancing Statistical Capabilities for Climate Action

Climate change poses an increasing threat to people and their livelihoods. Record heat waves, catastrophic floods, prolonged droughts, and other extreme weather events in Asia and the Pacific are becoming more frequent.




abi

Asian Development Blog: Empowering Women with Disabilities: Key Actions for Inclusive Sports in the Pacific

Inclusive sports can empower women with disabilities, and foster accessibility, social integration, and gender equality in the Pacific. Recent Paralympic milestones and policy examples illustrate the ongoing need for supportive infrastructures and greater representation to create equitable opportunities in sports.




abi

color laserjet 1600 documentation availability

color laserjet 1600 documentation availability




abi

Loan No. 2602-CAM (SF): GMS Rehabilitation of the Railway in Cambodia (Supplementary) [ICB2-G7]




abi

Loan No. 2517-VIE: Renewable Energy Development and Network Expansion and Rehabilitation for Remote Communes Sector Project [G04]




abi

Fiscal Sustainability and Financial Markets Development Program (Subprogram 2)




abi

Asia-Pacific Trade Facilitation Report 2024: Promoting Sustainability and Resilience of Global Value Chains

This report examines the progress of trade facilitation in Asia and the Pacific, highlights recent trends in paperless trade, and evaluates the impact of trade facilitation initiatives on trade costs and overall trade.




abi

Will implants that meld minds with machines enhance human abilities?

Devices that let people with paralysis walk and talk are rapidly improving. Some see a future in which we alter memories and download skills – but major challenges remain




abi

Ancient humans lived inside a lava tube in the Arabian desert

Underground tunnels created by lava flows provided humans with shelter for thousands of years beneath the hot desert landscape of Saudi Arabia




abi

4 Eating Habits May Help Older Women Maintain Weight Loss

Title: 4 Eating Habits May Help Older Women Maintain Weight Loss
Category: Health News
Created: 8/28/2012 2:05:00 PM
Last Editorial Review: 8/29/2012 12:00:00 AM




abi

More Baby Boomers Opting to Cohabit, Not Marry

Title: More Baby Boomers Opting to Cohabit, Not Marry
Category: Health News
Created: 8/31/2012 10:05:00 AM
Last Editorial Review: 8/31/2012 12:00:00 AM




abi

Babies May Remember Words Heard Before Birth

Title: Babies May Remember Words Heard Before Birth
Category: Health News
Created: 8/26/2013 4:36:00 PM
Last Editorial Review: 8/27/2013 12:00:00 AM




abi

Overconfident Folks May Blind Others to Their Real Abilities

Title: Overconfident Folks May Blind Others to Their Real Abilities
Category: Health News
Created: 8/27/2014 2:36:00 PM
Last Editorial Review: 8/28/2014 12:00:00 AM




abi

Most U.S. Babies Get Their Vaccines: CDC

Title: Most U.S. Babies Get Their Vaccines: CDC
Category: Health News
Created: 8/28/2014 4:36:00 PM
Last Editorial Review: 8/29/2014 12:00:00 AM




abi

New Moms Can Avoid Back Injury When Caring for Their Babies

Title: New Moms Can Avoid Back Injury When Caring for Their Babies
Category: Health News
Created: 8/25/2015 12:00:00 AM
Last Editorial Review: 8/26/2015 12:00:00 AM




abi

Music Therapy Helps Preemie Babies Thrive

Title: Music Therapy Helps Preemie Babies Thrive
Category: Health News
Created: 8/25/2016 12:00:00 AM
Last Editorial Review: 8/25/2016 12:00:00 AM




abi

Does Race Matter in Care 'Preemie' Babies Receive?

Title: Does Race Matter in Care 'Preemie' Babies Receive?
Category: Health News
Created: 8/28/2017 12:00:00 AM
Last Editorial Review: 8/29/2017 12:00:00 AM




abi

Babies of Opioid-Addicted Moms May Struggle in School

Title: Babies of Opioid-Addicted Moms May Struggle in School
Category: Health News
Created: 8/30/2018 12:00:00 AM
Last Editorial Review: 8/30/2018 12:00:00 AM




abi

When Do Babies Start Teething?

Title: When Do Babies Start Teething?
Category: Diseases and Conditions
Created: 12/2/2021 12:00:00 AM
Last Editorial Review: 8/23/2022 12:00:00 AM




abi

Disability Payments Can Help Keep Veterans With Diabetes Out of the Hospital

Title: Disability Payments Can Help Keep Veterans With Diabetes Out of the Hospital
Category: Health News
Created: 7/8/2022 12:00:00 AM
Last Editorial Review: 7/8/2022 12:00:00 AM




abi

Cannabis and Pain Management

Family physicians are fielding questions about cannabis --particularly for the use of cannabis for treatment of pain. Like about every substance ingested to treat medical conditions, cannabis has risks and benefits. But regarding evidence-based practice and practice-based recommendations for patients about cannabis use, the cart is in front of the horse. Cannabis use is still illegal at a federal level and a Schedule 1 drug, but most states have challenged federal law by decriminalizing or legalizing cannabis for a variety of uses. Research is difficult due to this federal status as a Schedule 1 drug since federal funding is not readily available to support research. As a result, physicians have little to no guidance about the clinical usefulness of the product. This article explores what we know and what we are learning about cannabis, and the authors provide clinical guidance for patient care based on this evidence.




abi

Supporting Evidence For Pulmonary Rehabilitation in the Treatment of Long COVID




abi

Rehabilitation Is Associated With Improvements in Post-COVID-19 Sequelae

BACKGROUND:Post–COVID-19 syndrome has affected millions of people, with rehabilitation being at the center of non-pharmacologic care. However, numerous published studies show conflicting results due to, among other factors, considerable variation in subject characteristics. Currently, the effects of age, sex, time of implementation, and prior disease severity on the outcomes of a supervised rehabilitation program after COVID-19 remain unknown.METHODS:This was a non-randomized case-control study. Subjects with post–COVID-19 sequelae were enrolled. Among study participants, those who could attend an 8-week, supervised rehabilitation program composed the intervention group, whereas those who couldn’t the control group. Measurements were collected at baseline and 8 weeks thereafter.RESULTS:Study groups (N = 119) had similar baseline measurements. Participation in rehabilitation (n = 47) was associated with clinically important improvements in the 6-min walk test (6MWT) distance, adjusted (for potential confounders) odds ratio (AOR) 4.56 (95% CI 1.95–10.66); 1-min sit-to-stand test, AOR 4.64 (1.88-11.48); Short Physical Performance Battery, AOR 7.93 (2.82–22.26); health-related quality of life (HRQOL) 5-level EuroQol-5D (Visual Analog Scale), AOR 3.12 (1.37–7.08); Montreal Cognitive Assessment, AOR 6.25 (2.16–18.04); International Physical Activity Questionnaire, AOR 3.63 (1.53–8.59); Fatigue Severity Scale, AOR 4.07 (1.51–10.98); Chalder Fatigue Scale (bimodal score), AOR 3.33 (1.45–7.67); Modified Medical Research Council dyspnea scale (mMRC), AOR 4.43 (1.83–10.74); Post–COVID-19 Functional Scale (PCFS), AOR 3.46 (1.51–7.95); and COPD Assessment Test, AOR 7.40 (2.92–18.75). Time from disease onset was marginally associated only with 6MWT distance, AOR 0.99 (0.99–1.00). Prior hospitalization was associated with clinically important improvements in the mMRC dyspnea scale, AOR 3.50 (1.06–11.51); and PCFS, AOR 3.42 (1.16–10.06). Age, sex, and ICU admission were not associated with the results of any of the aforementioned tests/grading scales.CONCLUSIONS:In this non-randomized, case-control study, post–COVID-19 rehabilitation was associated with improvements in physical function, activity, HRQOL, respiratory symptoms, fatigue, and cognitive impairment. These associations were observed independently of timing of rehabilitation, age, sex, prior hospitalization, and ICU admission.




abi

Impact of Dimensional Variability of Primary Packaging Materials on the Break-Loose and Gliding Forces of Prefilled Syringes

A prefilled syringe (PFS) should be able to be adequately and consistently extruded during injection for optimal safe drug delivery and accurate dosing. To facilitate appropriate break-loose and gliding forces (BLGFs) required during injection, certain primary packaging materials (PPMs) such as the syringe barrel and plunger are usually coated with silicone oil, which acts as a lubricant. Due to its direct contact with drug, silicone oil can increase the number of particles in the syringe, which could lead to adverse interactions. Compliance with regulatory-defined silicone oil quantities in certain drug products, such as ophthalmics, presents a trade-off with the necessity for desirable low and consistent BLGF. In addition to its siliconization, the dimensional accuracy of the PPM has an important role in controlling the BLGF. The dimensions of the PPM are individualized depending on the product and its design and have certain tolerances that must be met during manufacturing. Most studies on ophthalmics focused on the adverse interactions between silicone oil and the drug. To the authors' knowledge, there have been no public studies so far that have investigated the impact of the dimensional variability of the PPM on the BLGF in ophthalmic PFSs. In this study, we applied advanced optical shaft and tactile measuring technologies to investigate this impact. The syringes investigated were first sampled during aseptic production and tested for the BLGF. Subsequently, defined dimensions of the PPM were measured individually. The results showed that the dimensional variability of the PPM can have a negative impact on the BLGF, despite their conformity to specifications, which indicates that the currently available market quality of PPMs is improvable for critical drug products such as ophthalmics. This study could serve as an approach to define product-specific requirements for primary packaging combinations and thus appropriate specifications based on data during the development stage of drug products.




abi

NEAT1 promotes genome stability via m6A methylation-dependent regulation of CHD4 [Research Papers]

Long noncoding (lnc)RNAs emerge as regulators of genome stability. The nuclear-enriched abundant transcript 1 (NEAT1) is overexpressed in many tumors and is responsive to genotoxic stress. However, the mechanism that links NEAT1 to DNA damage response (DDR) is unclear. Here, we investigate the expression, modification, localization, and structure of NEAT1 in response to DNA double-strand breaks (DSBs). DNA damage increases the levels and N6-methyladenosine (m6A) marks on NEAT1, which promotes alterations in NEAT1 structure, accumulation of hypermethylated NEAT1 at promoter-associated DSBs, and DSB signaling. The depletion of NEAT1 impairs DSB focus formation and elevates DNA damage. The genome-protective role of NEAT1 is mediated by the RNA methyltransferase 3 (METTL3) and involves the release of the chromodomain helicase DNA binding protein 4 (CHD4) from NEAT1 to fine-tune histone acetylation at DSBs. Our data suggest a direct role for NEAT1 in DDR.




abi

Characterization and implementation of the MarathonRT template-switching reaction to expand the capabilities of RNA-seq [ARTICLE]

End-to-end RNA-sequencing methods that capture 5'-sequence content without cumbersome library manipulations are of great interest, particularly for analysis of long RNAs. While template-switching methods have been developed for RNA sequencing by distributive short-read RTs, such as the MMLV RTs used in SMART-Seq methods, they have not been adapted to leverage the power of ultraprocessive RTs, such as those derived from group II introns. To facilitate this transition, we dissected the individual processes that guide the enzymatic specificity and efficiency of the multistep template-switching reaction carried out by RTs, in this case, by MarathonRT. Remarkably, this is the first study of its kind, for any RT. First, we characterized the nucleotide specificity of nontemplated addition (NTA) reaction that occurs when the RT extends past the RNA 5'-terminus. We then evaluated the binding specificity of specialized template-switching oligonucleotides, optimizing their sequences and chemical properties to guide efficient template-switching reaction. Having dissected and optimized these individual steps, we then unified them into a procedure for performing RNA sequencing with MarathonRT enzymes, using a well-characterized RNA reference set. The resulting reads span a six-log range in transcript concentration and accurately represent the input RNA identities in both length and composition. We also performed RNA-seq from total human RNA and poly(A)-enriched RNA, with short- and long-read sequencing demonstrating that MarathonRT enhances the discovery of unseen RNA molecules by conventional RT. Altogether, we have generated a new pipeline for rapid, accurate sequencing of complex RNA libraries containing mixtures of long RNA transcripts.




abi

Abolished frameshifting for predicted structure-stabilizing SARS-CoV-2 mutants: implications to alternative conformations and their statistical structural analyses [ARTICLE]

The SARS-CoV-2 frameshifting element (FSE) has been intensely studied and explored as a therapeutic target for coronavirus diseases, including COVID-19. Besides the intriguing virology, this small RNA is known to adopt many length-dependent conformations, as verified by multiple experimental and computational approaches. However, the role these alternative conformations play in the frameshifting mechanism and how to quantify this structural abundance has been an ongoing challenge. Here, we show by DMS and dual-luciferase functional assays that previously predicted FSE mutants (using the RAG graph theory approach) suppress structural transitions and abolish frameshifting. Furthermore, correlated mutation analysis of DMS data by three programs (DREEM, DRACO, and DANCE-MaP) reveals important differences in their estimation of specific RNA conformations, suggesting caution in the interpretation of such complex conformational landscapes. Overall, the abolished frameshifting in three different mutants confirms that all alternative conformations play a role in the pathways of ribosomal transition.




abi

Ensuring availability of respiratory medicines in times of European drug shortages

Extract

It is of utmost importance that medicines are available at all times for our patients. Historically, medication unavailability has typically, if not exclusively, affected low- and middle-income countries [1]. More recently however, drug shortages have also been reported in high-income European countries [2]. Drug shortages have negative health consequences for patients [3], and a profound economic impact, with the need to resort to more expensive alternatives and demands on healthcare professionals’ time to find, prescribe and dispense alternatives [4].




abi

Reassessing Halm's clinical stability criteria in community-acquired pneumonia management

Background

Halm's clinical stability criteria have long guided antibiotic treatment and hospital discharge decisions for patients hospitalised with community-acquired pneumonia (CAP). Originally introduced in 1998, these criteria were established based on a relatively small and select patient population. Consequently, our study aims to reassess their applicability in the management of CAP in a contemporary real-world setting.

Methods

This cohort study included 2918 immunocompetent patients hospitalised with CAP from three hospitals in Denmark between 2017 and 2020. The primary outcome was time to achieve clinical stability as defined by Halm's criteria. Additionally, we examined recurrence of clinical instability and severe complications. Cumulative incidence function or Kaplan–Meier survival curves were used to analyse these outcomes, considering competing risks.

Results

The study population primarily comprised elderly individuals (median age 75 years) with significant comorbidities. The median time to clinical stability according to Halm's criteria was 4 days, with one-fifth experiencing recurrence of instability after early clinical response (stability within 3 days). Severe complications within 30 days mainly comprised mortality, with rates of 5.1% (64/1257) overall in those with early clinical response, 1.7% (18/1045) in the subgroup without do-not-resuscitate orders and 17.3% (276/1595) among the rest.

Conclusion

Halm's clinical stability criteria effectively classify CAP patients with different disease courses, yet achieving stability required more time in this ageing population with substantial comorbidities and more severe disease. Early clinical response indicates reduced risk of complications, especially in those without do-not-resuscitate orders.




abi

Characterization and Prediction of Organic Anion Transporting Polypeptide 1B Activity in Prostate Cancer Patients on Abiraterone Acetate Using Endogenous Biomarker Coproporphyrin I [Articles]

Organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 are important hepatic transporters. We previously identified OATP1B3 being critically implicated in the disposition of abiraterone. We aimed to further investigate the effects of abiraterone on the activities of OATP1B1 and OATP1B3 utilizing a validated endogenous biomarker coproporphyrin I (CP-I). We used OATP1B-transfected cells to characterize the inhibitory potential of abiraterone against OATP1B-mediated uptake of CP-I. Inhibition constant (Ki) was incorporated into our physiologically based pharmacokinetic (PBPK) modeling to simulate the systemic exposures of CP-I among cancer populations receiving either our model-informed 500 mg or clinically approved 1000 mg abiraterone acetate (AA) dosage. Simulated data were compared with clinical CP-I concentrations determined among our nine metastatic prostate cancer patients receiving 500 mg AA treatment. Abiraterone inhibited OATP1B3-mediated, but not OATP1B1-mediated, uptake of CP-I in vitro, with an estimated Ki of 3.93 μM. Baseline CP-I concentrations were simulated to be 0.81 ± 0.26 ng/ml and determined to be 0.72 ± 0.16 ng/ml among metastatic prostate cancer patients, both of which were higher than those observed for healthy subjects. PBPK simulations revealed an absence of OATP1B3-mediated interaction between abiraterone and CP-I. Our clinical observations confirmed that CP-I concentrations remained comparable to baseline levels up to 12 weeks post 500 mg AA treatment. Using CP-I as an endogenous biomarker, we identified the inhibition of abiraterone on OATP1B3 but not OATP1B1 in vitro, which was predicted and observed to be clinically insignificant. We concluded that the interaction risk between AA and substrates of OATP1Bs is low.

SIGNIFICANCE STATEMENT

The authors used the endogenous biomarker coproporphyrin I (CP-I) and identified abiraterone as a moderate inhibitor of organic anion transporting polypeptide (OATP) 1B3 in vitro. Subsequent physiologically based pharmacokinetic (PBPK) simulations and clinical observations suggested an absence of OATP1B-mediated interaction between abiraterone and CP-I among prostate cancer patients. This multipronged study concluded that the interaction risk between abiraterone acetate and substrates of OATP1Bs is low, demonstrating the application of PBPK-CP-I modeling in predicting OATP1B-mediated interaction implicating abiraterone.




abi

Proteomic Analysis of Signaling Pathways Modulated by Fatty Acid Binding Protein 5 (FABP5) in Macrophages [Special Section: Cannabinoid Signaling in Human Health and Disease]

Although acute inflammation serves essential functions in maintaining tissue homeostasis, chronic inflammation is causally linked to many diseases. Macrophages are a major cell type that orchestrates inflammatory processes. During inflammation, macrophages undergo polarization and activation, thereby mobilizing pro-inflammatory and anti-inflammatory transcriptional programs that regulate ensuing macrophage functions. Fatty acid binding protein 5 (FABP5) is a lipid chaperone highly expressed in macrophages. FABP5 deletion is implicated in driving macrophages toward an anti-inflammatory phenotype, yet signaling pathways regulated by macrophage-FABP5 have not been systematically profiled. We leveraged proteomic and phosphoproteomic approaches to characterize pathways modulated by FABP5 in M1 and M2 polarized bone marrow-derived macrophages (BMDMs). Stable isotope labeling by amino acids-based analysis of M1 and M2 polarized wild-type and FABP5 knockout BMDMs revealed numerous differentially regulated proteins and phosphoproteins. FABP5 deletion impacted downstream pathways associated with inflammation, cytokine production, oxidative stress, and kinase activity. Toll-like receptor 2 (TLR2) emerged as a novel target of FABP5 and pharmacological FABP5 inhibition blunted TLR2-mediated activation of downstream pathways, ascribing a novel role for FABP5 in TLR2 signaling. This study represents a comprehensive characterization of the impact of FABP5 deletion on the proteomic and phosphoproteomic landscape of M1 and M2 polarized BMDMs. Loss of FABP5 altered pathways implicated in inflammatory responses, macrophage function, and TLR2 signaling. This work provides a foundation for future studies seeking to investigate the therapeutic potential of FABP5 inhibition in pathophysiological states resulting from dysregulated inflammatory signaling.

SIGNIFICANCE STATEMENT

This research offers a comprehensive analysis of fatty acid binding protein 5 (FABP5) in macrophages during inflammatory response. The authors employed quantitative proteomic and phosphoproteomic approaches to investigate this utilizing bone marrow-derived macrophages that were M1 and M2 polarized using lipopolysaccharide with interferon and interleukin-4, respectively. This revealed multiple pathways related to inflammation that were differentially regulated due to the absence of FABP5. These findings underscore the potential therapeutic significance of macrophage-FABP5 as a candidate for addressing inflammatory-related diseases.




abi

Regulation of Cannabinoid and Opioid Receptor Levels by Endogenous and Pharmacological Chaperones [Special Section: Cannabinoid Signaling in Human Health and Disease]

Cannabinoid and opioid receptor activities can be modulated by a variety of post-translational mechanisms including the formation of interacting complexes. This study examines the involvement of endogenous and exogenous chaperones in modulating the abundance and activity of cannabinoid CB1 receptor (CB1R), opioid receptor (DOR), and CB1R-DOR interacting complexes. Focusing on endogenous protein chaperones, namely receptor transporter proteins (RTPs), we examined relative mRNA expression in the mouse spinal cord and found RTP4 to be expressed at higher levels compared with other RTPs. Next, we assessed the effect of RTP4 on receptor abundance by manipulating RTP4 expression in cell lines. Overexpression of RTP4 causes an increase and knock-down causes a decrease in the levels of CB1R, DOR, and CB1R-DOR interacting complexes; this is accompanied by parallel changes in signaling. The ability of small molecule lipophilic ligands to function as exogenous chaperones was examined using receptor-selective antagonists. Long-term treatment leads to increases in receptor abundance and activity with no changes in mRNA supporting a role as pharmacological chaperones. Finally, the effect of cannabidiol (CBD), a small molecule ligand and a major active component of cannabis, on receptor abundance and activity in mice was examined. We find that CBD administration leads to increases in receptor abundance and activity in mouse spinal cord. Together, these results highlight a role for chaperones (proteins and small molecules) in modulating levels and activity of CB1R, DOR, and their interacting complexes potentially through mechanisms including receptor maturation and trafficking.

SIGNIFICANCE STATEMENT

This study highlights a role for chaperones (endogenous and small membrane-permeable molecules) in modulating levels of cannabinoid CB1 receptor, delta opioid receptor, and their interacting complexes. These chaperones could be developed as therapeutics for pathologies involving these receptors.




abi

Evaluating the Abuse Potential of Lenabasum, a Selective Cannabinoid Receptor 2 Agonist [Special Section: Cannabinoid Signaling in Human Health and Disease]

Endocannabinoids, which are present throughout the central nervous system (CNS), can activate cannabinoid receptors 1 and 2 (CB1 and CB2). CB1 and CB2 agonists exhibit broad anti-inflammatory properties, suggesting their potential to treat inflammatory diseases. However, careful evaluation of abuse potential is necessary. This study evaluated the abuse potential of lenabasum, a selective CB2 receptor agonist in participants (n = 56) endorsing recreational cannabis use. Three doses of lenabasum (20, 60, and 120 mg) were compared with placebo and nabilone (3 and 6 mg). The primary endpoint was the peak effect (Emax) on a bipolar Drug Liking visual analog scale (VAS). Secondary VAS and pharmacokinetic (PK) endpoints and adverse events were assessed. Lenabasum was safe and well tolerated. Compared with placebo, a 20-mg dose of lenabasum did not increase ratings of Drug Liking and had no distinguishable effect on other VAS endpoints. Dose-dependent increases in ratings of Drug Liking were observed with 60 and 120 mg lenabasum. Drug Liking and all other VAS outcomes were greatest for nabilone 3 mg and 6 mg, a medication currently approved by the US Food and Drug Administration (FDA). At a target therapeutic dose (20 mg), lenabasum did not elicit subjective ratings of Drug Liking. However, supratherapeutic doses of lenabasum (60 and 120 mg) did elicit subjective ratings of Drug Liking compared with placebo. Although both doses of lenabasum were associated with lower ratings of Drug Liking compared with 3 mg and 6 mg nabilone, lenabasum does have abuse potential and should be used cautiously in clinical settings.

SIGNIFICANCE STATEMENT

This work provides evidence that in people with a history of recreational cannabis use, lenabasum was safe and well tolerated, although it did demonstrate abuse potential. This work supports further development of lenabasum for potential therapeutic indications.




abi

Chronic Administration of Cannabinoid Agonists ACEA, AM1241, and CP55,940 Induce Sex-Specific Differences in Tolerance and Sex Hormone Changes in a Chemotherapy-Induced Peripheral Neuropathy [Special Section: Cannabinoid Signaling in Human Health and Dise

Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of chemotherapy treatment, routinely manifesting as increased pain sensitivity (allodynia) in distal extremities. Despite its prevalence, effective treatment options are limited. Cannabinoids are increasingly being evaluated for their ability to treat chronic pain conditions, including CIPN. While previous studies have revealed sex differences in cannabinoid-mediated antinociception in acute and chronic pain models, there is a paucity of studies addressing potential sex differences in the response of CIPN to cannabinoid treatment. Therefore, we evaluated the long-term antiallodynic efficacy of cannabinoid receptor type 1 (CB1)-selective, cannabinoid receptor type 2 (CB2)-selective, and CB1/CB2 mixed agonists in the cisplatin CIPN model, using both male and female mice. CB1 selective agonism was observed to have sex differences in the development of tolerance to antiallodynic effects, with females developing tolerance more rapidly than males, while the antiallodynic effects of selective CB2 agonism lacked tolerance development. Compound-specific changes to the female estrous cycle and female plasma estradiol levels were noted, with CB1 selective agonism decreasing plasma estradiol while CB2 selective agonism increased plasma estradiol. Chronic administration of a mixed CB1/CB2 agonist resulted in increased mRNA expression of proinflammatory cytokines and endocannabinoid regulatory enzymes in female spinal cord tissue. Ovarian tissue was noted to have proinflammatory cytokine mRNA expression following administration of a CB2 acting compound while selective CB1 agonism resulted in decreased proinflammatory cytokines and endocannabinoid regulatory enzymes in testes. These results support the need for further investigation into the role of sex and sex hormones signaling in pain and cannabinoid-mediated antinociceptive effects.

SIGNIFICANCE STATEMENT

CIPN is a common side effect of chemotherapy. We have found that both CB1 and CB2 receptor agonism produce antinociceptive effects in a cisplatin CIPN model. We observed that tolerance to CB1-mediated antinociception developed faster in females and did not develop for CB2-mediated antinociception. Additionally, we found contrasting roles for CB1/CB2 receptors in the regulation of plasma estradiol in females, with CB1 agonism attenuating estradiol and CB2 agonism enhancing estradiol. These findings support the exploration of cannabinoid agonists for CIPN.




abi

Cannabinoid 2 Receptor Activation Protects against Diabetic Cardiomyopathy through Inhibition of AGE/RAGE-Induced Oxidative Stress, Fibrosis, and Inflammasome Activation [Special Section: Cannabinoid Signaling in Human Health and Disease]

Oxidative stress, fibrosis, and inflammasome activation from advanced glycation end product (AGE)–receptor of advanced glycation end product (RAGE) interaction contribute to diabetic cardiomyopathy (DCM) formation and progression. Our study revealed the impact of β-caryophyllene (BCP) on activating cannabinoid type 2 receptors (CB2Rs) against diabetic complication, mainly cardiomyopathy and investigated the underlying cell signaling pathways in mice. The murine model of DCM was developed by feeding a high-fat diet with streptozotocin injections. After the development of diabetes, the animals received a 12-week oral BCP treatment at a dose of 50 mg/kg/body weight. BCP treatment showed significant improvement in glucose tolerance and insulin resistance and enhanced serum insulin levels in diabetic animals. BCP treatment effectively reversed the heart remodeling and restored the phosphorylated troponin I and sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a expression. Ultrastructural examination showed reduced myocardial cell injury in DCM mice treated with BCP. The preserved myocytes were found to be associated with reduced expression of AGE/RAGE in DCM mice hearts. BCP treatment mitigated oxidative stress by inhibiting expression of NADPH oxidase 4 and activating phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/nuclear factor erythroid 2–related factor 2 (Nrf2) signaling. Also, BCP suppressed cardiac fibrosis and endothelial-to-mesenchymal transition in DCM mice by inhibiting transforming growth factor β (TGF-β)/suppressor of mothers against decapentaplegic (Smad) signaling. Further, BCP treatment suppressed nucleotide-binding domain, leucine-rich–containing family, pyrin domain–containing-3 (NLRP3) inflammasome activation in DCM mice and alleviated cellular injury to the pancreatic tissues evidenced by significant elevation of the number of insulin-positive cells. To demonstrate a CB2R-dependent mechanism of BCP, another group of DCM mice were pretreated with AM630, a CB2R antagonist. AM630 was observed to abrogate the beneficial effects of BCP in DCM mice. Taken together, BCP demonstrated the potential to protect the myocardium and pancreas of DCM mice mediating CB2R-dependent mechanisms.

SIGNIFICANCE STATEMENT

BCP, a CB2R agonist, shows protection against DCM. BCP attenuates oxidative stress, inflammation, and fibrosis in DCM via activating CB2Rs. BCP mediating CB2R activation favorably modulates AGE/RAGE, PI3K/AKT/Nrf2β and TGF-β/Smad and (NLRP3) inflammasome in diabetic cardiomyopathy.




abi

KLS-13019, a Novel Structural Analogue of Cannabidiol and GPR55 Receptor Antagonist, Prevents and Reverses Chemotherapy-Induced Peripheral Neuropathy in Rats [Special Section: Cannabinoid Signaling in Human Health and Disease]

Neuropathic pain is a form of chronic pain that develops because of damage to the nervous system. Treatment of neuropathic pain is often incompletely effective, and most available therapeutics have only moderate efficacy and present side effects that limit their use. Opioids are commonly prescribed for the management of neuropathic pain despite equivocal results in clinical studies and significant abuse potential. Thus, neuropathic pain represents an area of critical unmet medical need, and novel classes of therapeutics with improved efficacy and safety profiles are urgently needed. The cannabidiol structural analog and novel antagonist of GPR55, KLS-13019, was screened in rat models of neuropathic pain. Tactile sensitivity associated with chemotherapy exposure was induced in rats with once-daily 1-mg/kg paclitaxel injections for 4 days or 5 mg/kg oxaliplatin every third day for 1 week. Rats were then administered KLS-13019 or comparator drugs on day 7 in an acute dosing paradigm or days 7–10 in a chronic dosing paradigm, and mechanical or cold allodynia was assessed. Allodynia was reversed in a dose-dependent manner in the rats treated with KLS-13019, with the highest dose reverting the response to prepaclitaxel injection baseline levels with both intraperitoneal and oral administration after acute dosing. In the chronic dosing paradigm, four consecutive doses of KLS-13019 completely reversed allodynia for the duration of the phenotype in control animals. Additionally, coadministration of KLS-13019 with paclitaxel prevented the allodynic phenotype from developing. Together, these data suggest that KLS-13019 represents a potential new drug for the treatment of neuropathic pain.

SIGNIFICANCE STATEMENT

Chemotherapy-induced peripheral neuropathy (CIPN) is a common, debilitating side effect of cancer treatment with no known cure. The GPR55 antagonist KLS-13019 represents a novel class of drug for this condition that is a potent, durable inhibitor of allodynia associated with CIPN in rats in both prevention and reversal-dosing paradigms. This novel therapeutic approach addresses a critical area of unmet medical need.




abi

The Minor Phytocannabinoid Delta-8-Tetrahydrocannabinol Attenuates Collagen-Induced Arthritic Inflammation and Pain-Depressed Behaviors [Special Section: Cannabinoid Signaling in Human Health and Disease]

Patients with arthritis report using cannabis for pain management, and the major cannabinoid delta-9-tetrahydrocannabinol (9-THC) has anti-inflammatory properties, yet the effects of minor cannabinoids on arthritis are largely unknown. The goal of the present study was to determine the antiarthritic potential of the minor cannabinoid delta-8-tetrahydrocannabinol (8-THC) using the collagen-induced arthritis (CIA) mouse model. Adult male DBA/1J mice were immunized and boosted 21 days later with an emulsion of collagen and complete Freund’s adjuvant. Beginning on the day of the booster, mice were administered twice-daily injections of 8-THC (3 or 30 mg/kg), the steroid dexamethasone (2 mg/kg), or vehicle for two weeks. Dorsal-ventral paw thickness and qualitative measures of arthritis were recorded daily, and latency to fall from an inverted grid was measured on alternating days, to determine arthritis severity and functional impairment. On the final day of testing, spontaneous wire-climbing behavior and temperature preference in a thermal gradient ring were measured to assess CIA-depressed behavior. The 8-THC treatment (30 mg/kg) reduced paw swelling and qualitative signs of arthritis. 8-THC also blocked CIA-depressed climbing and CIA-induced preference for a heated floor without producing locomotor effects but did not affect latency to fall from a wire grid. In alignment with the morphologic and behavioral assessments in vivo, histology revealed that 8-THC reduced synovial inflammation, proteoglycan loss and cartilage and bone erosion in the foot joints in a dose-dependent manner. Together, these findings suggest that 8-THC not only blocked morphologic changes but also prevented functional loss caused by collagen-induced arthritis.

SIGNIFICANCE STATEMENT

Despite increasing use of cannabis products, the potential effects of minor cannabinoids are largely unknown. Here, the minor cannabinoid delta-8-tetrahydrocannabinol blocked the development of experimentally induced arthritis by preventing both pathophysiological as well as functional effects of the disease model. These data support the development of novel cannabinoid treatments for inflammatory arthritis.




abi

Select Minor Cannabinoids from Cannabis sativa Are Cannabimimetic and Antinociceptive in a Mouse Model of Chronic Neuropathic Pain [Special Section: Cannabinoid Signaling in Human Health and Disease]

Chronic pain conditions affect nearly 20% of the population in the United States. Current medical interventions, such as opioid drugs, are effective at relieving pain but are accompanied by many undesirable side effects. This is one reason increased numbers of chronic pain patients have been turning to Cannabis for pain management. Cannabis contains many bioactive chemical compounds; however, current research looking into lesser-studied minor cannabinoids in Cannabis lacks uniformity between experimental groups and/or excludes female mice from investigation. This makes it challenging to draw conclusions between experiments done with different minor cannabinoid compounds between laboratories or parse out potential sex differences that could be present. We chose five minor cannabinoids found in lower quantities within Cannabis: cannabinol (CBN), cannabidivarin (CBDV), cannabigerol (CBG), 8-tetrahydrocannabinol (8-THC), and 9-tetrahydrocannabivarin (THCV). These compounds were then tested for their cannabimimetic and pain-relieving behaviors in a cannabinoid tetrad assay and a chemotherapy-induced peripheral neuropathy (CIPN) pain model in male and female CD-1 mice. We found that the minor cannabinoids we tested differed in the cannabimimetic behaviors evoked, as well as the extent. We found that CBN, CBG, and high-dose 8-THC evoked some tetrad behaviors in both sexes, while THCV and low-dose 8-THC exhibited cannabimimetic tetrad behaviors only in females. Only CBN efficaciously relieved CIPN pain, which contrasts with reports from other researchers. Together these findings provide further clarity to the pharmacology of minor cannabinoids and suggest further investigation into their mechanism and therapeutic potential.

SIGNIFICANCE STATEMENT

Minor cannabinoids are poorly studied ligands present in lower levels in Cannabis than cannabinoids like THC. In this study, we evaluated five minor cannabinoids (CBN, CBDV, CBG, THCV, and 8-THC) for their cannabimimetic and analgesic effects in mice. We found that four of the five minor cannabinoids showed cannabimimetic activity, while one was efficacious in relieving chronic neuropathic pain. This work is important in further evaluating the activity of these drugs, which are seeing wider public use with marijuana legalization.




abi

The Potential of Cannabichromene (CBC) as a Therapeutic Agent [Special Section: Cannabinoid Signaling in Human Health and Disease-Minireview]

There is a growing interest in the use of medicinal plants to treat a variety of diseases, and one of the most commonly used medicinal plants globally is Cannabis sativa. The two most abundant cannabinoids (9-tetrahydrocannabinol and cannabidiol) have been governmentally approved to treat selected medical conditions; however, the plant produces over 100 cannabinoids, including cannabichromene (CBC). Although the cannabinoids share a common precursor molecule, cannabigerol, they are structurally and pharmacologically unique. These differences may engender differing therapeutic potentials. In this review, we will examine what is currently known about CBC with regards to pharmacodynamics, pharmacokinetics, and receptor profile. We will also discuss the therapeutic areas that have been examined for this cannabinoid, notably antinociceptive, antibacterial, and anti-seizure activities. Finally, we will discuss areas where new research is needed and potential novel medicinal applications for CBC.

SIGNIFICANCE STATEMENT

Cannabichromene (CBC) has been suggested to have disparate therapeutic benefits such as anti-inflammatory, anticonvulsant, antibacterial, and antinociceptive effects. Most of the focus on the medical benefits of cannabinoids has been focused on 9-tetrahydrocannabinol and cannabidiol. The preliminary studies on CBC indicate that this phytocannabinoid may have unique therapeutic potential that warrants further investigation. Following easier access to hemp, CBC products are commercially available over-the-counter and are being widely utilized with little or no evidence of their safety or efficacy.




abi

The Intoxication Equivalency of 11-Hydroxy-{Delta}9-Tetrahydrocannabinol Relative to {Delta}9-Tetrahydrocannabinol [Special Section: Cannabinoid Signaling in Human Health and Disease]

9-Tetrahydrocannabinol (THC) is a psychoactive phytocannabinoid found in the Cannabis sativa plant. THC is primarily metabolized into 11-hydroxy-9-tetrahydrocannabinol (11-OH-THC) and 11-nor-9-carboxy-9-tetrahydrocannabinol (COOH-THC), which may themselves be psychoactive. There is very little research-based evidence concerning the pharmacokinetics and pharmacodynamics of 11-OH-THC as an individual compound. Male C57BL/6 mice were treated with THC or 11-OH-THC via intraperitoneal injection, tail vein intravenous injection, or oral gavage, and whole-blood compound levels were measured to determine pharmacokinetic parameters [Cmax, time to Cmax (Tmax), elimination half-life, area under the curve, apparent volume of distribution, systemic clearance, terminal rate constant, and absolute bioavailability] while also monitoring changes in catalepsy, body temperature, and nociception. 11-OH-THC achieved a Tmax at 30 minutes for all routes of administration. The maximum concentration at 30 minutes was not different between intravenous and intraperitoneal routes, but the oral gavage Cmax was significantly lower. THC had a 10-minute time to the maximum concentration, which was the first blood collection time point, for intravenous and intraperitoneal and 60 minutes for oral gavage, with a lower Cmax for intraperitoneal and oral gavage compared with intravenous. When accounting for circulating compound levels and ED50 responses, these data suggest that 11-OH-THC was 153% as active as THC in the tail-flick test of nociception and 78% as active as THC for catalepsy. Therefore, 11-OH-THC displayed equal or greater activity than the parent compound THC, even when accounting for pharmacokinetic differences. Thus, the THC metabolite 11-OH-THC likely plays a critical role in the bioactivity of cannabis; understanding its activity when administered directly will aid in the interpretation of future animal and human studies.

SIGNIFICANCE STATEMENT

This study establishes that the primary metabolite of THC, 11-OH-THC, displays equal or greater activity than THC in a mouse model of cannabinoid activity when directly administered and even when accounting for route of administration, sex, pharmacokinetic, and pharmacodynamic differences. These data provide critical insight into the bioactivity of THC metabolites that will inform the interpretation of future in vivo cannabinoid research and represent a model for how THC consumption and metabolism may affect cannabis use in humans.




abi

Sex Differences in the Neural and Behavioral Effects of Acute High-Dose Edible Cannabis Consumption in Rats [Special Section: Cannabinoid Signaling in Human Health and Disease]

The consumption of 9-tetrahydrocannabinol (THC)- or cannabis-containing edibles has increased in recent years; however, the behavioral and neural circuit effects of such consumption remain unknown, especially in the context of ingestion of higher doses resulting in cannabis intoxication. We examined the neural and behavioral effects of acute high-dose edible cannabis consumption (AHDECC). Sprague-Dawley rats (six males, seven females) were implanted with electrodes in the prefrontal cortex (PFC), dorsal hippocampus (dHipp), cingulate cortex (Cg), and nucleus accumbens (NAc). Rats were provided access to a mixture of Nutella (6 g/kg) and THC-containing cannabis oil (20 mg/kg) for 10 minutes, during which they voluntarily consumed all of the provided Nutella and THC mixture. Cannabis tetrad and neural oscillations were examined 2, 4, 8, and 24 hours after exposure. In another cohort (16 males, 15 females), we examined the effects of AHDECC on learning and prepulse inhibition and serum and brain THC and 11-hydroxy-THC concentrations. AHDECC resulted in higher brain and serum THC and 11-hydroxy-THC levels in female rats over 24 hours. AHDECC also produced: 1) Cg, dHipp, and NAc gamma power suppression, with the suppression being greater in female rats, in a time-dependent manner; 2) hypolocomotion, hypothermia, and antinociception in a time-dependent manner; and 3) learning and prepulse inhibition impairments. Additionally, most neural activity and behavior changes appear 2 hours after ingestion, suggesting that interventions around this time might be effective in reversing/reducing the effects of AHDECC.

SIGNIFICANCE STATEMENT

The effects of high-dose edible cannabis on behavior and neural circuitry are poorly understood. We found that the effects of acute high-dose edible cannabis consumption (AHDECC), which include decreased gamma power, hypothermia, hypolocomotion, analgesia, and learning and information processing impairments, are time and sex dependent. Moreover, these effects begin 2 hours after AHDECC and last for at least 24 hours, suggesting that treatments should target this time window in order to be effective.:




abi

{Delta}9-Tetrahydrocannabinol Alleviates Hyperalgesia in a Humanized Mouse Model of Sickle Cell Disease [Special Section: Cannabinoid Signaling in Human Health and Disease]

People with sickle cell disease (SCD) often experience chronic pain as well as unpredictable episodes of acute pain, which significantly affects their quality of life and life expectancy. Current treatment strategies for SCD-associated pain primarily rely on opioid analgesics, which have limited efficacy and cause serious adverse effects. Cannabis has emerged as a potential alternative, yet its efficacy remains uncertain. In this study, we investigated the antinociceptive effects of 9-tetrahydrocannabinol (THC), cannabis’ intoxicating constituent, in male HbSS mice, which express >99% human sickle hemoglobin, and male HbAA mice, which express normal human hemoglobin A, as a control. Acute THC administration (0.1–3 mg/kg–1, i.p.) dose-dependently reduced mechanical and cold hypersensitivity in human sickle hemoglobin (HbSS) but not human normal hemoglobin A (HbAA) mice. In the tail-flick assay, THC (1 and 3 mg/kg–1, i.p.) produced substantial antinociceptive effects in HbSS mice. By contrast, THC (1 mg/kg–1, i.p.) did not alter anxiety-like behavior (elevated plus maze) or long-term memory (24-hour novel object recognition). Subchronic THC treatment (1 and 3 mg/kg–1, i.p.) provided sustained relief of mechanical hypersensitivity but led to tolerance in cold hypersensitivity in HbSS mice. Together, the findings identify THC as a possible therapeutic option for the management of chronic pain in SCD. Further research is warranted to elucidate its mechanism of action and possible interaction with other cannabis constituents.

SIGNIFICANCE STATEMENT

The study explores 9-tetrahydrocannabinol (THC)’s efficacy in alleviating pain in sickle cell disease (SCD) using a humanized mouse model. Findings indicate that acute THC administration reduces mechanical and cold hypersensitivity in SCD mice without impacting emotional and cognitive dysfunction. Subchronic THC treatment offers sustained relief of mechanical hypersensitivity but leads to cold hypersensitivity tolerance. These results offer insights into THC's potential as an alternative pain management option in SCD, highlighting both its benefits and limitations.




abi

Analgesic Properties of Next-Generation Modulators of Endocannabinoid Signaling: Leveraging Modern Tools for the Development of Novel Therapeutics [Special Section: Cannabinoid Signaling in Human Health and Disease-Minireview]

Targeting the endocannabinoid (eCB) signaling system for pain relief is an important treatment option that is only now beginning to be mechanistically explored. In this review, we focus on two recently appreciated cannabinoid-based targeting strategies, treatments with cannabidiol (CBD) and α/β-hydrolase domain containing 6 (ABHD6) inhibitors, which have the exciting potential to produce pain relief through distinct mechanisms of action and without intoxication. We review evidence on plant-derived cannabinoids for pain, with an emphasis on CBD and its multiple molecular targets expressed in pain pathways. We also discuss the function of eCB signaling in regulating pain responses and the therapeutic promises of inhibitors targeting ABHD6, a 2-arachidonoylglycerol (2-AG)-hydrolyzing enzyme. Finally, we discuss how the novel cannabinoid biosensor GRABeCB2.0 may be leveraged to enable the discovery of targets modulated by cannabinoids at a circuit-specific level.

SIGNIFICANCE STATEMENT

Cannabis has been used by humans as an effective medicine for millennia, including for pain management. Recent evidence emphasizes the therapeutic potential of compounds that modulate endocannabinoid signaling. Specifically, cannabidiol and inhibitors of the enzyme ABHD6 represent promising strategies to achieve pain relief by modulating endocannabinoid signaling in pain pathways via distinct, nonintoxicating mechanisms of action.




abi

The National Center for Complementary and Integrative Health: Priorities for Cannabis and Cannabinoid Research [Special Section: Cannabinoid Signaling in Human Health and Disease-Commentary]

The National Center for Complementary and Integrative Health (NCCIH), which is part of the US National Institutes of Health (NIH), has a broad interest in studying the biologic activities of natural products, especially those for which compelling evidence from preclinical research suggests biologic activities that may be beneficial to health or have a potential role in disease treatment, as well as products used extensively by the American public. As of 2023, use of cannabis for medical purposes is legal in 38 states and Washington, D.C. Such use continues to climb generally without sufficient knowledge regarding risks and benefits. In keeping with NCCIH’s natural product research priorities and recognizing this gap in knowledge, NCCIH formally launched a research program in 2019 to expand research on the possible benefits for pain management of certain substances found in cannabis: minor cannabinoids and terpenes. This Viewpoint provides additional details and the rationale for this research priority at NCCIH. In addition, NCCIH’s efforts and initiatives to facilitate and coordinate an NIH research agenda focused on cannabis and cannabinoid research are described.

SIGNIFICANCE STATEMENT

Use of cannabis for purported medical purposes continues to increase despite insufficient knowledge regarding risks and benefits. Research is needed to help health professionals and patients make knowledgeable decisions about using cannabis and cannabinoids for medical purposes. The National Center for Complementary and Integrative Health, along with other NIH Institutes, Centers, and Offices, is expanding study on the safety, efficacy, and harms of cannabis—a complex mixture of phytochemicals that needs to be studied alone and in combination.




abi

Cannabis and Cannabinoid Signaling: Research Gaps and Opportunities [Special Section: Cannabinoid Signaling in Human Health and Disease-Commentary]

Cannabis and its products have been used for centuries for both medicinal and recreational purposes. The recent widespread legalization of cannabis has vastly expanded its use in the United States across all demographics except for adolescents. Meanwhile, decades of research have advanced our knowledge of cannabis pharmacology and particularly of the endocannabinoid system with which the components of cannabis interact. This research has revealed multiple targets and approaches for manipulating the system for therapeutic use and to ameliorate cannabis toxicity or cannabis use disorder. Research has also led to new questions that underscore the potential risks of its widespread use, particularly the enduring consequences of exposure during critical windows of brain development or for consumption of large daily doses of cannabis with high content 9-tetrahydrocannabinol. This article highlights current neuroscience research on cannabis that has shed light on therapeutic opportunities and potential adverse consequences of misuse and points to gaps in knowledge that can guide future research.

SIGNIFICANCE STATEMENT

Cannabis use has escalated with its increased availability. Here, the authors highlight the challenges of cannabis research and the gaps in our knowledge of cannabis pharmacology and of the endocannabinoid system that it targets. Future research that addresses these gaps is needed so that the endocannabinoid system can be leveraged for safe and effective use.




abi

Special Section on Cannabinoid Signaling in Human Health and Disease--Editorial [Special Section on Cannabinoid Signaling in Human Health and Disease-Editorial]




abi

Minor Cannabinoids as an Emerging Frontier for Pain Relief [Viewpoint]




abi

Probabilistic Presurgical Language fMRI Atlas of Patients with Brain Tumors [CLINICAL PRACTICE]

BACKGROUND AND PURPOSE:

Patients with brain tumors have high intersubject variation in putative language regions, which may limit the utility of straightforward application of healthy subject brain atlases in clinical scenarios. The purpose of this study was to develop a probabilistic functional brain atlas that consolidates language functional activations of sentence completion and Silent Word Generation language paradigms using a large sample of patients with brain tumors.

MATERIALS AND METHODS:

The atlas was developed using retrospectively collected fMRI data from patients with brain tumors who underwent their first standard-of-care presurgical language fMRI scan at our institution between July 18, 2015, and May 13, 2022. Three hundred seventeen patients (861 fMRI scans) were used to develop the language functional atlas. An independent presurgical language fMRI data set of 39 patients with brain tumors from a previous study was used to evaluate our atlas. Family-wise error–corrected binary functional activation maps from sentence completion, letter fluency, and category fluency presurgical fMRI were used to create probability overlap maps and pooled probabilistic overlap maps in Montreal Neurological Institute standard space. The Wilcoxon signed-rank test was used to determine a significant difference in the maximum Dice coefficient for our atlas compared with a meta-analysis-based template with respect to expert-delineated primary language area activations.

RESULTS:

Probabilities of activating the left anterior primary language area and left posterior primary language area in the temporal lobe were 87.9% and 91.5%, respectively, for sentence completion, 88.5% and 74.2%, respectively, for letter fluency, and 83.6% and 67.6%, respectively, for category fluency. Maximum Dice coefficients for templates derived from our language atlas were significantly higher than the meta-analysis-based template in the left anterior primary language area (0.351 and 0.326, respectively, P < .05) and the left posterior primary language area in the temporal lobe (0.274 and 0.244, respectively, P < .005).

CONCLUSIONS:

Brain tumor patient- and paradigm-specific probabilistic language atlases were developed. These atlases had superior spatial agreement with fMRI activations in individual patients compared with the meta-analysis-based template.