ter

Targeted and complete genomic sequencing of the major histocompatibility complex in haplotypic form of individual heterozygous samples [RESEARCH]

The human major histocompatibility complex (MHC) is a ~4 Mb genomic segment on Chromosome 6 that plays a pivotal role in the immune response. Despite its importance in various traits and diseases, its complex nature makes it challenging to accurately characterize on a routine basis. We present a novel approach allowing targeted sequencing and de novo haplotypic assembly of the MHC region in heterozygous samples, using long-read sequencing technologies. Our approach is validated using two reference samples, two family trios, and an African-American sample. We achieved excellent coverage (96.6%–99.9% with at least 30x depth) and high accuracy (99.89%–99.99%) for the different haplotypes. This methodology offers a reliable and cost-effective method for sequencing and fully characterizing the MHC without the need for whole-genome sequencing, facilitating broader studies on this important genomic segment and having significant implications in immunology, genetics, and medicine.




ter

The Priority Updates from the Research Literature (PURLs) Methodology




ter

Only One Quarter of Family Physicians Are Very Satisfied with Their Electronic Health Records Platform

Two decades into the era of Electronic Health Records (EHRs), the promise of streamlining clinical care, reducing burden, and improving patient outcomes has yet to be realized. A cross-sectional family physician census conducted by the American Board of Family Medicine in 2022 and 2023 included self-reported physician EHR satisfaction. Of the nearly 10,000 responding family physicians, only one-in-four (26.2%) report being very satisfied and one-in-three (33.8%) were not satisfied. These low levels of satisfaction point to the need for greater transparency in the marketplace and pressure to increase user-centric EHR design.




ter

Impact of Point of Care Hemoglobin A1c Testing on Time to Therapeutic Intervention

Without compromising accuracy, point of care testing (POCT) provides immediate results at the time of in person patient consultation. The purpose of this study was to evaluate time until therapeutic intervention with POCT HbA1c versus venipuncture, where venipuncture was considered standard of care.

The primary outcome was time (hours) to implementation of a therapeutic intervention based on POCT HbA1c result, as compared with most recent venipuncture HbA1c before the study and its associated therapeutic intervention. A total of 94 POCT HbA1c tests were included in the primary analysis.

For the POCT HbA1c, the mean time to therapeutic intervention was 1.6 ± 3.14 hours. For the previous venipuncture HbA1c, the mean time to therapeutic intervention was 1376.66 ± 3356.6 hours (P < .001). Overall, this trial showed that POCT HbA1c results in a significantly faster time to therapeutic intervention than venipuncture in a primary care clinic that serves a rural population.




ter

How Early Career Family Medicine Women Physicians Negotiate Their First Job After Residency

Background:

Nested within a growing body of evidence of a gender pay gap in medicine are more alarming recent findings from family medicine: a gender pay gap of 16% can be detected at a very early career stage. This article explores qualitative evidence of women’s experiences negotiating for their first job out of residency to ascertain women’s engagement with and approach to the negotiation process.

Methods:

We recruited family physicians who graduated residency in 2019 and responded to the American Board of Family Medicine 2022 graduate survey. We developed a semistructured interview guide following a modified life history approach to uncover women’s experiences through the transitory stages from residency to workforce. A qualitative researcher used Zoom to interview 19 geographically and racially diverse early career women physicians. Interviews were transcribed verbatim and analyzed using NVivo software following an Inductive Content Analysis approach.

Results:

Three main themes emerged from the data. First, salary was found to be nonnegotiable, exemplified by participants’ inability to change initial salary offers. Second, the role of peer support throughout residency and early career was crucial to uncovering and rectifying salary inequity. Third, a pay expectation gap was identified among women from minority and low-income households.

Conclusion:

To rectify the gender pay gap in medicine, a systems-level approach is required. This can be achieved through various levels of interventions: societally expanding the use of and removing the stigma around parental leave, recognizing the importance of contributions not currently valued by productivity-based payment models, examining assumptions about leadership; and institutionally moving away from fee-for-service systems, encouraging flexible schedules, increasing salary transparency, and improving advancement transparency.




ter

Primary Care Clinicians' Interest In, and Barriers To, Medication Abortion

Purpose:

Providing medication abortion in the primary care setting is a promising way to increase access to abortion, a threatened service in many States. This study aimed to characterize primary care clinicians’ interest in prescribing medication abortion, what barriers they face in adding this service, and what support they need.

Methods:

Data were collected from 162 practicing primary care clinicians in Minnesota using an online survey with closed- and open-ended response options. Data were analyzed using descriptive statistics, group comparison analyses, and content analysis for the open-ended questions.

Results:

Participants represented a diverse range of ages, years in practice, credentials, genders, and urban/rural practice settings, and held mixed knowledge and attitudes around medication abortion. All demographic groups surveyed expressed interest in prescribing medication abortion, with the strongest interest represented among younger respondents, women, and those practicing in urban settings. Clinicians who provide prenatal care or who already work with these medications in other contexts were more likely to want to add medication abortion to their practices. The most common barrier to providing medication abortion was a lack of knowledge about organizational policies and about the medications themselves. To empower clinicians to provide medication abortion, respondents voiced needing their health systems to build clear processes and wanting supportive networks of other clinicians for collaboration.

Conclusions:

Given the interest of primary care clinicians in providing medication abortion, health systems have a valuable opportunity to increase access.




ter

Colorectal Cancer Screening: A Multicomponent Intervention to Increase Uptake in Patients Aged 45-49

Purpose:

Colorectal cancer (CRC) screening is recommended starting at age 45, but there has been little research on strategies to promote screening among patients younger than 50. This study assessed the effect of a multicomponent intervention on screening completion in this age group.

Methods:

The intervention consisted of outreach to patients aged 45 to 49 (n = 3,873) via mailed fecal immunochemical test (FIT) (sent to 46%), text (84%), e-mail (53%), and the extension to this age group of an existing standing order protocol allowing primary care nurses and medical assistants to order FIT at primary care clinics in an urban safety-net system. We used segmented linear regression to assess changes in CRC screening completion trends. Patients aged 51 to 55 were included as a comparison group (n = 3,943). Data were extracted from the EHR.

Results:

The percentage of patients aged 45 to 49 who were up-to-date with CRC screening (colonoscopy in 10 years or FIT in last year) increased an average of 0.4% (95% CI 0.3, 0.6)) every 30 days before intervention rollout and 2.8% (95% CI 2.5, 3.1) after (slope difference 2.3% [95% CI 2.0, 2.7]). This difference persisted after accounting for small changes in the outcome observed in the comparison group (slope difference 1.7% [95% CI 1.2, 2.2]).

Conclusions:

These results suggest that the intervention increased CRC screening completion among patients 45 to 49. Health care systems seeking to improve CRC screening participation among patients aged 45 to 49 should consider implementing similar interventions.




ter

Reply to Letter to Editor Concerning &#x201C;Nocturnal Pressure Controlled Ventilation Improves Sleep Efficiency in Patients Receiving Mechanical Ventilation&#x201D;




ter

The Evolution of Intermittent Mandatory Ventilation: Update and Implications for Home Care




ter

Exploring the Impact of Varied Design Approaches and Materials in Respiratory Therapy Education




ter

Effect of Fasting Prior to Extubation on Prevalence of Empty Stomach in Enterally Fed and Mechanically Ventilated Patients

BACKGROUND:Practice on fasting prior to extubation in critically ill patients is variable. Efficacy of fasting in reducing gastric volume has not been well established. The primary objective of this study was to assess the effect of 4 h of fasting on prevalence of empty stomach using gastric ultrasonography in critically ill subjects who are fasted for extubation. The secondary objectives were to evaluate the change in gastric volumes during 4 h of fasting and to determine factors associated with empty stomach after fasting.METHODS:This was a single-center, prospective, observational study on adult ICU subjects who were enterally fed for at least 6 h continuously and mechanically ventilated. Gastric ultrasound was performed immediately prior to commencement of fasting, after 4 h of fasting, and after nasogastric (NG) aspiration after 4 h of fasting. An empty stomach was defined as a gastric volume ≤ 1.5 mL/kg.RESULTS:Forty subjects were recruited, and 38 (95%) had images suitable for analysis. The prevalence of empty stomach increased after 4 h of fasting (25 [65.8%] vs 31 [81.6%], P = .041) and after 4 h of fasting with NG aspiration (25 [65.8%] vs 34 [89.5%], P = .008). There was a significant difference in median (interquartile range) gastric volume per body weight between before fasting and 4 h after fasting (1.0 [0.5–1.8] mL/kg vs 0.4 [0.2–1.0] mL/kg, P < .001). No patient factors were associated with higher prevalence of empty stomach after 4 h of fasting.CONCLUSIONS:Most mechanically ventilated subjects had empty stomachs prior to fasting for extubation. Fasting for 4 h further increased the prevalence of empty stomach at extubation to > 80%.




ter

Comparison of Needle Depth Techniques for the Posterior Superior Alveolar Block

Purpose The posterior superior alveolar (PSA) block injection is one of many techniques used to provide profound anesthesia for invasive dental procedures. This technique has a high success rate but is not without complication risks. The purpose of this study was to determine if pulpal anesthesia of the maxillary second molar could be achieved using a reduced needle depth of 10mm or 5mm compared to the traditional needle depth of 16mm.Methods Sixty participants were asked to participate in three sessions. Each session started with a pre neural response test, followed by one randomized needle depth PSA injection, and ending with a post neural response test. The neural response test consisted of two parts, a cold refrigerant and a dental probe, on the buccal and interproximal surface of the maxillary second molar. After receiving a positive neural response, each participant received a posterior superior alveolar block injection using a short (21mm), 27-gauge dental needle with a randomized needle penetration depth of 16mm, 10mm, or 5mm. A post neural response test consisting of the same two parts as the pre-test was conducted on the maxillary second molar to evaluate for profound anesthesia.Results Positive neural responses were obtained from 100% of the participants (n=167) during the pre-tests. Study results demonstrated an 85% success rate at the traditional 16mm needle depth and a 93% and 92% success rates for the reduced needle depths of 10mm and 5mm, respectively. Pulpal anesthesia of the maxillary second molar had been achieved at all three needle depths with no statistically significant difference in the rate of success. Furthermore, there were no adverse events observed.Conclusion The reduced needle depth technique showed promise in achieving desired results of pulpal anesthesia with a reduced risk for complications associated with the PSA block injection. Additional studies are recommended to achieve evidence-based support for this reduced needle depth technique.




ter

Identification and Root Cause Analysis of the Visible Particles Commonly Encountered in the Biopharmaceutical Industry

Visible particle is an important issue in the biopharmaceutical industry, and it may occur across all the stages in the life cycle of biologics. Upon the occurrence of visible particles, it is often necessary to conduct chemical identification and root cause analysis to safeguard the safety and efficacy of the biotherapeutic products. In this article, we present a number of typical particles and relevant root cause analysis in the categories of extrinsic, intrinsic, and inherent particles that are commonly encountered in the biopharma industry. In particular, the optical images of particles obtained both in situ and after isolation are provided, along with spectral and elemental information. The particle identification was carried out with multiple microscopic and microspectroscopic techniques, including stereo optical microscopy, Fourier-transform infrared microscopy, confocal Raman microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. Both commercial and in-house spectral databases were used for comparison and identification. In addition to particle identification, we placed significant efforts on the root cause analysis of the addressed particles with the intention to provide a relatively whole picture of the particle-related issues and practical references to particle mitigation for our peers in the biopharmaceutical industry.




ter

Impact of Dimensional Variability of Primary Packaging Materials on the Break-Loose and Gliding Forces of Prefilled Syringes

A prefilled syringe (PFS) should be able to be adequately and consistently extruded during injection for optimal safe drug delivery and accurate dosing. To facilitate appropriate break-loose and gliding forces (BLGFs) required during injection, certain primary packaging materials (PPMs) such as the syringe barrel and plunger are usually coated with silicone oil, which acts as a lubricant. Due to its direct contact with drug, silicone oil can increase the number of particles in the syringe, which could lead to adverse interactions. Compliance with regulatory-defined silicone oil quantities in certain drug products, such as ophthalmics, presents a trade-off with the necessity for desirable low and consistent BLGF. In addition to its siliconization, the dimensional accuracy of the PPM has an important role in controlling the BLGF. The dimensions of the PPM are individualized depending on the product and its design and have certain tolerances that must be met during manufacturing. Most studies on ophthalmics focused on the adverse interactions between silicone oil and the drug. To the authors' knowledge, there have been no public studies so far that have investigated the impact of the dimensional variability of the PPM on the BLGF in ophthalmic PFSs. In this study, we applied advanced optical shaft and tactile measuring technologies to investigate this impact. The syringes investigated were first sampled during aseptic production and tested for the BLGF. Subsequently, defined dimensions of the PPM were measured individually. The results showed that the dimensional variability of the PPM can have a negative impact on the BLGF, despite their conformity to specifications, which indicates that the currently available market quality of PPMs is improvable for critical drug products such as ophthalmics. This study could serve as an approach to define product-specific requirements for primary packaging combinations and thus appropriate specifications based on data during the development stage of drug products.




ter

Comparison of Binary Alcohol/Water Solvent Systems to Blood for Extractions of Blood-Contacting Medical Devices

The analysis of extractables and leachables and subsequent risk assessment is an important aspect of the determination of biocompatibility for many medical devices. Leachable chemicals have the potential to pose a toxicological risk to patients, and therefore it is required that they be adequately characterized and assessed for potential safety concerns. One important consideration in the assessment of leachables is the choice of a suitable simulating solvent intended to replicate the use condition for the device and its biological environment. This aspect of study design is especially difficult for blood-contacting medical devices due to the complexity of simulating the biological matrix. This publication reports a comparison of the extracting power of different binary solvent mixtures and saline in comparison with whole blood for a bloodline tubing set connected to a hemodialyzer. Ten different known extractables, spanning a range of physicochemical properties and molecular weights, were quantified. The results indicated that for low-molecular-weight analytes, a suitable exaggeration for whole blood can be obtained using a low-concentration ethanol/water mixture (20%), and in general, extracted quantity increases with the concentration of alcohol cosolvent. For polyvinylpyrrolidone, the opposite trend was observed, as solubility of the polymer was found to decrease with increasing alcohol concentration, resulting in lower extracted quantities at high alcohol concentrations. Analysis of ethanol/water concentrations in the extract solutions post extraction indicated no change in solvent composition.




ter

Development and Validation of a Customized Amplex UltraRed Assay for Sensitive Hydrogen Peroxide Detection in Pharmaceutical Water

For clean-room technologies such as isolators and restricted access barrier systems (RABS), decontamination using hydrogen peroxide (H2O2) is increasingly attractive to fulfill regulatory requirements. Several approaches are currently used, ranging from manual wipe disinfection to vapor phase hydrogen peroxide (VPHP) or automated nebulization sanitization. Although the residual airborne H2O2 concentration can be easily monitored, detection of trace H2O2 residues in filled products is rather challenging. To simulate the filling process in a specific clean room, technical runs with water for injection (WfI) are popular. Thus, the ability to detect traces of H2O2 in water is an important prerequisite to ensure a safe and reliable use of H2O2 for isolator or clean room decontamination. The objective of this study was to provide a validated quantitative, fluorometric Amplex UltraRed assay, which satisfies the analytical target profile of quantifying H2O2 in WfI at low nanomolar to low micromolar concentrations (ppb range) with high accuracy and high precision. The Amplex UltraRed technology provides a solid basis for this purpose; however, no commercial assay kit that fulfills these requirements is available. Therefore, a customized Amplex UltraRed assay was developed, optimized, and validated. This approach resulted in an assay that is capable of quantifying H2O2 in WfI selectively, sensitively, accurately, precisely, and robustly. This assay is used in process development and qualification approaches using WfI in H2O2-decontaminated clean rooms and isolators.




ter

Degradation of Obidoxime Chloride Solution for Injection upon Long-Term Storage under Field Conditions of Mediterranean Climate vs the Controlled Environment

Obidoxime chloride is an antidote for nerve gas intoxication. As an emergency medicine, it is being stored by the Israel Defense Forces (IDF) scattered throughout Israel in depots without a controlled environment (field conditions), thus being exposed to high and fluctuating temperatures. These conditions do not meet the manufacturer’s requirements. In addition, due to possible supply shortages, the utilization of expired batches was suggested. The current work investigated these matters. Long-term (15 years) storage under different conditions was initiated. Chemical stability and toxicity in rats were assessed. No difference was found between field conditions vs the controlled environment. The obidoxime assay remained >95% for 5 years and >90% for 7 years. The pH remained above the lower specification limit for 7–8 years. The major degradation product, 4-pyridinealdoxime, surpassed the allowed limit at 5 years. The content of total unknown impurities reached its maximum allowed by the IDF limit at 4–5 years. Threefold higher than clinically utilized doses of valid-to-date Toxogonin batches administered to rats did not cause any abnormality. However, expired batches produced significant toxic effects. Although no difference was found between storage of obidoxime ampoules when adhering to manufacturer’s recommendations vs field conditions, accumulation of degradants over the limit allowed by the IDF at 4–5 years of storage and the toxicity of the expired batches observed in rats led the IDF to a decision to shorten the shelf-life of this product from 5 to 4 years when stored in an uncontrolled environment of the Mediterranean climate.




ter

Decoding biology with massively parallel reporter assays and machine learning [Reviews]

Massively parallel reporter assays (MPRAs) are powerful tools for quantifying the impacts of sequence variation on gene expression. Reading out molecular phenotypes with sequencing enables interrogating the impact of sequence variation beyond genome scale. Machine learning models integrate and codify information learned from MPRAs and enable generalization by predicting sequences outside the training data set. Models can provide a quantitative understanding of cis-regulatory codes controlling gene expression, enable variant stratification, and guide the design of synthetic regulatory elements for applications from synthetic biology to mRNA and gene therapy. This review focuses on cis-regulatory MPRAs, particularly those that interrogate cotranscriptional and post-transcriptional processes: alternative splicing, cleavage and polyadenylation, translation, and mRNA decay.




ter

Temperature matters: the potential impact of thermoregulatory mechanisms in brain-body physiology [Special Section: Symposium Outlook]

Thermoregulation, responsible for maintaining a stable core temperature during wide fluctuations in external and internal thermal environments, is an iconic homeostatic process. However, we suggest that despite its fundamental physiological significance, the potential for required cool housing temperatures and thermoregulatory mechanisms to influence the interpretation of experimental data is not sufficiently appreciated. Moreover, although it is generally assumed that the major thermoregulatory pathways are well understood, here we discuss new research that suggests otherwise and reveals the emergence of a new wave of exciting ideas for this "old" field of research.




ter

Interoceptive inference and prediction in food-related disorders [Special Section: Symposium Outlook]

The brain's capacity to predict and anticipate changes in internal and external environments is fundamental to initiating efficient adaptive responses, behaviors, and reflexes that minimize disruptions to physiology. In the context of feeding control, the brain predicts and anticipates responses to the consumption of dietary substances, thus driving adaptive behaviors in the form of food choices, physiological preparation for meals, and engagement of defensive mechanisms. Here, we provide an integrative perspective on the multisensory computation between exteroceptive and interoceptive cues that guides feeding strategy and may result in food-related disorders.




ter

The area postrema: a critical mediator of brain-body interactions [Special Section: Symposium Outlook]

The dorsal vagal complex contains three structures: the area postrema, the nucleus tractus solitarii, and the dorsal motor nucleus of the vagus. These structures are tightly linked, both anatomically and functionally, and have important yet distinct roles in not only conveying peripheral bodily signals to the rest of the brain but in the generation of behavioral and physiological responses. Reports on the new discoveries in these structures were highlights of the symposium. In this outlook, we focus on the roles of the area postrema in mediating brain–body interactions and its potential utility as a therapeutic target, especially in cancer cachexia.




ter

Cancer neuroscience at the brain-body interface [Special Section: Symposium Outlook]

Our approaches toward understanding cancer have evolved beyond cell-intrinsic and local microenvironmental changes within the tumor to encompass how the cancer interfaces with the entire host organism. The nervous system is uniquely situated at the interface between the brain and body, constantly receiving and sending signals back and forth to maintain homeostasis and respond to salient stimuli. It is becoming clear that various cancers disrupt this dialog between the brain and body via both neuronal and humoral routes, leading to aberrant brain activity and accelerated disease. In this outlook, I discuss this view of cancer as a homeostatic challenge, emphasize cutting-edge work, and provide outstanding questions that need to be answered to move the field forward.




ter

Dysregulating mTORC1-4E-BP2 signaling in GABAergic interneurons impairs hippocampus-dependent learning and memory [RESEARCH PAPERS]

Memory formation is contingent on molecular and structural changes in neurons in response to learning stimuli—a process known as neuronal plasticity. The initiation step of mRNA translation is a gatekeeper of long-term memory by controlling the production of plasticity-related proteins in the brain. The mechanistic target of rapamycin complex 1 (mTORC1) controls mRNA translation, mainly through phosphorylation of the eukaryotic initiation factor 4E (eIF4E)-binding proteins (4E-BPs) and ribosomal protein S6 kinases (S6Ks). mTORC1 signaling decreases throughout brain development, starting from the early postnatal period. Here, we discovered that in mice, the age-dependent decrease in mTORC1 signaling occurs selectively in excitatory but not inhibitory neurons. Using a gene conditional knockout (cKO) strategy, we demonstrate that either up- or downregulating the mTORC1-4E-BP2 axis in GAD65 inhibitory interneurons, but not excitatory neurons, results in long-term object recognition and object location memory deficits. Our data indicate that the mTORC1 pathway in inhibitory but not excitatory neurons plays a key role in memory formation.




ter

A circular split nanoluciferase reporter for validating and screening putative internal ribosomal entry site elements [METHOD]

Internal ribosomal entry sites (IRESs) recruit the ribosome to promote translation, typically in an m7G cap-independent manner. Although IRESs are well-documented in viral genomes, they have also been reported in mammalian transcriptomes, where they have been proposed to mediate cap-independent translation of mRNAs. However, subsequent studies have challenged the idea of these "cellular" IRESs. Current methods for screening and discovering IRES activity rely on a bicistronic reporter assay, which is prone to producing false positive signals if the putative IRES sequence has a cryptic promoter or cryptic splicing sites. Here, we report an assay for screening IRES activity using a genetically encoded circular RNA comprising a split nanoluciferase (nLuc) reporter. The circular split nLuc reporter is less susceptible to the various sources of false positives that adversely affect the bicistronic IRES reporter assay and provides a streamlined method for screening IRES activity. Using the circular split nLuc reporter, we find that nine reported cellular IRESs have minimal IRES activity. Overall, the circular split nLuc reporter offers a simplified approach for identifying and validating IRESs and exhibits reduced propensity for producing the types of false positives that can occur with the bicistronic reporter assay.




ter

Characterization and implementation of the MarathonRT template-switching reaction to expand the capabilities of RNA-seq [ARTICLE]

End-to-end RNA-sequencing methods that capture 5'-sequence content without cumbersome library manipulations are of great interest, particularly for analysis of long RNAs. While template-switching methods have been developed for RNA sequencing by distributive short-read RTs, such as the MMLV RTs used in SMART-Seq methods, they have not been adapted to leverage the power of ultraprocessive RTs, such as those derived from group II introns. To facilitate this transition, we dissected the individual processes that guide the enzymatic specificity and efficiency of the multistep template-switching reaction carried out by RTs, in this case, by MarathonRT. Remarkably, this is the first study of its kind, for any RT. First, we characterized the nucleotide specificity of nontemplated addition (NTA) reaction that occurs when the RT extends past the RNA 5'-terminus. We then evaluated the binding specificity of specialized template-switching oligonucleotides, optimizing their sequences and chemical properties to guide efficient template-switching reaction. Having dissected and optimized these individual steps, we then unified them into a procedure for performing RNA sequencing with MarathonRT enzymes, using a well-characterized RNA reference set. The resulting reads span a six-log range in transcript concentration and accurately represent the input RNA identities in both length and composition. We also performed RNA-seq from total human RNA and poly(A)-enriched RNA, with short- and long-read sequencing demonstrating that MarathonRT enhances the discovery of unseen RNA molecules by conventional RT. Altogether, we have generated a new pipeline for rapid, accurate sequencing of complex RNA libraries containing mixtures of long RNA transcripts.




ter

Abolished frameshifting for predicted structure-stabilizing SARS-CoV-2 mutants: implications to alternative conformations and their statistical structural analyses [ARTICLE]

The SARS-CoV-2 frameshifting element (FSE) has been intensely studied and explored as a therapeutic target for coronavirus diseases, including COVID-19. Besides the intriguing virology, this small RNA is known to adopt many length-dependent conformations, as verified by multiple experimental and computational approaches. However, the role these alternative conformations play in the frameshifting mechanism and how to quantify this structural abundance has been an ongoing challenge. Here, we show by DMS and dual-luciferase functional assays that previously predicted FSE mutants (using the RAG graph theory approach) suppress structural transitions and abolish frameshifting. Furthermore, correlated mutation analysis of DMS data by three programs (DREEM, DRACO, and DANCE-MaP) reveals important differences in their estimation of specific RNA conformations, suggesting caution in the interpretation of such complex conformational landscapes. Overall, the abolished frameshifting in three different mutants confirms that all alternative conformations play a role in the pathways of ribosomal transition.




ter

Characteristics of exacerbators in the US Bronchiectasis and NTM Research Registry: a cross-sectional study

Background

Exacerbations of noncystic fibrosis bronchiectasis (bronchiectasis) are associated with reduced health-related quality of life and increased mortality, likelihood of hospitalisation and lung function decline. This study investigated patient clinical characteristics associated with exacerbation frequency.

Methods

A cross-sectional cohort study of patients ≥18 years with bronchiectasis enrolled in the US Bronchiectasis and Nontuberculous Mycobacteria (NTM) Research Registry (BRR) September 2008–March 2020. Patients were stratified by exacerbation frequency in their 2 years before enrolment. Patient demographics, respiratory symptoms, healthcare resource utilisation, microbiology, modified bronchiectasis severity index (mBSI) and select comorbidities were collected at enrolment. Patient characteristics associated with exacerbation frequency were assessed using a negative binomial model.

Results

The study included 2950 patients (mean age 65.6 years; 79.1% female). Frequency of moderate to severe airway obstruction (forced expiratory volume in 1 s (FEV1) % predicted <50%; most recent measure) was 15.9%, 17.8%, and 24.6% in patients with 1, 2, and ≥3 exacerbations versus 8.9% in patients with 0 exacerbations; severe disease (mBSI) was 27.8%, 24.2% and 51.1% versus 13.2%; respiratory hospitalisation was 24.5%, 33.0% and 36.5% versus 4.1%; and Pseudomonas aeruginosa infection was 18.8%, 23.4% and 35.2% versus 11.9%. In multivariable model analysis, respiratory hospitalisation, cough, haemoptysis, P.  aeruginosa, younger age, lower FEV1% predicted, asthma, and gastro-oesophageal reflux disease were associated with more exacerbations.

Conclusions

These findings demonstrate a high disease burden, including increased respiratory symptoms, healthcare resource utilisation, and P.  aeruginosa infection in patients with bronchiectasis and multiple exacerbations.




ter

Accuracy of CAD4TB (Computer-Aided Detection for Tuberculosis) on paediatric chest radiographs

Background

Computer-aided detection (CAD) systems hold promise for improving tuberculosis (TB) detection on digital chest radiographs. However, data on their performance in exclusively paediatric populations are scarce.

Methods

We conducted a retrospective diagnostic accuracy study evaluating the performance of CAD4TBv7 (Computer-Aided Detection for Tuberculosis version 7) using digital chest radiographs from well-characterised cohorts of Gambian children aged <15 years with presumed pulmonary TB. The children were consecutively recruited between 2012 and 2022. We measured CAD4TBv7 performance against a microbiological reference standard (MRS) of confirmed TB, and also performed Bayesian latent class analysis (LCA) to address the inherent limitations of the MRS in children. Diagnostic performance was assessed using the area under the receiver operating characteristic curve (AUROC) and point estimates of sensitivity and specificity.

Results

A total of 724 children were included in the analysis, with confirmed TB in 58 (8%), unconfirmed TB in 145 (20%) and unlikely TB in 521 (72%). Using the MRS, CAD4TBv7 showed an AUROC of 0.70 (95% CI 0.60–0.79), and demonstrated sensitivity and specificity of 19.0% (95% CI 11–31%) and 99.0% (95% CI 98.0–100.0%), respectively. Applying Bayesian LCA with the assumption of conditional independence between tests, sensitivity and specificity estimates for CAD4TBv7 were 42.7% (95% CrI 29.2–57.5%) and 97.9% (95% CrI 96.6–98.8%), respectively. When allowing for conditional dependence between culture and Xpert assay, CAD4TBv7 demonstrated a sensitivity of 50.3% (95% CrI 32.9–70.0%) and specificity of 98.0% (95% CrI 96.7–98.9%).

Conclusion

Although CAD4TBv7 demonstrated high specificity, its suboptimal sensitivity underscores the crucial need for optimisation of CAD4TBv7 for detecting TB in children.




ter

Reassessing Halm's clinical stability criteria in community-acquired pneumonia management

Background

Halm's clinical stability criteria have long guided antibiotic treatment and hospital discharge decisions for patients hospitalised with community-acquired pneumonia (CAP). Originally introduced in 1998, these criteria were established based on a relatively small and select patient population. Consequently, our study aims to reassess their applicability in the management of CAP in a contemporary real-world setting.

Methods

This cohort study included 2918 immunocompetent patients hospitalised with CAP from three hospitals in Denmark between 2017 and 2020. The primary outcome was time to achieve clinical stability as defined by Halm's criteria. Additionally, we examined recurrence of clinical instability and severe complications. Cumulative incidence function or Kaplan–Meier survival curves were used to analyse these outcomes, considering competing risks.

Results

The study population primarily comprised elderly individuals (median age 75 years) with significant comorbidities. The median time to clinical stability according to Halm's criteria was 4 days, with one-fifth experiencing recurrence of instability after early clinical response (stability within 3 days). Severe complications within 30 days mainly comprised mortality, with rates of 5.1% (64/1257) overall in those with early clinical response, 1.7% (18/1045) in the subgroup without do-not-resuscitate orders and 17.3% (276/1595) among the rest.

Conclusion

Halm's clinical stability criteria effectively classify CAP patients with different disease courses, yet achieving stability required more time in this ageing population with substantial comorbidities and more severe disease. Early clinical response indicates reduced risk of complications, especially in those without do-not-resuscitate orders.




ter

Characterization and Prediction of Organic Anion Transporting Polypeptide 1B Activity in Prostate Cancer Patients on Abiraterone Acetate Using Endogenous Biomarker Coproporphyrin I [Articles]

Organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 are important hepatic transporters. We previously identified OATP1B3 being critically implicated in the disposition of abiraterone. We aimed to further investigate the effects of abiraterone on the activities of OATP1B1 and OATP1B3 utilizing a validated endogenous biomarker coproporphyrin I (CP-I). We used OATP1B-transfected cells to characterize the inhibitory potential of abiraterone against OATP1B-mediated uptake of CP-I. Inhibition constant (Ki) was incorporated into our physiologically based pharmacokinetic (PBPK) modeling to simulate the systemic exposures of CP-I among cancer populations receiving either our model-informed 500 mg or clinically approved 1000 mg abiraterone acetate (AA) dosage. Simulated data were compared with clinical CP-I concentrations determined among our nine metastatic prostate cancer patients receiving 500 mg AA treatment. Abiraterone inhibited OATP1B3-mediated, but not OATP1B1-mediated, uptake of CP-I in vitro, with an estimated Ki of 3.93 μM. Baseline CP-I concentrations were simulated to be 0.81 ± 0.26 ng/ml and determined to be 0.72 ± 0.16 ng/ml among metastatic prostate cancer patients, both of which were higher than those observed for healthy subjects. PBPK simulations revealed an absence of OATP1B3-mediated interaction between abiraterone and CP-I. Our clinical observations confirmed that CP-I concentrations remained comparable to baseline levels up to 12 weeks post 500 mg AA treatment. Using CP-I as an endogenous biomarker, we identified the inhibition of abiraterone on OATP1B3 but not OATP1B1 in vitro, which was predicted and observed to be clinically insignificant. We concluded that the interaction risk between AA and substrates of OATP1Bs is low.

SIGNIFICANCE STATEMENT

The authors used the endogenous biomarker coproporphyrin I (CP-I) and identified abiraterone as a moderate inhibitor of organic anion transporting polypeptide (OATP) 1B3 in vitro. Subsequent physiologically based pharmacokinetic (PBPK) simulations and clinical observations suggested an absence of OATP1B-mediated interaction between abiraterone and CP-I among prostate cancer patients. This multipronged study concluded that the interaction risk between abiraterone acetate and substrates of OATP1Bs is low, demonstrating the application of PBPK-CP-I modeling in predicting OATP1B-mediated interaction implicating abiraterone.




ter

Correlations of Long Noncoding RNA HNF4A-AS1 Alternative Transcripts with Liver Diseases and Drug Metabolism [Articles]

Hepatocyte nuclear factor 4 alpha antisense 1 (HNF4A-AS1) is a long noncoding RNA (lncRNA) gene physically located next to the transcription factor HNF4A gene in the human genome. Its transcription products have been reported to inhibit the progression of hepatocellular carcinoma (HCC) and negatively regulate the expression of cytochrome P450s (CYPs), including CYP1A2, 2B6, 2C9, 2C19, 2E1, and 3A4. By altering CYP expression, lncRNA HNF4A-AS1 also contributes to the susceptibility of drug-induced liver injury. Thus, HNF4A-AS1 lncRNA is a promising target for controlling HCC and modulating drug metabolism. However, HNF4A-AS1 has four annotated alternative transcripts in the human genome browsers, and it is unclear which transcripts the small interfering RNAs or small hairpin RNAs used in the previous studies are silenced and which transcripts should be used as the target. In this study, four annotated and two newly identified transcripts were confirmed. These six transcripts showed different expression levels in different liver disease conditions, including metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, and obesity. The expression patterns of all HNF4A-AS1 transcripts were further investigated in liver cell growth from human embryonic stem cells to matured hepatocyte-like cells, HepaRG differentiation, and exposure to rifampicin treatment. Several HNF4A-AS1 transcripts highly displayed correlations with these situations. In addition, some of the HNF4A-AS1 transcripts also showed a strong correlation with CYP3A4 during HepaRG maturation and rifampicin exposure. Our findings provide valuable insights into the specific roles of HNF4A-AS1 transcripts, paving the way for more targeted therapeutic strategies for liver diseases and drug metabolism.

SIGNIFICANCE STATEMENT

This study explores the alternative transcripts of HNF4A-AS1, showing how their expression changes in different biological conditions, from various liver diseases to the growth and differentiation of hepatocytes and drug metabolism. The generated knowledge is essential for understanding the independent roles of different transcripts from the same lncRNA in different liver diseases and drug metabolism situations.




ter

Functional Characterization of Reduced Folate Carrier and Protein-Coupled Folate Transporter for Antifolates Accumulation in Non-Small Cell Lung Cancer Cells [Articles]

Antifolates are important for chemotherapy in non–small cell lung cancer (NSCLC). They mainly rely on reduced folate carrier (RFC) and proton-coupled folate transporter (PCFT) to enter cells. PCFT is supposed to be the dominant transporter of the two in tumors, as it operates optimally at acidic pH and has limited transport activity at physiological pH, whereas RFC operates optimally at neutral pH. In this study, we found RFC showed a slightly pH-dependent uptake of antifolates, with similar affinity values at pH 7.4 and 6.5. PCFT showed a highly pH-dependent uptake of antifolates, with an optimum pH of 6.0 for pemetrexed and 5.5 for methotrexate. The Michaelis-Menten constant (Km) value of PCFT for pemetrexed at pH 7.4 was more than 10 times higher than that at pH 6.5. Interestingly, we found that antifolate accumulations mediated by PCFT at acidic pH were significantly affected by the efflux transporter, breast cancer resistance protein (BCRP). The highest pemetrexed concentration was observed at pH 7.0–7.4 after a 60-minute accumulation in PCFT-expressing cells, which was further evidenced by the cytotoxicity of pemetrexed, with the IC50 value of pemetrexed at pH 7.4 being one-third of that at pH 6.5. In addition, the in vivo study indicated that increasing PCFT and RFC expression significantly enhanced the antitumor efficacy of pemetrexed despite the high expression of BCRP. These results suggest that both RFC and PCFT are important for antifolates accumulation in NSCLC, although there is an acidic microenvironment and high BCRP expression in tumors.

SIGNIFICANCE STATEMENT

Evaluating the role of reduced folate carrier (RFC) and proton-coupled folate transporter (PCFT) on antifolates accumulation in non–small cell lung cancer (NSCLC) is necessary for new drug designs. By using cell models, we found both RFC and PCFT were important for antifolates accumulation in NSCLC. Breast cancer resistance protein (BCRP) significantly affected PCFT-mediated antifolates accumulation at acidic pH but not RFC-mediated pemetrexed accumulation at physiological pH. High expression of PCFT or RFC enhanced the cytotoxicity and antitumor effect of pemetrexed.




ter

The Simultaneous Inhibition of Solute Carrier Family 6 Member 19 and Breast Cancer Resistance Protein Transporters Leads to an Increase of Indoxyl Sulfate (a Uremic Toxin) in Plasma and Kidney [Articles]

Solute carrier family 6 member 19 (SLC6A19) inhibitors are being studied as therapeutic agents for phenylketonuria. In this work, a potent SLC6A19 inhibitor (RA836) elevated rat kidney uremic toxin indoxyl sulfate (IDS) levels by intensity (arbitrary unit) of 13.7 ± 7.7 compared with vehicle 0.3 ± 0.1 (P = 0.01) as determined by tissue mass spectrometry imaging analysis. We hypothesized that increased plasma and kidney levels of IDS could be caused by the simultaneous inhibition of both Slc6a19 and a kidney IDS transporter responsible for excretion of IDS into urine. To test this, we first confirmed the formation of IDS through tryptophan metabolism by feeding rats a Trp-free diet. Inhibiting Slc6a19 with RA836 led to increased IDS in these rats. Next, RA836 and its key metabolites were evaluated in vitro for inhibiting kidney transporters such as organic anion transporter (OAT)1, OAT3, and breast cancer resistance protein (BCRP). RA836 inhibits BCRP with an IC50 of 0.045 μM but shows no significant inhibition of OAT1 or OAT3. Finally, RA836 analogs with either potent or no inhibition of SLC6A19 and/or BCRP were synthesized and administered to rats fed a normal diet. Plasma and kidney samples were collected to quantify IDS using liquid chromatography–mass spectrometry. Neither a SLC6A19 inactive but potent BCRP inhibitor nor a SLC6A19 active but weak BCRP inhibitor raised IDS levels, whereas compounds inhibiting both transporters caused IDS accumulation in rat plasma and kidney, supporting the hypothesis that rat Bcrp contributes to the excretion of IDS. In summary, we identified that inhibiting Slc6a19 increases IDS formation, while simultaneously inhibiting Bcrp results in IDS accumulation in the kidney and plasma.

SIGNIFICANCE STATEMENT

This is the first publication to decipher the mechanism for accumulation of indoxyl sulfate (IDS) (a uremic toxin) in rats via inhibition of both Slc6a19 and Bcrp. Specifically, inhibition of Slc6a19 in the gastrointestinal track increases IDS formation, and inhibition of Bcrp in the kidney blocks IDS excretion. Therefore, we should avoid inhibiting both solute carrier family 6 member 19 and breast cancer resistance protein simultaneously in humans to prevent accumulation of IDS, a known risk factor for cardiovascular disease, psychic anxiety, and mortality in chronic kidney disease patients.




ter

Nonclinical Pharmacokinetics Study of OLX702A-075-16, N-Acetylgalactosamine Conjugated Asymmetric Small Interfering RNA (GalNAc-asiRNA) [Articles]

In this study, the nonclinical pharmacokinetics of OLX702A-075-16, an RNA interference therapeutic currently in development, were investigated. OLX702A-075-16 is a novel N-acetylgalactosamine conjugated asymmetric small-interfering RNA (GalNAc-asiRNA) used for the treatment of an undisclosed liver disease. Its unique 16/21-mer asymmetric structure reduces nonspecific off-target effects without compromising efficacy. We investigated the plasma concentration, tissue distribution, metabolism, and renal excretion of OLX702A-075-16 following a subcutaneous administration in mice and rats. For bioanalysis, high-performance liquid chromatography with fluorescence detection was used. The results showed rapid clearance from plasma (0.5 to 1.5 hours of half-life) and predominant distribution to the liver and/or kidney. Less than 1% of the liver concentration of OLX702A-075-16 was detected in the other tissues. Metabolite profiling using liquid chromatography coupled with high-resolution mass spectrometry revealed that the intact duplex OLX702A-075-16 was the major compound in plasma. The GalNAc moiety was predominantly metabolized from the sense strand in the liver, with the unconjugated sense strand of OLX702A-075-16 accounting for more than 95% of the total exposure in the rat liver. Meanwhile, the antisense strand was metabolized by the sequential loss of nucleotides from the 3'-terminus by exonuclease, with the rat liver samples yielding the most diverse truncated forms of metabolites. Urinary excretion over 96 hours was less than 1% of the administered dose in rats. High plasma protein binding of OLX702A-075-16 likely inhibited its clearance through renal filtration.

SIGNIFICANCE STATEMENT

This study presents the first comprehensive characterization of the in vivo pharmacokinetics of GalNAc-asiRNA. The pharmacokinetic insights gained from this research will aid in understanding toxicology and efficacy, optimizing delivery platforms, and improving the predictive power of preclinical species data for human applications.




ter

Ontogeny of Hepatic Organic Cation Transporter-1 in Rat and Human [Articles]

The organic cation transporter (OCT)-1 mediates hepatic uptake of cationic endogenous compounds and xenobiotics. To date, limited information exists on how Oct1/OCT1 functionally develops with age in rat and human livers and how this would affect the pharmacokinetics of OCT substrates in children or juvenile animals. The functional ontogeny of rOct/hOCT was profiled in suspended rat (2–57 days old) and human hepatocytes (pediatric liver tissue donors: age 2–12 months) by determining uptake clearance of 4-[4-(dimethylamino)styryl]-N-methylpyridinium iodide (ASP+) as a known rOct/hOCT probe substrate. mRNA expression was determined in rat liver tissue corresponding to rat ages used in the functional studies, while hOCT1 mRNA expressions were determined in the same hepatocyte batches as those used for uptake studies. Maturation of rOct/hOCT activity and expression were evaluated by comparing values obtained at the various ages to the adult values. Relative to adult values (at 8 weeks), ASP+ uptake clearance in suspended rat hepatocytes aged 0, 1, 2, 3, 4, 5, and 6 weeks reached 26%, 29%, 33%, 37%, 72%, 63%, and 71%, respectively. Hepatic Oct1 mRNA expression was consistent with Oct activity (correlation coefficient of 0.92). In human hepatocytes, OCT1 activity was age dependent and also correlated with mRNA levels (correlation coefficient of 0.88). These data show that Oct1/OCT1 activities and expression mature gradually in rat/human liver, thereby mirroring the expression pattern of organic anion transporting polypeptide in rat. These high-resolution transporter ontogeny profiles will allow for more accurate prediction of the pharmacokinetics of OCT1/Oct1 substrates in pediatric populations and juvenile animals.

SIGNIFICANCE STATEMENT

Organic cation transporter-1 (OCT1) represents a major drug uptake transporter in human liver. This study provides high-resolution data regarding the age-dependent function of OCT1 in the liver, based on in vitro experiments with rat and human hepatocytes obtained from donors between birth and adulthood. These ontogeny profiles will inform improved age-specific physiologically based pharmacokinetic models for OCT1 drug substrates in neonates, infants, children, and adults.




ter

The Induction of Drug Uptake Transporter Organic Anion Transporting Polypeptide 1A2 by Radiation Is Mediated by the Nonreceptor Tyrosine Kinase v-YES-1 Yamaguchi Sarcoma Viral Oncogene Homolog 1 [Articles]

Organic anion transporting polypeptides (OATP, gene symbol SLCO) are well-recognized key determinants for the absorption, distribution, and excretion of a wide spectrum of endogenous and exogenous compounds including many antineoplastic agents. It was therefore proposed as a potential drug target for cancer therapy. In our previous study, it was found that low-dose X-ray and carbon ion irradiation both upregulated the expression of OATP family member OATP1A2 and in turn, led to a more dramatic killing effect when cancer cells were cotreated with antitumor drugs such as methotrexate. In the present study, the underlying mechanism of the phenomenon was explored in breast cancer cell line MCF-7. It was found that the nonreceptor tyrosine kinase v-YES-1 Yamaguchi sarcoma viral oncogene homolog 1 (YES-1) was temporally coordinated with the change of OATP1A2 after irradiation. The overexpression of YES-1 significantly increased OATP1A2 both at the mRNA and protein level. The signal transducer and activator of transcription 3 (STAT3) pathway is likely the downstream target of YES-1 because phosphorylation and nuclear accumulation of STAT3 were both enhanced after overexpressing YES-1 in MCF-7 cells. Further investigation revealed that there are two possible binding sites of STAT3 localized at the upstream sequence of SLCO1A2, the encoding gene of OATP1A2. Electrophoretic mobility shift assay and chromatin immunoprecipitation analysis suggested that these two sites bound to STAT3 specifically and the overexpression of YES-1 significantly increased the association of the transcription factor with the putative binding sites. Finally, inhibition or knockdown of YES-1 attenuated the induction effect of radiation on the expression of OATP1A2.

SIGNIFICANCE STATEMENT

The present study found that the effect of X-rays on v-YES-1 Yamaguchi sarcoma viral oncogene homolog 1 (YES-1) and organic anion transporting polypeptides (OATP)1A2 was temporally coordinated. YES-1 phosphorylates and increases the nuclear accumulation of signal transducer and activator of transcription 3, which in turn binds to the upstream regulatory sequences of SLCO1A2, the coding gene for OATP1A2. Hence, inhibitors of YES-1 may suppress the radiation induction effect on OATP1A2.




ter

Early Prediction and Impact Assessment of CYP3A4-Related Drug-Drug Interactions for Small-Molecule Anticancer Drugs Using Human-CYP3A4-Transgenic Mouse Models [Articles]

Early detection of drug-drug interactions (DDIs) can facilitate timely drug development decisions, prevent unnecessary restrictions on patient enrollment, resulting in clinical study populations that are not representative of the indicated study population, and allow for appropriate dose adjustments to ensure safety in clinical trials. All of these factors contribute to a streamlined drug approval process and enhanced patient safety. Here we describe a new approach for early prediction of the magnitude of change in exposure for cytochrome P450 (P450) CYP3A4-related DDIs of small-molecule anticancer drugs based on the model-based extrapolation of human-CYP3A4-transgenic mice pharmacokinetics to humans. Victim drugs brigatinib and lorlatinib were evaluated with the new approach in combination with the perpetrator drugs itraconazole and rifampicin. Predictions of the magnitude of change in exposure deviated at most 0.99- to 1.31-fold from clinical trial results for inhibition with itraconazole, whereas exposure predictions for the induction with rifampicin were less accurate, with deviations of 0.22- to 0.48-fold. Results for the early prediction of DDIs and their clinical impact appear promising for CYP3A4 inhibition, but validation with more victim and perpetrator drugs is essential to evaluate the performance of the new method.

SIGNIFICANCE STATEMENT

The described method offers an alternative for the early detection and assessment of potential clinical impact of CYP3A4-related drug-drug interactions. The model was able to adequately describe the inhibition of CYP3A4 metabolism and the subsequent magnitude of change in exposure. However, it was unable to accurately predict the magnitude of change in exposure of victim drugs in combination with an inducer.




ter

Roles of the ABCG2 Transporter in Protoporphyrin IX Distribution and Toxicity [Special Section on New and Emerging Areas and Technologies in Drug Metabolism and Disposition, Part II-Minireview]

ATP-binding cassette transporter subfamily G member 2 (ABCG2) is a membrane-bound transporter responsible for the efflux of various xenobiotics and endobiotics, including protoporphyrin IX (PPIX), an intermediate in the heme biosynthesis pathway. Certain genetic mutations and chemicals impair the conversion of PPIX to heme and/or increase PPIX production, leading to PPIX accumulation and toxicity. In mice, deficiency of ABCG2 protects against PPIX-mediated phototoxicity and hepatotoxicity by modulating PPIX distribution. In addition, in vitro studies revealed that ABCG2 inhibition increases the efficacy of PPIX-based photodynamic therapy by retaining PPIX inside target cells. In this review, we discuss the roles of ABCG2 in modulating the tissue distribution of PPIX, PPIX-mediated toxicity, and PPIX-based photodynamic therapy.

SIGNIFICANCE STATEMENT

This review summarized the roles of ABCG2 in modulating PPIX distribution and highlighted the therapeutic potential of ABCG2 inhibitors for the management of PPIX-mediated toxicity.




ter

Assessing Trends in Cytokine-CYP Drug Interactions and Relevance to Drug Dosing [Special Section on New and Emerging Areas and Technologies in Drug Metabolism and Disposition, Part II-Minireview]

The regulation of drug-metabolizing enzymes and transporters by cytokines has been extensively studied in vitro and in clinic. Cytokine-mediated suppression of cytochrome P450 (CYP) or drug transporters may increase or decrease the systemic clearance of drug substrates that are primarily cleared via these pathways; neutralization of cytokines by therapeutic proteins may thereby alter systemic exposures of such drug substrates. The Food and Drug Administration recommends evaluating such clinical drug interactions during clinical development and has provided labeling recommendations for therapeutic proteins. To determine the clinical relevance of these drug interactions to dose adjustments, trends in steady-state exposures of CYP-sensitive substrates coadministered with cytokine modulators as reported in the University of Washington Drug Interaction Database were extracted and examined for each of the CYPs. Coadministration of cytochrome P450 family 3 subfamily A (CYP3A) (midazolam/simvastatin), cytochrome P450 subfamily 2C19 (omeprazole), or cytochrome P450 subfamily 1A2 (caffeine/tizanidine) substrates with anti-interleukin-6 and with anti-interleukin-23 therapeutics led to changes in systemic exposures of CYP substrates ranging from ~ –58% to ~35%; no significant trends were observed for cytochrome P450 subfamily 2D6 (dextromethorphan) and cytochrome P450 subfamily 2C9 (warfarin) substrates. Although none of these changes in systemic exposures have been reported as clinically meaningful, dose adjustment of midazolam for optimal sedation in acute care settings has been reported. Simulated concentration-time profiles of midazolam under conditions of elevated cytokine levels when coadministered with tocilizumab, suggest a ~six- to sevenfold increase in midazolam clearance, suggesting potential implications of cytokine–CYP drug interactions on dose adjustments of sensitive CYP3A substrates in acute care settings. Additionally, this article also provides a brief overview of nonclinical and clinical assessments of cytokine–CYP drug interactions in drug discovery and development.

SIGNIFICANCE STATEMENT

There has been significant progress in understanding cytokine-mediated drug interactions for CYP-sensitive substrates. This article provides an overview of the progress in this field, including a trend analysis of systemic exposures of CYP-sensitive substrates coadministered with anti-interleukin therapeutics. In addition, the review also provides a perspective of current methods used to assess these drug interactions during drug development and a focus on individualized medicine, particularly in acute care settings.




ter

Characterizing the Distribution of a Stimulator of Interferon Genes Agonist and Its Metabolites in Mouse Liver by Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry [Special Section on New and Emerging Areas and Technologies in Drug Met

A STING (stimulator of interferon genes) agonist GSK3996915 under investigation in early discovery for hepatitis B was orally dosed to a mouse model for understanding the parent drug distribution in liver, the target organ. Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) was used to quantify the distribution of GSK3996915 in liver collected from mice administered a single oral dose at 90 mg/kg. GSK3996915 was detected with a zonal distribution localized in the portal triad and highly concentrated in the main bile ducts, indicating clearance through biliary excretion. High spatial resolution imaging showed the distribution of the parent drug localized to the cellular populations in the sinusoids, including the Kupffer cells. Additionally, a series of drug-related metabolites were observed to be localized in the central zones of the liver. These results exemplify the potential of utilizing MALDI IMS for measuring not only quantitative drug distribution and target exposure but also drug metabolism and elimination in a single suite of experiments.

SIGNIFICANCE STATEMENT

An integrated imaging approach utilizing matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) complemented with immunohistochemistry (IHC) and histology was used to address the question of target exposure at the cellular level. Localized quantification of the parent drug in the target organ and identification of potential metabolites in the context of tissue histology were also achieved in one experimental suite to support characterization of pharmacokinetic properties of the drug in the early discovery stage.:




ter

Evaluating Drug-Drug Interaction Risk Associated with Peptide Analogs Using advanced In Vitro Systems [Special Section on New and Emerging Areas and Technologies in Drug Metabolism and Disposition, Part II]

Drug–drug interaction (DDI) assessment of therapeutic peptides is an evolving area. The industry generally follows DDI guidelines for small molecules, but the translation of data generated with commonly used in vitro systems to in vivo is sparse. In the current study, we investigated the ability of advanced human hepatocyte in vitro systems, namely HepatoPac, spheroids, and Liver-on-a-chip, to assess potential changes in regulation of CYP1A2, CYP2B6, CYP3A4, SLCO1B1, and ABCC2 in the presence of selected therapeutic peptides, proteins, and small molecules. The peptide NN1177, a glucagon and GLP-1 receptor co-agonist, did not suppress mRNA expression or activity of CYP1A2, CYP2B6, and CYP3A4 in HepatoPac, spheroids, or Liver-on-a-chip; these findings were in contrast to the data obtained in sandwich cultured hepatocytes. No effect of NN1177 on SLCO1B1 and ABCC2 mRNA was observed in any of the complex systems. The induction magnitude differed across the systems (e.g., rifampicin induction of CYP3A4 mRNA ranged from 2.8-fold in spheroids to 81.2-fold in Liver-on-a-chip). Small molecules, obeticholic acid and abemaciclib, showed varying responses in HepatoPac, spheroids, and Liver-on-a-chip, indicating a need for EC50 determinations to fully assess translatability data. HepatoPac, the most extensively investigated in this study (3 donors), showed high potential to investigate DDIs associated with CYP regulation by therapeutic peptides. Spheroids and Liver-on-a-chip were only assessed in one hepatocyte donor and further evaluations are required to confirm their potential. This study establishes an excellent foundation toward the establishment of more clinically-relevant in vitro tools for evaluation of potential DDIs with therapeutic peptides.

SIGNIFICANT STATEMENT

At present, there are no guidelines for drug–drug interaction (DDI) assessment of therapeutic peptides. Existing in vitro methods recommended for assessing small molecule DDIs do not appear to translate well for peptide drugs, complicating drug development for these moieties. Here, we establish evidence that complex cellular systems have potential to be used as more clinically-relevant tools for the in vitro DDI evaluation of therapeutic peptides.




ter

Differential Tissue Abundance of Membrane-Bound Drug Metabolizing Enzymes and Transporter Proteins by Global Proteomics [Special Section on New and Emerging Areas and Technologies in Drug Metabolism and Disposition, Part II]

Protein abundance data of drug-metabolizing enzymes and transporters (DMETs) are useful for scaling in vitro and animal data to humans for accurate prediction and interpretation of drug clearance and toxicity. Targeted DMET proteomics that relies on synthetic stable isotope-labeled surrogate peptides as calibrators is routinely used for the quantification of selected proteins; however, the technique is limited to the quantification of a small number of proteins. Although the global proteomics-based total protein approach (TPA) is emerging as a better alternative for large-scale protein quantification, the conventional TPA does not consider differential sequence coverage by identifying unique peptides across proteins. Here, we optimized the TPA approach by correcting protein abundance data by the sequence coverage, which was applied to quantify 54 DMETs for characterization of 1) differential tissue DMET abundance in the human liver, kidney, and intestine, and 2) interindividual variability of DMET proteins in individual intestinal samples (n = 13). Uridine diphosphate-glucuronosyltransferase 2B7 (UGT2B7), microsomal glutathione S-transferases (MGST1, MGST2, and MGST3) carboxylesterase 2 (CES2), and multidrug resistance-associated protein 2 (MRP2) were expressed in all three tissues, whereas, as expected, four cytochrome P450s (CYP3A4, CYP3A5, CYP2C9, and CYP4F2), UGT1A1, UGT2B17, CES1, flavin-containing monooxygenase 5, MRP3, and P-glycoprotein were present in the liver and intestine. The top three DMET proteins in individual tissues were: CES1>CYP2E1>UGT2B7 (liver), CES2>UGT2B17>CYP3A4 (intestine), and MGST1>UGT1A6>MGST2 (kidney). CYP3A4, CYP3A5, UGT2B17, CES2, and MGST2 showed high interindividual variability in the intestine. These data are relevant for enhancing in vitro to in vivo extrapolation of drug absorption and disposition and can be used to enhance the accuracy of physiologically based pharmacokinetic prediction of systemic and tissue concentration of drugs.

SIGNIFICANCE STATEMENT

This study quantified the abundance and compositions of drug-metabolizing enzymes and transporters in pooled human liver, intestine, and kidney microsomes as well as individual intestinal microsomes using an optimized global proteomics approach. The data revealed large intertissue differences in the abundance of these proteins and high intestinal interindividual variability in the levels of cytochrome P450s (e.g., CYP3A4 and CYP3A5), uridine diphosphate-glucuronosyltransferase 2B17, carboxylesterase 2, and microsomal glutathione S-transferase 2. These data are applicable for the prediction of first-pass metabolism and tissue-specific drug clearance.




ter

Inhibitory Actions of Potentiating Neuroactive Steroids in the Human {alpha}1{beta}3{gamma}2L {gamma}-Aminobutyric Acid Type A Receptor [Article]

The -aminobutyric acid type A (GABAA) receptor is modulated by a number of neuroactive steroids. Sulfated steroids and 3β-hydroxy steroids inhibit, while 3α-hydroxy steroids typically potentiate the receptor. Here, we have investigated inhibition of the α1β32L GABAA receptor by the endogenous neurosteroid 3α-hydroxy-5β-pregnan-20-one (3α5βP) and the synthetic neuroactive steroid 3α-hydroxy-5α-androstane-17β-carbonitrile (ACN). The receptors were expressed in Xenopus oocytes. All experiments were done using two-electrode voltage-clamp electrophysiology. In the presence of low concentrations of GABA, 3α5βP and ACN potentiate the GABAA receptor. To reveal inhibition, we conducted the experiments on receptors activated by the combination of a saturating concentration of GABA and propofol to fully activate the receptors and mask potentiation, or on mutant receptors in which potentiation is ablated. Under these conditions, both steroids inhibited the receptor with IC50s of ~13 μM and maximal inhibitory effects of 70–90%. Receptor inhibition by 3α5βP was sensitive to substitution of the α1 transmembrane domain (TM) 2-2' residue, previously shown to ablate inhibition by pregnenolone sulfate. However, results of coapplication studies and the apparent lack of state dependence suggest that pregnenolone sulfate and 3α5βP inhibit the GABAA receptor independently and through distinct mechanisms. Mutations to the neurosteroid binding sites in the α1 and β3 subunits statistically significantly, albeit weakly and incompletely, reduced inhibition by 3α5βP and ACN.

SIGNIFICANCE STATEMENT

The heteromeric GABAA receptor is inhibited by sulfated steroids and 3β-hydroxy steroids, while 3α-hydroxy steroids are considered to potentiate the receptor. We show here that 3α-hydroxy steroids have inhibitory effects on the α1β32L receptor, which are observed in specific experimental settings and are expected to manifest under different physiological conditions.




ter

Ketamine and Major Ketamine Metabolites Function as Allosteric Modulators of Opioid Receptors [Article]

Ketamine is a glutamate receptor antagonist that was developed over 50 years ago as an anesthetic agent. At subanesthetic doses, ketamine and some metabolites are analgesics and fast-acting antidepressants, presumably through targets other than glutamate receptors. We tested ketamine and its metabolites for activity as allosteric modulators of opioid receptors expressed as recombinant receptors in heterologous systems and with native receptors in rodent brain; signaling was examined by measuring GTP binding, β-arrestin recruitment, MAPK activation, and neurotransmitter release. Although micromolar concentrations of ketamine alone had weak agonist activity at μ opioid receptors, the combination of submicromolar concentrations of ketamine with endogenous opioid peptides produced robust synergistic responses with statistically significant increases in efficacies. All three opioid receptors (μ, , and ) showed synergism with submicromolar concentrations of ketamine and either methionine-enkephalin (Met-enk), leucine-enkephalin (Leu-enk), and/or dynorphin A17 (Dyn A17), albeit the extent of synergy was variable between receptors and peptides. S-ketamine exhibited higher modulatory effects compared with R-ketamine or racemic ketamine, with ~100% increase in efficacy. Importantly, the ketamine metabolite 6-hydroxynorketamine showed robust allosteric modulatory activity at μ opioid receptors; this metabolite is known to have analgesic and antidepressant activity but does not bind to glutamate receptors. Ketamine enhanced potency and efficacy of Met-enkephalin signaling both in mouse midbrain membranes and in rat ventral tegmental area neurons as determined by electrophysiology recordings in brain slices. Taken together, these findings support the hypothesis that some of the therapeutic effects of ketamine and its metabolites are mediated by directly engaging the endogenous opioid system.

SIGNIFICANCE STATEMENT

This study found that ketamine and its major biologically active metabolites function as potent allosteric modulators of μ, , and opioid receptors, with submicromolar concentrations of these compounds synergizing with endogenous opioid peptides, such as enkephalin and dynorphin. This allosteric activity may contribute to ketamine’s therapeutic effectiveness for treating acute and chronic pain and as a fast-acting antidepressant drug.




ter

Simplified Method for Kinetic and Thermodynamic Screening of Cardiotonic Steroids through the K+-Dependent Phosphatase Activity of Na+/K+-ATPase with Chromogenic pNPP Substrate [Article]

The antitumor effect of cardiotonic steroids (CTS) has stimulated the search for new methods to evaluate both kinetic and thermodynamic aspects of their binding to Na+/K+-ATPase (IUBMB Enzyme Nomenclature). We propose a real-time assay based on a chromogenic substrate for phosphatase activity (pNPPase activity), using only two concentrations with an inhibitory progression curve, to obtain the association rate (kon), dissociation rate (koff), and equilibrium (Ki) constants of CTS for the structure-kinetics relationship in drug screening. We show that changing conditions (from ATPase to pNPPase activity) resulted in an increase of Ki of the cardenolides digitoxigenin, essentially due to a reduction of kon. In contrast, the Ki of the structurally related bufadienolide bufalin increased much less due to the reduction of its koff partially compensating the decrease of its kon. When evaluating the kinetics of 15 natural and semisynthetic CTS, we observed that both kon and koff correlated with Ki (Spearman test), suggesting that differences in potency depend on variations of both kon and koff. A rhamnose in C3 of the steroidal nucleus enhanced the inhibitory potency by a reduction of koff rather than an increase of kon. Raising the temperature did not alter the koff of digitoxin, generating a H (koff) of –10.4 ± 4.3 kJ/mol, suggesting a complex dissociation mechanism. Based on a simple and inexpensive methodology, we determined the values of kon, koff, and Ki of the CTS and provided original kinetics and thermodynamics differences between CTS that could help the design of new compounds.

SIGNIFICANCE STATEMENT

This study describes a fast, simple, and cost-effective method for the measurement of phosphatase pNPPase activity enabling structure-kinetics relationships of Na+/K+-ATPase inhibitors, which are important compounds due to their antitumor effect and endogenous role. Using 15 compounds, some of them original, this study was able to delineate the kinetics and/or thermodynamics differences due to the type of sugar and lactone ring present in the steroid structure.




ter

Establishment of the First Institution-Based Poison Information Center in Nepal Through a Multilateral International Partnership

ABSTRACTToxicological emergencies present a significant health challenge in Nepal. Despite the high burden, the country has inadequate formal toxicology training, medical toxicology expertise, and adequate poison control infrastructure. In recognition of this need, the Nepal Poison Information Center (PIC) was established as a collaborative effort involving local and international partners. Through a comprehensive partnership framework, the Nepal PIC provides 24 hours a day, 7 days a week expert guidance to health care workers, conducts educational webinars, and engages in research. Initial data from the pilot phase indicate successful consultation delivery. Challenges include bureaucratic hurdles and the need for sustainable funding. Despite these challenges, the Nepal PIC demonstrates early feasibility and potential for expansion into a comprehensive toxicology center, contributing to the advancement of clinical toxicology in Nepal. Long-term sustainability relies on governmental support and continued advocacy efforts.




ter

Family Planning, Reproductive Health, and Progress Toward the Sustainable Development Goals: Reflections and Directions on the 30th Anniversary of the International Conference on Population and Development




ter

Can the International Conference on Population and Development Programme of Action and Cairo Consensus Normalize the Discourse on Population?




ter

Antenatal Care Interventions to Increase Contraceptive Use Following Birth in Low- and Middle-Income Countries: Systematic Review and Narrative Synthesis

ABSTRACTIntroduction:Health risks associated with short interpregnancy intervals, coupled with women’s desires to avoid pregnancy following childbirth, underscore the need for effective postpartum family planning programs. The antenatal period provides an opportunity to intervene; however, evidence is limited on the effectiveness of interventions aimed at reaching women in the antenatal period to increase voluntary postpartum family planning in low- and middle-income countries (LMICs). This systematic review aimed to identify and describe interventions in LMICs that attempted to increase postpartum contraceptive use via contacts with pregnant women in the antenatal period.Methods:Studies published from January 2012 to July 2022 were considered if they were conducted in LMICs, evaluated an intervention delivered during the antenatal period, were designed to affect postpartum contraceptive use, were experimental or quasi-experimental, and were published in French or English. The main outcome of interest was postpartum contraceptive use within 1 year after birth, defined as the use of any method of contraception at the time of data collection. We searched EMBASE, Global Health, and Medline and manually searched the reference lists from studies included in the full-text screening.Results:We double-screened 771 records and included 34 reports on 31 unique interventions in the review. Twenty-three studies were published from 2018 on, with 21 studies conducted in sub-Saharan Africa. Approximately half of the study designs (n=16) were randomized controlled trials, and half (n=15) were quasi-experimental. Interventions were heterogeneous. Among the 24 studies that reported on the main outcome of interest, 18 reported a positive intervention effect, with intervention recipients having greater contraceptive use in the first year postpartum.Conclusion:While the studies in this systematic review were heterogeneous, the findings suggest that interventions that included a multifaceted package of initiatives appeared to be most likely to have a positive effect.




ter

Improving Maternity Care Where Home Births Are Still the Norm: Establishing Local Birthing Centers in Guatemala That Incorporate Traditional Midwives

ABSTRACTMore than half of births among Indigenous women in Guatemala are still being attended at home by providers with no formal training. We describe the incorporation of comadronas (traditional midwives) into casas maternas (birthing centers) in the rural highlands of western Guatemala. Although there was initial resistance to the casa, comadronas and clients have become increasingly enthusiastic about them. The casas provide the opportunity for comadronas to continue the cultural traditions of prayers, massages, and other practices that honor the vital spiritual dimension of childbirth close to home in a home-like environment with extended family support while at the same time providing a safer childbirth experience in which complications can be detected by trained personnel at the casa, managed locally, or promptly referred to a higher-level facility. Given the growing acceptance of this innovation in an environment in which geographical, financial, and cultural barriers to deliveries at higher-level facilities lead most women to deliver at home, casas maternas represent a feasible option for reducing the high level of maternal mortality in Guatemala.This article provides an update on the growing utilization of casas and provides new insights into the role of comadronas as birthing team members and enthusiastic promotors of casas maternas as a preferable alternative to home births. Through the end of 2023, these casas maternas had cared for 4,322 women giving birth. No maternal deaths occurred at a casa, but 4 died after referral.The Ministry of Health of Guatemala has recently adopted this approach and has begun to implement it in other rural areas where home births still predominate. This approach deserves consideration as a viable and feasible option for reducing maternal mortality throughout the world where home births are still common, while at the same time providing women with respectful and culturally appropriate care.