race Inter-{alpha}-inhibitor heavy chain-1 has an integrin-like 3D structure mediating immune regulatory activities and matrix stabilization during ovulation [Glycobiology and Extracellular Matrices] By www.jbc.org Published On :: 2020-04-17T00:06:05-07:00 Inter-α-inhibitor is a proteoglycan essential for mammalian reproduction and also plays a less well-characterized role in inflammation. It comprises two homologous “heavy chains” (HC1 and HC2) covalently attached to chondroitin sulfate on the bikunin core protein. Before ovulation, HCs are transferred onto the polysaccharide hyaluronan (HA) to form covalent HC·HA complexes, thereby stabilizing an extracellular matrix around the oocyte required for fertilization. Additionally, such complexes form during inflammatory processes and mediate leukocyte adhesion in the synovial fluids of arthritis patients and protect against sepsis. Here using X-ray crystallography, we show that human HC1 has a structure similar to integrin β-chains, with a von Willebrand factor A domain containing a functional metal ion-dependent adhesion site (MIDAS) and an associated hybrid domain. A comparison of the WT protein and a variant with an impaired MIDAS (but otherwise structurally identical) by small-angle X-ray scattering and analytical ultracentrifugation revealed that HC1 self-associates in a cation-dependent manner, providing a mechanism for HC·HA cross-linking and matrix stabilization. Surprisingly, unlike integrins, HC1 interacted with RGD-containing ligands, such as fibronectin, vitronectin, and the latency-associated peptides of transforming growth factor β, in a MIDAS/cation-independent manner. However, HC1 utilizes its MIDAS motif to bind to and inhibit the cleavage of complement C3, and small-angle X-ray scattering–based modeling indicates that this occurs through the inhibition of the alternative pathway C3 convertase. These findings provide detailed structural and functional insights into HC1 as a regulator of innate immunity and further elucidate the role of HC·HA complexes in inflammation and ovulation. Full Article
race Glucocerebrosidases catalyze a transgalactosylation reaction that yields a newly-identified brain sterol metabolite, galactosylated cholesterol [Glycobiology and Extracellular Matrices] By www.jbc.org Published On :: 2020-04-17T00:06:05-07:00 β-Glucocerebrosidase (GBA) hydrolyzes glucosylceramide (GlcCer) to generate ceramide. Previously, we demonstrated that lysosomal GBA1 and nonlysosomal GBA2 possess not only GlcCer hydrolase activity, but also transglucosylation activity to transfer the glucose residue from GlcCer to cholesterol to form β-cholesterylglucoside (β-GlcChol) in vitro. β-GlcChol is a member of sterylglycosides present in diverse species. How GBA1 and GBA2 mediate β-GlcChol metabolism in the brain is unknown. Here, we purified and characterized sterylglycosides from rodent and fish brains. Although glucose is thought to be the sole carbohydrate component of sterylglycosides in vertebrates, structural analysis of rat brain sterylglycosides revealed the presence of galactosylated cholesterol (β-GalChol), in addition to β-GlcChol. Analyses of brain tissues from GBA2-deficient mice and GBA1- and/or GBA2-deficient Japanese rice fish (Oryzias latipes) revealed that GBA1 and GBA2 are responsible for β-GlcChol degradation and formation, respectively, and that both GBA1 and GBA2 are responsible for β-GalChol formation. Liquid chromatography–tandem MS revealed that β-GlcChol and β-GalChol are present throughout development from embryo to adult in the mouse brain. We found that β-GalChol expression depends on galactosylceramide (GalCer), and developmental onset of β-GalChol biosynthesis appeared to be during myelination. We also found that β-GlcChol and β-GalChol are secreted from neurons and glial cells in association with exosomes. In vitro enzyme assays confirmed that GBA1 and GBA2 have transgalactosylation activity to transfer the galactose residue from GalCer to cholesterol to form β-GalChol. This is the first report of the existence of β-GalChol in vertebrates and how β-GlcChol and β-GalChol are formed in the brain. Full Article
race Glycation-mediated inter-protein cross-linking is promoted by chaperone-client complexes of {alpha}-crystallin: Implications for lens aging and presbyopia [Glycobiology and Extracellular Matrices] By www.jbc.org Published On :: 2020-04-24T06:08:45-07:00 Lens proteins become increasingly cross-linked through nondisulfide linkages during aging and cataract formation. One mechanism that has been implicated in this cross-linking is glycation through formation of advanced glycation end products (AGEs). Here, we found an age-associated increase in stiffness in human lenses that was directly correlated with levels of protein–cross-linking AGEs. α-Crystallin in the lens binds to other proteins and prevents their denaturation and aggregation through its chaperone-like activity. Using a FRET-based assay, we examined the stability of the αA-crystallin–γD-crystallin complex for up to 12 days and observed that this complex is stable in PBS and upon incubation with human lens–epithelial cell lysate or lens homogenate. Addition of 2 mm ATP to the lysate or homogenate did not decrease the stability of the complex. We also generated complexes of human αA-crystallin or αB-crystallin with alcohol dehydrogenase or citrate synthase by applying thermal stress. Upon glycation under physiological conditions, the chaperone–client complexes underwent greater extents of cross-linking than did uncomplexed protein mixtures. LC-MS/MS analyses revealed that the levels of cross-linking AGEs were significantly higher in the glycated chaperone–client complexes than in glycated but uncomplexed protein mixtures. Mouse lenses subjected to thermal stress followed by glycation lost resilience more extensively than lenses subjected to thermal stress or glycation alone, and this loss was accompanied by higher protein cross-linking and higher cross-linking AGE levels. These results uncover a protein cross-linking mechanism in the lens and suggest that AGE-mediated cross-linking of α-crystallin–client complexes could contribute to lens aging and presbyopia. Full Article
race Processivity of dextransucrases synthesizing very-high-molar-mass dextran is mediated by sugar-binding pockets in domain V [Glycobiology and Extracellular Matrices] By www.jbc.org Published On :: 2020-04-24T06:08:45-07:00 The dextransucrase DSR-OK from the Gram-positive bacterium Oenococcus kitaharae DSM17330 produces a dextran of the highest molar mass reported to date (∼109 g/mol). In this study, we selected a recombinant form, DSR-OKΔ1, to identify molecular determinants involved in the sugar polymerization mechanism and that confer its ability to produce a very-high-molar-mass polymer. In domain V of DSR-OK, we identified seven putative sugar-binding pockets characteristic of glycoside hydrolase 70 (GH70) glucansucrases that are known to be involved in glucan binding. We investigated their role in polymer synthesis through several approaches, including monitoring of dextran synthesis, affinity assays, sugar binding pocket deletions, site-directed mutagenesis, and construction of chimeric enzymes. Substitution of only two stacking aromatic residues in two consecutive sugar-binding pockets (variant DSR-OKΔ1-Y1162A-F1228A) induced quasi-complete loss of very-high-molar-mass dextran synthesis, resulting in production of only 10–13 kg/mol polymers. Moreover, the double mutation completely switched the semiprocessive mode of DSR-OKΔ1 toward a distributive one, highlighting the strong influence of these pockets on enzyme processivity. Finally, the position of each pocket relative to the active site also appeared to be important for polymer elongation. We propose that sugar-binding pockets spatially closer to the catalytic domain play a major role in the control of processivity. A deep structural characterization, if possible with large-molar-mass sugar ligands, would allow confirming this hypothesis. Full Article
race The Escherichia coli cellulose synthase subunit G (BcsG) is a Zn2+-dependent phosphoethanolamine transferase [Glycobiology and Extracellular Matrices] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 Bacterial biofilms are cellular communities that produce an adherent matrix. Exopolysaccharides are key structural components of this matrix and are required for the assembly and architecture of biofilms produced by a wide variety of microorganisms. The human bacterial pathogens Escherichia coli and Salmonella enterica produce a biofilm matrix composed primarily of the exopolysaccharide phosphoethanolamine (pEtN) cellulose. Once thought to be composed of only underivatized cellulose, the pEtN modification present in these matrices has been implicated in the overall architecture and integrity of the biofilm. However, an understanding of the mechanism underlying pEtN derivatization of the cellulose exopolysaccharide remains elusive. The bacterial cellulose synthase subunit G (BcsG) is a predicted inner membrane–localized metalloenzyme that has been proposed to catalyze the transfer of the pEtN group from membrane phospholipids to cellulose. Here we present evidence that the C-terminal domain of BcsG from E. coli (EcBcsGΔN) functions as a phosphoethanolamine transferase in vitro with substrate preference for cellulosic materials. Structural characterization of EcBcsGΔN revealed that it belongs to the alkaline phosphatase superfamily, contains a Zn2+ ion at its active center, and is structurally similar to characterized enzymes that confer colistin resistance in Gram-negative bacteria. Informed by our structural studies, we present a functional complementation experiment in E. coli AR3110, indicating that the activity of the BcsG C-terminal domain is essential for integrity of the pellicular biofilm. Furthermore, our results established a similar but distinct active-site architecture and catalytic mechanism shared between BcsG and the colistin resistance enzymes. Full Article
race Delineating an extracellular redox-sensitive module in T-type Ca2+ channels [Membrane Biology] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 T-type (Cav3) Ca2+ channels are important regulators of excitability and rhythmic activity of excitable cells. Among other voltage-gated Ca2+ channels, Cav3 channels are uniquely sensitive to oxidation and zinc. Using recombinant protein expression in HEK293 cells, patch clamp electrophysiology, site-directed mutagenesis, and homology modeling, we report here that modulation of Cav3.2 by redox agents and zinc is mediated by a unique extracellular module containing a high-affinity metal-binding site formed by the extracellular IS1–IS2 and IS3–IS4 loops of domain I and a cluster of extracellular cysteines in the IS1–IS2 loop. Patch clamp recording of recombinant Cav3.2 currents revealed that two cysteine-modifying agents, sodium (2-sulfonatoethyl) methanethiosulfonate (MTSES) and N-ethylmaleimide, as well as a reactive oxygen species–producing neuropeptide, substance P (SP), inhibit Cav3.2 current to similar degrees and that this inhibition is reversed by a reducing agent and a zinc chelator. Pre-application of MTSES prevented further SP-mediated current inhibition. Substitution of the zinc-binding residue His191 in Cav3.2 reduced the channel's sensitivity to MTSES, and introduction of the corresponding histidine into Cav3.1 sensitized it to MTSES. Removal of extracellular cysteines from the IS1–IS2 loop of Cav3.2 reduced its sensitivity to MTSES and SP. We hypothesize that oxidative modification of IS1–IS2 loop cysteines induces allosteric changes in the zinc-binding site of Cav3.2 so that it becomes sensitive to ambient zinc. Full Article
race Catabolic degradation of endothelial VEGFA via autophagy [Glycobiology and Extracellular Matrices] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 Extracellular matrix-evoked angiostasis and autophagy within the tumor microenvironment represent two critical, but unconnected, functions of the small leucine-rich proteoglycan, decorin. Acting as a partial agonist of vascular endothelial growth factor 2 (VEGFR2), soluble decorin signals via the energy sensing protein, AMP-activated protein kinase (AMPK), in the autophagic degradation of intracellular vascular endothelial growth factor A (VEGFA). Here, we discovered that soluble decorin evokes intracellular catabolism of endothelial VEGFA that is mechanistically independent of mTOR, but requires an autophagic regulator, paternally expressed gene 3 (PEG3). We found that administration of autophagic inhibitors such as chloroquine or bafilomycin A1, or depletion of autophagy-related 5 (ATG5), results in accumulation of intracellular VEGFA, indicating that VEGFA is a basal autophagic substrate. Mechanistically, decorin increased the VEGFA clearance rate by augmenting autophagic flux, a process that required RAB24 member RAS oncogene family (RAB24), a small GTPase that facilitates the disposal of autophagic compartments. We validated these findings by demonstrating the physiological relevance of this process in vivo. Mice starved for 48 h exhibited a sharp decrease in overall cardiac and aortic VEGFA that could be blocked by systemic chloroquine treatment. Thus, our findings reveal a unified mechanism for the metabolic control of endothelial VEGFA for autophagic clearance in response to decorin and canonical pro-autophagic stimuli. We posit that the VEGFR2/AMPK/PEG3 axis integrates the anti-angiogenic and pro-autophagic bioactivities of decorin as the molecular basis for tumorigenic suppression. These results support future therapeutic use of decorin as a next-generation protein therapy to combat cancer. Full Article
race Study traces spread of early dairy farming across Western Europe By www.eurekalert.org Published On :: Mon, 27 Apr 2020 00:00:00 EDT (University of York) An international team of scientists, led by researchers at the University of York, analysed the molecular remains of food left in pottery used by the first farmers who settled along the Atlantic Coast of Europe from 7,000 to 6,000 years ago. Full Article
race Police stop fewer black drivers at night when a 'veil of darkness' obscures their race By www.eurekalert.org Published On :: Wed, 06 May 2020 00:00:00 EDT (Stanford School of Engineering) After analyzing 95 million traffic stop records, filed by officers with 21 state patrol agencies and 35 municipal police forces from 2011 to 2018, a Stanford-led research team concluded that 'police stops and search decisions suffer from persistent racial bias.' Full Article
race Glucocerebrosidases catalyze a transgalactosylation reaction that yields a newly-identified brain sterol metabolite, galactosylated cholesterol [Glycobiology and Extracellular Matrices] By feedproxy.google.com Published On :: 2020-04-17T00:06:05-07:00 β-Glucocerebrosidase (GBA) hydrolyzes glucosylceramide (GlcCer) to generate ceramide. Previously, we demonstrated that lysosomal GBA1 and nonlysosomal GBA2 possess not only GlcCer hydrolase activity, but also transglucosylation activity to transfer the glucose residue from GlcCer to cholesterol to form β-cholesterylglucoside (β-GlcChol) in vitro. β-GlcChol is a member of sterylglycosides present in diverse species. How GBA1 and GBA2 mediate β-GlcChol metabolism in the brain is unknown. Here, we purified and characterized sterylglycosides from rodent and fish brains. Although glucose is thought to be the sole carbohydrate component of sterylglycosides in vertebrates, structural analysis of rat brain sterylglycosides revealed the presence of galactosylated cholesterol (β-GalChol), in addition to β-GlcChol. Analyses of brain tissues from GBA2-deficient mice and GBA1- and/or GBA2-deficient Japanese rice fish (Oryzias latipes) revealed that GBA1 and GBA2 are responsible for β-GlcChol degradation and formation, respectively, and that both GBA1 and GBA2 are responsible for β-GalChol formation. Liquid chromatography–tandem MS revealed that β-GlcChol and β-GalChol are present throughout development from embryo to adult in the mouse brain. We found that β-GalChol expression depends on galactosylceramide (GalCer), and developmental onset of β-GalChol biosynthesis appeared to be during myelination. We also found that β-GlcChol and β-GalChol are secreted from neurons and glial cells in association with exosomes. In vitro enzyme assays confirmed that GBA1 and GBA2 have transgalactosylation activity to transfer the galactose residue from GalCer to cholesterol to form β-GalChol. This is the first report of the existence of β-GalChol in vertebrates and how β-GlcChol and β-GalChol are formed in the brain. Full Article
race Positron lymphography via intracervical 18F-FDG injection for pre-surgical lymphatic mapping in cervical and endometrial malignancies By jnm.snmjournals.org Published On :: 2020-01-10T04:59:09-08:00 Rationale: The presence of metastasis in local lymph nodes (LNs) is a key factor influencing choice of therapy and prognosis in cervical and endometrial cancers; therefore, the exploration of sentinel LNs (SLNs) is highly important. Currently, however, SLN mapping requires LN biopsy for pathologic evaluation, since there are no clinical imaging approaches that can identify tumor-positive LNs in early stages. Staging lymphadenectomy poses risks, such as leg lymphedema or lymphocyst formation. Furthermore, in 80% to 90% of patients, the explored LNs are ultimately tumor free, meaning the vast majority of patients are unnecessarily subjected to lymphadenectomy. Methods: Current lymphoscintigraphy methods only identify the anatomic location of the SLNs but do not provide information on their tumor status. There are no non-invasive methods to reliably identify metastases in LNs before surgery. We have developed positron lymphography (PLG), a method to detect tumor-positive LNs, where 18F-fluoro-2-deoxy-D-glucose (18F-FDG) is injected interstitially into the uterine cervix the day of surgery, and its rapid transport through the lymphatic vessels to the SLN is then visualized with dynamic positron emission tomography/computed tomography (PET/CT). We previously showed that PLG was able to identify metastatic LNs in animal models. Here, we present the first results from our pilot clinical trial (clinical trials identifier NCT02285192) in 23 patients with uterine or cervical cancer. On the morning of surgery, 18F-FDG was injected into the cervix, followed by an immediate dynamic PET/CT scan of the pelvis and a delayed 1-h whole body scan. Results: There were 3 (15%) node-positive cases on final pathologic analysis, and all LNs (including one with a focus of only 80 tumor cells) were identified by PLG except one node with an 11-mm micrometastasis. There were 2 (10%) false-positive cases with PLG, in which final pathology of the corresponding SLNs was negative for tumor. Methods: Current lymphoscintigraphy methods only identify the anatomic location of the SLNs but do not provide information on their tumor status. There are no non-invasive methods to reliably identify metastases in LNs before surgery. We have developed positron lymphography (PLG), a method to detect tumor-positive LNs, where 18F-fluoro-2-deoxy-D-glucose (18F-FDG) is injected interstitially into the uterine cervix the day of surgery, and its rapid transport through the lymphatic vessels to the SLN is then visualized with dynamic positron emission tomography/computed tomography (PET/CT). We previously showed that PLG was able to identify metastatic LNs in animal models. Here, we present the first results from our pilot clinical trial (clinical trials identifier NCT02285192) in 23 patients with uterine or cervical cancer. On the morning of surgery, 18F-FDG was injected into the cervix, followed by an immediate dynamic PET/CT scan of the pelvis and a delayed 1-h whole body scan. Results: There were 3 (15%) node-positive cases on final pathologic analysis, and all LNs (including one with a focus of only 80 tumor cells) were identified by PLG, except for one node with an 11-mm micrometastasis. There were 2 (10%) false-positive cases with PLG, in which final pathology of the corresponding SLNs was negative for tumor. Conclusion: This first-in-human study of PLG in women with uterine and cervical cancer demonstrates its feasibility and its ability to identify patients with nodal metastases, and warrants further evaluation in additional studies. Full Article
race Clinical Translation of a 68Ga-labeled Integrin {alpha}v{beta}6-targeting Cyclic Radiotracer for PET Imaging of Pancreatic Cancer By jnm.snmjournals.org Published On :: 2020-02-21T14:46:23-08:00 The overexpression of integrin αvβ6 in pancreatic cancer makes it a promising target for noninvasive positron emission tomography (PET) imaging. However, currently, most integrin αvβ6-targeting radiotracers are based on linear peptides, which are quickly degraded in the serum by proteinases. Herein, we aimed to develop and assess a 68Ga-labeled integrin αvβ6-targeting cyclic peptide (68Ga-cycratide) for PET imaging of pancreatic cancer. Methods: 68Ga-cycratide was prepared, and its PET imaging profile was compared with that of the linear peptide (68Ga-linear-pep) in an integrin αvβ6-positive BxPC-3 human pancreatic cancer mouse model. Five healthy volunteers (two women and three men) underwent whole-body PET/CT imaging after injection of 68Ga-cycratide, and biodistribution and dosimetry calculations were determined. PET/CT imaging of two patients was performed to investigate the potential role of 68Ga-cycratide in pancreatic cancer diagnosis and treatment monitoring. Results: 68Ga-cycratide exhibited significantly higher tumor uptake than did 68Ga-linear-pep in BxPC-3 tumor-bearing mice, owing—at least in part—to markedly improved in vivo stability. 68Ga-cycratide could sensitively detect the pancreatic cancer lesions in an orthotopic mouse model and was well tolerated in all healthy volunteers. Preliminary PET/CT imaging in patients with pancreatic cancer demonstrated that 68Ga-cycratide was comparable to 18F-fludeoxyglucose for diagnostic imaging and post-surgery tumor relapse monitoring. Conclusion: 68Ga-cycratide is an integrin αvβ6-specific PET radiotracer with favorable pharmacokinetics and dosimetry profile. 68Ga-cycratide is expected to provide an effective noninvasive PET strategy for pancreatic cancer lesion detection and therapy response monitoring. Full Article
race Development and evaluation of interleukin-2 derived radiotracers for PET imaging of T-cells in mice By jnm.snmjournals.org Published On :: 2020-02-28T13:52:17-08:00 Recently, N-(4-18F-fluorobenzoyl)-interleukin-2 (18F-FB-IL2) was introduced as PET tracer for T-cell imaging. However, production is complex and time-consuming. Therefore, we developed two radiolabeled interleukin-2 (IL-2) variants, namely aluminum 18F-fluoride-(restrained complexing agent)-IL-2 (18F-AlF-RESCA-IL2) and 68Ga-gallium-(1,4,7-triazacyclononane-4,7-diacetic acid-1-glutaric acid)-IL-2 (68Ga-Ga-NODAGA-IL2) and compared their in-vitro and in-vivo characteristics with 18F-FB-IL2. Methods: Radiolabeling of 18F-AlF-RESCA-IL2 and 68Ga-Ga-NODAGA-IL2 was optimized and stability was evaluated in human serum. Receptor binding was studied with activated human peripheral blood mononuclear cells (hPBMCs). Ex-vivo tracer biodistribution in immunocompetent BALB/cOlaHsd (BALB/c) mice was performed at 15, 60 and 90 min after tracer injection. In-vivo binding characteristics were studied in severe combined immune-deficient (SCID) mice inoculated with activated hPBMCs in Matrigel. Tracer was injected 15 min after hPBMCs inoculation and a 60-min dynamic PET scan was acquired, followed by ex-vivo biodistribution studies. Specific uptake was determined by co-injection of tracer with unlabeled IL2 and by evaluating uptake in a control group inoculated with Matrigel only. Results: 68Ga-Ga-NODAGA-IL2 and 18F-AlF-RESCA-IL2 were produced with radiochemical purity >95% and radiochemical yield of 13.1±4.7% and 2.4±1.6% within 60 and 90 min, respectively. Both tracers were stable in serum, with >90% being intact tracer after 1h. In-vitro, both tracers displayed preferential binding to activated hPBMCs. Ex-vivo biodistribution studies in BALB/c mice showed higher uptake of 18F-AlF-RESCA-IL2 than 18F-FB-IL2 in liver, kidney, spleen, bone and bone marrow. 68Ga-Ga-NODAGA-IL2 uptake in liver and kidney was higher than 18F-FB-IL2 uptake. In-vivo, all tracers revealed uptake in activated hPBMCs in SCID mice. Low uptake was seen after a blocking dose of IL2 or in the Matrigel control group. In addition, 18F-AlF-RESCA-IL2 yielded highest contrast PET images of target lymph nodes. Conclusion: Production of 18F-AlF-RESCA-IL2 and 68Ga-Ga-NODAGA-IL2 is simpler and faster than 18F-FB-IL2. Both tracers showed good in-vitro and in-vivo characteristics with high uptake in lymphoid tissue and hPBMC xenografts. Full Article
race Digital Solid-State SPECT/CT Quantitation of Absolute 177Lu-Radiotracer Concentration: In Vivo/In Vitro Validation By jnm.snmjournals.org Published On :: 2020-02-28T13:52:17-08:00 The accuracy of lutetium-177 (177Lu) radiotracer concentration measurements using quantitative clinical software was determined by comparing in vivo results for a digital solid-state cadmium-zinc-telluride SPECT/CT (single photon emission computed tomography / x-ray computed tomography) system to in vitro sampling. First, image acquisition parameters were assessed for an International Electrotechnical Commission (IEC) body phantom emulating clinical count rates loaded with a "lung" insert and 6 hot spheres with a 12:1 target-to-background ratio of 177Lu solution. Then, the data of 28 whole-body SPECT/CT scans of 7 patients who underwent 177Lu prostate membrane antigen (177Lu-PSMA) radioligand therapy was retrospectively analyzed. Three users analyzed SPECT/CT images for in vivo urinary bladder radiotracer uptake using quantitative software (Q.Metrix, GE Healthcare). In vitro radiopharmaceutical concentrations were calculated using urine sampling obtained immediately after each scan, scaled to standardized uptake values (SUVs). Any in vivo/in vitro identity relations were determined by linear regression (ideally slope=1, intercept=0), within a 95 % confidence interval (CI). Phantom results demonstrated lower quantitative error for acquisitions using the 113 keV 177Lu energy peak rather than including the 208 keV peak, given that only low-energy collimation was available in this camera configuration. In the clinical study, 24 in vivo/in vitro pairs were eligible for further analysis, having rejected 4 as outliers (via Cook’s distance calculations). All linear regressions (R2 ≥ 0.92, P<0.0001) provided identity in vivo/in vitro relations (95 % CI), with SUV averages from all users giving a slope of 1.03±0.09, an intercept of –0.25±0.64 g/mL, and an average residual difference of 20.4 %. Acquiring with the lower energy 177Lu energy peak, solid-state SPECT/CT imaging provides an accuracy to within ~20 % for in vivo urinary bladder radiotracer concentrations. This non-invasive in vivo quantitation method can potentially improve diagnosis, improve patient management and treatment response assessment, and provide data essential to 177Lu dosimetry. Full Article
race Kinetic modeling and test-retest reproducibility of 11C-EKAP and 11C-FEKAP, novel agonist radiotracers for PET imaging of the kappa opioid receptor in humans By jnm.snmjournals.org Published On :: 2020-03-13T14:12:30-07:00 The kappa opioid receptor (KOR) is implicated in various neuropsychiatric disorders. We previously evaluated an agonist tracer, 11C-GR103545, for PET imaging of KOR in humans. Although 11C-GR103545 showed high brain uptake, good binding specificity, and selectivity to KOR, it displayed slow kinetics and relatively large test-retest variability (TRV) of distribution volume (VT) estimates (15%). Therefore we set out to develop two novel KOR agonist radiotracers, 11C-EKAP and 11C-FEKAP, and in nonhuman primates, both tracers exhibited faster kinetics and comparable binding parameters to 11C-GR103545. The aim of this study was to assess their kinetic and binding properties in humans. Methods: Six healthy subjects underwent 120-min test-retest PET scans with both 11C-EKAP and 11C-FEKAP. Metabolite-corrected arterial input functions were measured. Regional time-activity curves (TACs) were generated for 14 regions of interest. One- and two-tissue compartment models (1TC, 2TC) and the multilinear analysis-1 (MA1) method were applied to the regional TACs to calculate VT. Time-stability of VT values and test-retest reproducibility were evaluated. Levels of specific binding, as measured by the non-displaceable binding potential (BPND) for the three tracers (11C-EKAP, 11C-FEKAP and 11C-GR103545), were compared using a graphical method. Results: For both tracers, regional TACs were fitted well with the 2TC model and MA1 method (t*=20min), but not with the 1TC model. Given unreliably estimated parameters in several fits with the 2TC model and a good match between VT values from MA1 and 2TC, MA1 was chosen as the appropriate model for both tracers. Mean MA1 VT values were highest for 11C-GR103545, followed by 11C-EKAP, then 11C-FEKAP. Minimum scan time for stable VT measurement was 90 and 110min for 11C-EKAP and 11C-FEKAP, respectively, compared with 140min for 11C-GR103545. The mean absolute TRV in MA1 VT estimates was 7% and 18% for 11C-EKAP and 11C-FEKAP, respectively. BPND levels were similar for 11C-FEKAP and 11C-GR103545, but ~25% lower for 11C-EKAP. Conclusion: The two novel KOR agonist tracers showed faster tissue kinetics than 11C-GR103545. Even with slightly lower BPND, 11C-EKAP is judged to be a better tracer for imaging and quantification of KOR in humans, based on the shorter minimum scan time and excellent test-retest. Full Article
race First-in-Human Trial of Dasatinib-Derivative Tracer for Tumor Kinase-Targeted Positron Emission Tomography By jnm.snmjournals.org Published On :: 2020-03-13T14:12:30-07:00 We developed a first-of-kind dasatinib-derivative imaging agent, 18F-SKI-249380 (18F-SKI), and validated its use for noninvasive in vivo tyrosine kinase-targeted tumor detection in preclinical models. In this study, we assess the feasibility of using 18F-SKI for PET imaging in patients with malignancies. Methods: Five patients with a prior diagnosis of breast cancer, renal cell cancer, or leukemia underwent whole-body PET/CT imaging 90 min post-injection of 18F-SKI (mean: 241.24 ± 116.36 MBq) as part of a prospective study. In addition, patients underwent either a 30-min dynamic scan of the upper abdomen including, at least partly, cardiac left ventricle, liver, spleen, and kidney (n = 2) or three 10-min whole-body PET/CT scans (n = 3) immediately post-injection and blood-based radioactivity measurements to determine the time course of tracer distribution and facilitate radiation dose estimates. A subset of three patients had a delayed whole-body PET/CT scan at 180 min. Biodistribution, dosimetry, and tumor uptake were quantified. Absorbed doses were calculated using OLINDA/EXM 1.0. Results: No adverse events occurred after injection of 18F-SKI. A total of 27 tumor lesions were analyzed with median SUVpeak 1.4 (range, 0.7–2.3) and tumor-to-blood ratios of 1.6 (range, 0.8–2.5) at 90 min post-injection. Intratumoral drug concentrations calculated for four reference lesions ranged from 0.03–0.07 nM. In all reference lesions, constant tracer accumulation was observed between 30–90 min post-injection. Blood radio-assay indicated that radiotracer clearance from blood and plasma was initially rapid (blood half-time 1.31 ± 0.81 min, plasma 1.07 ± 0.66 min; n = 4), followed variably by either a prolonged terminal phase (blood half-time 285 ± 148.49 min, plasma 240 ± 84.85 min; n = 2) or a small rise to plateau (n = 2). Like dasatinib, 18F-SKI underwent extensive metabolism post-administration, as evidenced by metabolite analysis. Radioactivity was predominantly cleared via the hepatobiliary route. The highest absorbed dose estimates (mGy/MBq) in normal tissues were to the right colon (0.167 ± 0.04) and small intestine (0.153 ± 0.03). The effective dose was 0.0258 (SD 0.0034) mSv/MBq. Conclusion: 18F-SKI demonstrated significant tumor uptake, distinct image contrast despite low injected doses, and rapid clearance from blood. Full Article
race Design and development of 99mTc labeled FAPI-tracers for SPECT-imaging and 188Re therapy. By jnm.snmjournals.org Published On :: 2020-03-13T14:12:30-07:00 The majority of epithelial tumors recruits fibroblasts and other non-malignant cells and activates them into cancer-associated fibroblasts. This often leads to overexpression of the membrane serine protease fibroblast-activating protein (FAP). It has already been shown that DOTA-bearing FAP inhibitors (FAPIs) generate high contrast images with PET/CT scans. Since SPECT is a lower cost and more widely available alternative to PET, 99mTc-labeled FAPIs represent attractive tracers for imaging applicable in a larger number of patients. Furthermore, the chemically homologous nuclide 188Re is available from generators, which allows FAP-targeted endoradiotherapy. Methods: For the preparation of 99mTc tricarbonyl complexes, a chelator was selected whose carboxylic acids can easily be converted into various derivatives in the finished product. This enabled a platform strategy based on the original tracer. The obtained 99mTc complexes were investigated in vitro by binding and competition experiments on FAP-transfected HT-1080 (HT-1080-FAP) and/or on mouse FAP expressing (HEK-muFAP) and CD26-expressing (HEKCD26) HEK cells and characterized by planar scintigraphy and organ distribution studies in tumor-bearing mice. Furthermore, a first-in-man application was done in two patients with ovarian and pancreatic cancer, respectively. Results: 99mTc-FAPI-19 showed specific binding to recombinant FAP-expressing cells with high affinity. Unfortunately, liver accumulation, biliary excretion and no tumor uptake were observed in the planar scintigraphy of a HT-1080-FAP xenotranplanted mouse. To improve the pharmacokinetic properties hydrophilic amino acids were attached to the chelator moiety of the compound. The resulting 99mTc-labeled FAPI tracers revealed excellent binding properties (up to 45 % binding; above 95 % internalization), high affinity (IC50 = 6.4 nM to 12.7 nM), and significant tumor uptake (up to 5.4 %ID/g) in biodistribution studies. The lead candidate 99mTc-FAPI-34 was applied for diagnostic scintigraphy and SPECT of patients with metastasized ovarian and pancreatic cancer for follow-up to therapy with 90Y-FAPI-46. 99mTc-FAPI-34 accumulated in the tumor lesions also shown in PET/CT imaging using 68Ga-FAPI-46. Conclusion: 99mTc-FAPI-34 represents a powerful tracer for diagnostic scintigraphy, especially in cases where PET imaging is not available. Additionally, the chelator used in this compound allows labeling with the therapeutic nuclide 188Re which is planned for the near future. Full Article
race 11C-PABA as a Novel PET Radiotracer for Functional Renal Imaging: Preclinical and First-in-Human Studies By jnm.snmjournals.org Published On :: 2020-03-20T13:59:23-07:00 para-Aminobenzoic acid (PABA) has been previously used as an exogenous marker to verify completion of 24-hour urine sampling. Therefore, we hypothesized that radiolabeled PABA with 11C could allow high-quality dynamic PET of the kidneys while reducing the radiation exposure due to its short biological and physical half-lives. We evaluated if 11C-PABA could visualize renal anatomy and quantify function in healthy rats, rabbits, and first-in-human studies in healthy volunteers. Methods: Healthy rats and rabbits were injected with 11C-PABA intravenously. Subsequently, a dynamic PET was performed, followed by post-mortem tissue biodistribution studies. 11C-PABA PET was directly compared with the current standard, 99mTc-MAG3 in rats. Three healthy human subjects also underwent dynamic PET after intravenous injection of 11C-PABA. Results: In healthy rats and rabbits, dynamic PET demonstrated a rapid accumulation of 11C-PABA in the renal cortex, followed by rapid excretion through the pelvicalyceal system. In humans, 11C-PABA PET was safe and well tolerated. There were no adverse or clinically detectable pharmacologic effects in any subject. The cortex was delineated on PET, and the activity gradually transited to the medulla and then renal pelvis with high spatiotemporal resolution. Conclusion: 11C-PABA demonstrated fast renal excretion with very low background signal in animals and humans. These results suggest that 11C-PABA could be used as a novel radiotracer for functional renal imaging, providing high-quality spatiotemporal images with low radiation exposure. Full Article
race Molecular imaging of PD-L1 expression and dynamics with the adnectin-based PET tracer 18F-BMS-986192 By jnm.snmjournals.org Published On :: 2020-05-01T11:16:57-07:00 18F-BMS-986192, an adnectin-based human programmed cell death ligand 1 (PD-L1) tracer, was developed to non-invasively determine whole-body PD-L1 expression by positron emission tomography (PET). We evaluated usability of 18F-BMS-986192 PET to detect different PD-L1 expression levels and therapy-induced changes of PD-L1 expression in tumors. Methods: In vitro binding assays with 18F-BMS-986192 were performed in human tumor cell lines with different total cellular and membrane PD-L1 protein expression levels. Subsequently, PET imaging was executed in immunodeficient mice xenografted with these cell lines. Mice were treated with interferon gamma (IFN) intraperitoneally for 3 days or with the mitogen-activated protein kinase kinase (MEK1/2) inhibitor selumetinib by oral gavage for 24 hours. Thereafter 18F-BMS-986192 was administered intravenously, followed by a 60-minute dynamic PET scan. Tracer uptake was expressed as percentage injected dose per gram tissue (%ID/g). Tissues were collected to evaluate ex vivo tracer biodistribution and to perform flow cytometric, Western blot, and immunohistochemical tumor analyses. Results: 18F-BMS-986192 uptake reflected PD-L1 membrane levels in tumor cell lines, and tumor tracer uptake in mice was associated with PD-L1 expression measured immunohistochemically. In vitro IFN treatment increased PD-L1 expression in the tumor cell lines and caused up to 12-fold increase in tracer binding. In vivo, IFN did neither affect PD-L1 tumor expression measured immunohistochemically nor 18F-BMS-986192 tumor uptake. In vitro, selumetinib downregulated cellular and membrane levels of PD-L1 of tumor cells by 50% as measured by Western blotting and flow cytometry. In mice, selumetinib lowered cellular, but not membrane PD-L1 levels of tumors and consequently no treatment-induced change in 18F-BMS-986192 tumor uptake was observed. Conclusion: 18F-BMS-986192 PET imaging allows detection of membrane-expressed PD-L1, as soon as 60 minutes after tracer injection. The tracer can discriminate a range of tumor cell PD-L1 membrane expression levels. Full Article
race The effects of monosodium glutamate on PSMA radiotracer uptake in men with recurrent prostate cancer: a prospective, randomized, double-blind, placebo-controlled intra-individual imaging study. By jnm.snmjournals.org Published On :: 2020-05-08T13:18:58-07:00 The prostate-specific membrane antigen (PSMA) is an excellent target for theranostic applications in prostate cancer (PCa). However, PSMA-targeted radioligand therapy can cause undesirable effects due to high accumulation of PSMA radiotracers in salivary glands and kidneys. This study assessed orally administered monosodium glutamate (MSG) as a potential means of reducing kidney and salivary gland radiation exposure using a PSMA targeting radiotracer. Methods: This prospective, double-blind, placebo-controlled study enrolled 10 biochemically recurrent PCa patients. Each subject served as his own control. [18F]DCFPyl PET/CT imaging sessions were performed 3 – 7 days apart, following oral administration of either 12.7 g of MSG or placebo. Data from the two sets of images were analyzed by placing regions of interest on lacrimal, parotid and submandibular glands, left ventricle, liver, spleen, kidneys, bowel, urinary bladder, gluteus muscle and malignant lesions. The results from MSG and placebo scans were compared by paired analysis of the ROI data. Results: A total of 142 pathological lesions along with normal tissues were analyzed. As hypothesized a priori, there was a significant decrease in maximal standardized uptake values corrected for lean body mass (SULmax) on images obtained following MSG administration in the parotids (24 ± 14%, P = 0.001), submandibular glands (35 ± 11%, P<0.001) and kidneys (23 ± 26%, P = 0.014). Significant decreases were also observed in lacrimal glands (49 ± 13%, P<0.001), liver (15 ± 6%, P<0.001), spleen (28 ± 13%, P = 0.001) and bowel (44 ± 13%, P<0.001). Mildly lower blood pool SULmean was observed after MSG administration (decrease of 11 ± 13%, P = 0.021). However, significantly lower radiotracer uptake in terms of SULmean, SULpeak, and SULmax was observed in malignant lesions on scans performed after MSG administration compared to the placebo studies (SULmax median decrease 33%, range -1 to 75%, P<0.001). No significant adverse events occurred and vital signs were stable following placebo or MSG administration. Conclusion: Orally administered MSG significantly decreased salivary gland, kidney and other normal organ PSMA radiotracer uptake in human subjects, using [18F]DCFPyL as an exemplar. However, MSG caused a corresponding reduction in tumor uptake, which may limit the benefits of this approach for diagnostic and therapeutic applications. Full Article
race Commentary on SSO and other putative inhibitors of FA transport across membranes by CD36 disrupt intracellular metabolism, but do not affect fatty acid translocation By feedproxy.google.com Published On :: 2020-05-01 Henry J. PownallMay 1, 2020; 61:595-597Commentary Full Article
race Perlecan knockdown significantly alters extracellular matrix composition and organization during cartilage development [Research] By feedproxy.google.com Published On :: 2020-05-07T06:36:04-07:00 Perlecan is a critical proteoglycan found in the extracellular matrix (ECM) of cartilage. In healthy cartilage, perlecan regulates cartilage biomechanics and we previously demonstrated perlecan deficiency leads to reduced cellular and ECM stiffness in vivo. This change in mechanics may lead to the early onset osteoarthritis seen in disorders resulting from perlecan knockdown such as Schwartz-Jampel syndrome (SJS). To identify how perlecan knockdown affects the material properties of developing cartilage, we used imaging and liquid chromatography–tandem mass spectrometry (LC-MS/MS) to study the ECM in a murine model of SJS, Hspg2C1532Y-Neo. Perlecan knockdown led to defective pericellular matrix formation, whereas the abundance of bulk ECM proteins, including many collagens, increased. Post-translational modifications and ultrastructure of collagens were not significantly different; however, LC-MS/MS analysis showed more protein was secreted by Hspg2C1532Y-Neo cartilage in vitro, suggesting that the incorporation of newly synthesized ECM was impaired. In addition, glycosaminoglycan deposition was atypical, which may explain the previously observed decrease in mechanics. Overall, these findings provide insight into the influence of perlecan on functional cartilage assembly and the progression of osteoarthritis in SJS. Full Article
race SSO and other putative inhibitors of FA transport across membranes by CD36 disrupt intracellular metabolism, but do not affect FA translocation [Research Articles] By feedproxy.google.com Published On :: 2020-05-01T00:05:28-07:00 Membrane-bound proteins have been proposed to mediate the transport of long-chain FA (LCFA) transport through the plasma membrane (PM). These proposals are based largely on reports that PM transport of LCFAs can be blocked by a number of enzymes and purported inhibitors of LCFA transport. Here, using the ratiometric pH indicator (2',7'-bis-(2-carboxyethyl)-5-(and-6-)-carboxyfluorescein and acrylodated intestinal FA-binding protein-based dual fluorescence assays, we investigated the effects of nine inhibitors of the putative FA transporter protein CD36 on the binding and transmembrane movement of LCFAs. We particularly focused on sulfosuccinimidyl oleate (SSO), reported to be a competitive inhibitor of CD36-mediated LCFA transport. Using these assays in adipocytes and inhibitor-treated protein-free lipid vesicles, we demonstrate that rapid LCFA transport across model and biological membranes remains unchanged in the presence of these purported inhibitors. We have previously shown in live cells that CD36 does not accelerate the transport of unesterified LCFAs across the PM. Our present experiments indicated disruption of LCFA metabolism inside the cell within minutes upon treatment with many of the "inhibitors" previously assumed to inhibit LCFA transport across the PM. Furthermore, using confocal microscopy and a specific anti-SSO antibody, we found that numerous intracellular and PM-bound proteins are SSO-modified in addition to CD36. Our results support the hypothesis that LCFAs diffuse rapidly across biological membranes and do not require an active protein transporter for their transmembrane movement. Full Article
race The ins and outs of lipid rafts: functions in intracellular cholesterol homeostasis, microparticles, and cell membranes [Thematic Reviews] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Cellular membranes are not homogenous mixtures of proteins; rather, they are segregated into microdomains on the basis of preferential association between specific lipids and proteins. These microdomains, called lipid rafts, are well known for their role in receptor signaling on the plasma membrane (PM) and are essential to such cellular functions as signal transduction and spatial organization of the PM. A number of disease states, including atherosclerosis and other cardiovascular disorders, may be caused by dysfunctional maintenance of lipid rafts. Lipid rafts do not occur only in the PM but also have been found in intracellular membranes and extracellular vesicles (EVs). Here, we focus on discussing newly discovered functions of lipid rafts and microdomains in intracellular membranes, including lipid and protein trafficking from the ER, Golgi bodies, and endosomes to the PM, and we examine lipid raft involvement in the production and composition of EVs. Because lipid rafts are small and transient, visualization remains challenging. Future work with advanced techniques will continue to expand our knowledge about the roles of lipid rafts in cellular functioning. Full Article
race Commentary on SSO and other putative inhibitors of FA transport across membranes by CD36 disrupt intracellular metabolism, but do not affect fatty acid translocation [Commentaries] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Full Article
race Problem Notes for SAS®9 - 65898: A misleading SASTRACE message appears in the log when you insert a row into an Oracle table using SAS/ACCESS Interface to Oracle with DBIDIRECTEXEC By feedproxy.google.com Published On :: Thu, 30 Apr 2020 13:52:24 EST When you add one row to an Oracle table using DBIDIRECTEXEC, you see the following misleading trace message: "ORACLE: 4294967296 rows inserted/updated/deleted." You should see something similar to the following: "ORACLE: 1 rows inserte Full Article ORACLE+SAS/ACCESS+Interface+to+Oracle
race Delineating an extracellular redox-sensitive module in T-type Ca2+ channels [Membrane Biology] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 T-type (Cav3) Ca2+ channels are important regulators of excitability and rhythmic activity of excitable cells. Among other voltage-gated Ca2+ channels, Cav3 channels are uniquely sensitive to oxidation and zinc. Using recombinant protein expression in HEK293 cells, patch clamp electrophysiology, site-directed mutagenesis, and homology modeling, we report here that modulation of Cav3.2 by redox agents and zinc is mediated by a unique extracellular module containing a high-affinity metal-binding site formed by the extracellular IS1–IS2 and IS3–IS4 loops of domain I and a cluster of extracellular cysteines in the IS1–IS2 loop. Patch clamp recording of recombinant Cav3.2 currents revealed that two cysteine-modifying agents, sodium (2-sulfonatoethyl) methanethiosulfonate (MTSES) and N-ethylmaleimide, as well as a reactive oxygen species–producing neuropeptide, substance P (SP), inhibit Cav3.2 current to similar degrees and that this inhibition is reversed by a reducing agent and a zinc chelator. Pre-application of MTSES prevented further SP-mediated current inhibition. Substitution of the zinc-binding residue His191 in Cav3.2 reduced the channel's sensitivity to MTSES, and introduction of the corresponding histidine into Cav3.1 sensitized it to MTSES. Removal of extracellular cysteines from the IS1–IS2 loop of Cav3.2 reduced its sensitivity to MTSES and SP. We hypothesize that oxidative modification of IS1–IS2 loop cysteines induces allosteric changes in the zinc-binding site of Cav3.2 so that it becomes sensitive to ambient zinc. Full Article
race Cell-specific expression of the transcriptional regulator RHAMM provides a timing mechanism that controls appropriate wound re-epithelialization [Glycobiology and Extracellular Matrices] By feedproxy.google.com Published On :: 2020-04-17T00:06:05-07:00 Prevention of aberrant cutaneous wound repair and appropriate regeneration of an intact and functional integument require the coordinated timing of fibroblast and keratinocyte migration. Here, we identified a mechanism whereby opposing cell-specific motogenic functions of a multifunctional intracellular and extracellular protein, the receptor for hyaluronan-mediated motility (RHAMM), coordinates fibroblast and keratinocyte migration speed and ensures appropriate timing of excisional wound closure. We found that, unlike in WT mice, in Rhamm-null mice, keratinocyte migration initiates prematurely in the excisional wounds, resulting in wounds that have re-surfaced before the formation of normal granulation tissue, leading to a defective epidermal architecture. We also noted aberrant keratinocyte and fibroblast migration in the Rhamm-null mice, indicating that RHAMM suppresses keratinocyte motility but increases fibroblast motility. This cell context–dependent effect resulted from cell-specific regulation of extracellular signal-regulated kinase 1/2 (ERK1/2) activation and expression of a RHAMM target gene encoding matrix metalloprotease 9 (MMP-9). In fibroblasts, RHAMM promoted ERK1/2 activation and MMP-9 expression, whereas in keratinocytes, RHAMM suppressed these activities. In keratinocytes, loss of RHAMM function or expression promoted epidermal growth factor receptor–regulated MMP-9 expression via ERK1/2, which resulted in cleavage of the ectodomain of the RHAMM partner protein CD44 and thereby increased keratinocyte motility. These results identify RHAMM as a key factor that integrates the timing of wound repair by controlling cell migration. Full Article
race Catabolic degradation of endothelial VEGFA via autophagy [Glycobiology and Extracellular Matrices] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 Extracellular matrix-evoked angiostasis and autophagy within the tumor microenvironment represent two critical, but unconnected, functions of the small leucine-rich proteoglycan, decorin. Acting as a partial agonist of vascular endothelial growth factor 2 (VEGFR2), soluble decorin signals via the energy sensing protein, AMP-activated protein kinase (AMPK), in the autophagic degradation of intracellular vascular endothelial growth factor A (VEGFA). Here, we discovered that soluble decorin evokes intracellular catabolism of endothelial VEGFA that is mechanistically independent of mTOR, but requires an autophagic regulator, paternally expressed gene 3 (PEG3). We found that administration of autophagic inhibitors such as chloroquine or bafilomycin A1, or depletion of autophagy-related 5 (ATG5), results in accumulation of intracellular VEGFA, indicating that VEGFA is a basal autophagic substrate. Mechanistically, decorin increased the VEGFA clearance rate by augmenting autophagic flux, a process that required RAB24 member RAS oncogene family (RAB24), a small GTPase that facilitates the disposal of autophagic compartments. We validated these findings by demonstrating the physiological relevance of this process in vivo. Mice starved for 48 h exhibited a sharp decrease in overall cardiac and aortic VEGFA that could be blocked by systemic chloroquine treatment. Thus, our findings reveal a unified mechanism for the metabolic control of endothelial VEGFA for autophagic clearance in response to decorin and canonical pro-autophagic stimuli. We posit that the VEGFR2/AMPK/PEG3 axis integrates the anti-angiogenic and pro-autophagic bioactivities of decorin as the molecular basis for tumorigenic suppression. These results support future therapeutic use of decorin as a next-generation protein therapy to combat cancer. Full Article
race Endorepellin evokes an angiostatic stress signaling cascade in endothelial cells [Glycobiology and Extracellular Matrices] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Endorepellin, the C-terminal fragment of the heparan sulfate proteoglycan perlecan, influences various signaling pathways in endothelial cells by binding to VEGFR2. In this study, we discovered that soluble endorepellin activates the canonical stress signaling pathway consisting of PERK, eIF2α, ATF4, and GADD45α. Specifically, endorepellin evoked transient activation of VEGFR2, which, in turn, phosphorylated PERK at Thr980. Subsequently, PERK phosphorylated eIF2α at Ser51, upregulating its downstream effector proteins ATF4 and GADD45α. RNAi-mediated knockdown of PERK or eIF2α abrogated the endorepellin-mediated up-regulation of GADD45α, the ultimate effector protein of this stress signaling cascade. To functionally validate these findings, we utilized an ex vivo model of angiogenesis. Exposure of the aortic rings embedded in 3D fibrillar collagen to recombinant endorepellin for 2–4 h activated PERK and induced GADD45α vis à vis vehicle-treated counterparts. Similar effects were obtained with the established cellular stress inducer tunicamycin. Notably, chronic exposure of aortic rings to endorepellin for 7–9 days markedly suppressed vessel sprouting, an angiostatic effect that was rescued by blocking PERK kinase activity. Our findings unravel a mechanism by which an extracellular matrix protein evokes stress signaling in endothelial cells, which leads to angiostasis. Full Article
race Structural basis of specific inhibition of extracellular activation of pro- or latent myostatin by the monoclonal antibody SRK-015 [Molecular Biophysics] By feedproxy.google.com Published On :: 2020-04-17T00:06:05-07:00 Myostatin (or growth/differentiation factor 8 (GDF8)) is a member of the transforming growth factor β superfamily of growth factors and negatively regulates skeletal muscle growth. Its dysregulation is implicated in muscle wasting diseases. SRK-015 is a clinical-stage mAb that prevents extracellular proteolytic activation of pro- and latent myostatin. Here we used integrated structural and biochemical approaches to elucidate the molecular mechanism of antibody-mediated neutralization of pro-myostatin activation. The crystal structure of pro-myostatin in complex with 29H4-16 Fab, a high-affinity variant of SRK-015, at 2.79 Å resolution revealed that the antibody binds to a conformational epitope in the arm region of the prodomain distant from the proteolytic cleavage sites. This epitope is highly sequence-divergent, having only limited similarity to other closely related members of the transforming growth factor β superfamily. Hydrogen/deuterium exchange MS experiments indicated that antibody binding induces conformational changes in pro- and latent myostatin that span the arm region, the loops contiguous to the protease cleavage sites, and the latency-associated structural elements. Moreover, negative-stain EM with full-length antibodies disclosed a stable, ring-like antigen–antibody structure in which the two Fab arms of a single antibody occupy the two arm regions of the prodomain in the pro- and latent myostatin homodimers, suggesting a 1:1 (antibody:myostatin homodimer) binding stoichiometry. These results suggest that SRK-015 binding stabilizes the latent conformation and limits the accessibility of protease cleavage sites within the prodomain. These findings shed light on approaches that specifically block the extracellular activation of growth factors by targeting their precursor forms. Full Article
race Glycation-mediated inter-protein cross-linking is promoted by chaperone-client complexes of {alpha}-crystallin: Implications for lens aging and presbyopia [Glycobiology and Extracellular Matrices] By feedproxy.google.com Published On :: 2020-04-24T06:08:45-07:00 Lens proteins become increasingly cross-linked through nondisulfide linkages during aging and cataract formation. One mechanism that has been implicated in this cross-linking is glycation through formation of advanced glycation end products (AGEs). Here, we found an age-associated increase in stiffness in human lenses that was directly correlated with levels of protein–cross-linking AGEs. α-Crystallin in the lens binds to other proteins and prevents their denaturation and aggregation through its chaperone-like activity. Using a FRET-based assay, we examined the stability of the αA-crystallin–γD-crystallin complex for up to 12 days and observed that this complex is stable in PBS and upon incubation with human lens–epithelial cell lysate or lens homogenate. Addition of 2 mm ATP to the lysate or homogenate did not decrease the stability of the complex. We also generated complexes of human αA-crystallin or αB-crystallin with alcohol dehydrogenase or citrate synthase by applying thermal stress. Upon glycation under physiological conditions, the chaperone–client complexes underwent greater extents of cross-linking than did uncomplexed protein mixtures. LC-MS/MS analyses revealed that the levels of cross-linking AGEs were significantly higher in the glycated chaperone–client complexes than in glycated but uncomplexed protein mixtures. Mouse lenses subjected to thermal stress followed by glycation lost resilience more extensively than lenses subjected to thermal stress or glycation alone, and this loss was accompanied by higher protein cross-linking and higher cross-linking AGE levels. These results uncover a protein cross-linking mechanism in the lens and suggest that AGE-mediated cross-linking of α-crystallin–client complexes could contribute to lens aging and presbyopia. Full Article
race Virtual Roundtable: Tectonic Plates of 2020 – Developments in the US Presidential Race By feedproxy.google.com Published On :: Mon, 16 Mar 2020 12:00:01 +0000 Invitation Only Research Event 18 March 2020 - 1:00pm to 1:45pm Event participants John Zogby, Founder and Senior Partner, John Zogby StrategiesChair: Dr Lindsay Newman, Senior Research Fellow, US and Americas Programme, Chatham House This event is part of the Inaugural Virtual Roundtable Series on the US, Americas and the State of the World and will take place virtually only. Participants should not come to Chatham House for these events. Department/project US and the Americas Programme, Chatham House US 2020 Election Series US and Americas Programme Email Full Article
race Dying is the first race By kolembo.wordpress.com Published On :: Sun, 29 Jan 2017 15:12:15 +0000 Never mind Lawyers, Children with no mouths, Never mind Inspiration, Write Now. Photo – ♦Personal♦ -short evocative poetry- Full Article Poetry death friendship gay life poem poetry
race Home – Race in India By kolembo.wordpress.com Published On :: Wed, 07 Jun 2017 05:17:10 +0000 The idea of home is so complicated to me; home isn’t here people look at me like I am from somewhere else. Where is home? Writing became an expression of my discomfort a language an arrangement of unbroken rage writing poetry to question why? Poetry to reclaim my identity and to be home again. My […] Full Article Poetry
race Born equal - the launch of The BMJ special issue on race in medicine By feeds.bmj.com Published On :: Fri, 21 Feb 2020 18:18:08 +0000 Last week the BMJ published it’s first special edition into Racism in Medicine. The issues tacked ranged from differential attainment in medical school, to the physiological effects that experiencing everyday discrimination has. The issue was guest edited by Victor Adebowale, the Chief Executive of the social care enterprise Turning Point, and... Full Article
race Disco embraces fresh start after tough end to '18 By mlb.mlb.com Published On :: Sat, 16 Feb 2019 17:19:10 EDT Reds starting pitcher Anthony DeSclafani hated how his 2018 season ended and didn't need any motivation to make improvements over the winter. Full Article
race Diagnostic Accuracy of PET Tracers for the Differentiation of Tumor Progression from Treatment-Related Changes in High-Grade Glioma: A Systematic Review and Metaanalysis By jnm.snmjournals.org Published On :: 2020-04-01T06:00:28-07:00 Posttreatment high-grade gliomas are usually monitored with contrast-enhanced MRI, but its diagnostic accuracy is limited as it cannot adequately distinguish between true tumor progression and treatment-related changes. According to recent Response Assessment in Neuro-Oncology recommendations, PET overcomes this limitation. However, it is currently unknown which tracer yields the best results. Therefore, a systematic review and metaanalysis were performed to compare the diagnostic accuracy of the different PET tracers in differentiating tumor progression from treatment-related changes in high-grade glioma patients. Methods: PubMed, Web of Science, and Embase were searched systematically. Study selection, data extraction, and quality assessment were performed independently by 2 authors. Metaanalysis was performed using a bivariate random-effects model when at least 5 studies were included. Results: The systematic review included 39 studies (11 tracers). 18F-FDG (12 studies, 171 lesions) showed a pooled sensitivity and specificity of 84% (95% confidence interval, 72%–92%) and 84% (95% confidence interval, 69%–93%), respectively. O-(2-18F-fluoroethyl)-l-tyrosine (18F-FET) (7 studies, 172 lesions) demonstrated a sensitivity of 90% (95% confidence interval, 81%–95%) and specificity of 85% (95% confidence interval, 71%–93%). For S-11C-methyl)-l-methionine (11C-MET) (8 studies, 151 lesions), sensitivity was 93% (95% confidence interval, 80%–98%) and specificity was 82% (95% confidence interval, 68%–91%). The numbers of included studies for the other tracers were too low to combine, but sensitivity and specificity ranged between 93%–100% and 0%–100%, respectively, for 18F-FLT; 85%–100% and 72%–100%, respectively, for 3,4-dihydroxy-6-18F-fluoro-l-phenylalanine (18F-FDOPA); and 100% and 70%–88%, respectively, for 11C-choline. Conclusion: 18F-FET and 11C-MET, both amino-acid tracers, showed a comparably higher sensitivity than 18F-FDG in the differentiation between tumor progression and treatment-related changes in high-grade glioma patients. The evidence for other tracers is limited; thus, 18F-FET and 11C-MET are preferred when available. Our results support the incorporation of amino-acid PET tracers for the treatment evaluation of high-grade gliomas. Full Article
race Another CDU Leadership Race Begins in Merkel’s Shadow By feedproxy.google.com Published On :: Fri, 28 Feb 2020 13:59:32 +0000 28 February 2020 Quentin Peel Associate Fellow, Europe Programme @QuentinPeel The election of a new leader of the chancellor’s party will be another contest over her legacy. 2020-02-28-Merkel.jpg German Chancellor Angela Merkel is depicted on a float in the Rosenmontag parade in Mainz on 24 February. Photo: Getty Images. Perhaps it will be second time lucky. At the end of April, Germany’s Christian Democratic Union (CDU) will elect a new party leader to follow in the footsteps of Angela Merkel. An emergency party congress has been summoned to do that after the surprise resignation of Annegret Kramp-Karrenbauer, Merkel’s chosen successor.The plan is to leave the decision on who will be the CDU candidate for chancellor at the next election until after Germany’s EU presidency concludes in December. So Merkel will keep her job until 2021, and the new leader will have to learn to live with her.The three leading candidates are Armin Laschet, Friedrich Merz and Norbert Röttgen, all from the state of North Rhine-Westphalia. Two of the three – Merz and Röttgen – were sacked by Merkel from their former jobs. They have not forgotten. Only Armin Laschet, currently CDU leader in North Rhine-Westphalia and state premier, can be described as a Merkel loyalist, true to her centrist mantra.He is the man to beat, having teamed up with Jens Spahn, the 39-year-old health minister, who is popular with party conservatives. Spahn will run as his deputy, so the team straddles the left-right divide in the party. But the contest still seems set to be a bitter battle between pro- and anti-Merkel factions that could leave the party badly split.After nearly 15 years as chancellor, and 18 years as CDU leader, Merkel remains the most popular politician in Germany. In spite of criticism that she lacks vision, her caution and predictability appear to be just what most German voters like.But her term in office has also seen the steady shrinking of the centre ground in German politics, with the rise of the environmentalist Green party and the far-right Alternative for Germany (AfD) at the expense of the centre-right CDU and the centre-left Social Democratic Party (SPD).The battle for the soul of the CDU is between those who think Merkel has been too left-wing, and want a more conservative leader to win back AfD voters, and those who believe that the CDU must stay in the centre, and prepare for a future coalition with the Greens. Merz is seen as the former, Laschet and Röttgen the latter.Unless Laschet emerges as the clear winner in April, the leadership contest is likely to leave Germany sorely distracted by domestic politics just as it takes over the EU presidency in the second half of the year. Instead of Merkel having a triumphant international swansong on the EU stage, she could be battling to protect her inheritance at home.The one area on which all three leadership candidates seem to agree is foreign policy: they all want Germany to take more leadership and responsibility, and for the European Union to play a bigger role in security, defence and international affairs. They are all Atlanticists, but critical of Donald Trump’s ‘America First’ stance. All are on the record criticizing the chancellor – at least tacitly – for not having a more vigorous foreign policy.There the similarity ends.On the right, the 64-year-old Merz is both the most conservative and the most popular with the party grassroots. He fell out with the chancellor when she took over his job as CDU leader in parliament in 2002. He quit politics to become a corporate lawyer (and a millionaire), but never lost his political ambition. He is an economic liberal but socially conservative, a strong critic of Merkel’s migration policy and her lack of clear leadership. Critics say he is a man of the past, and not a team player.On the EU, he believes Germany is ‘leaving too much to the French’. If France and Germany cannot agree on financial matters, he said at the London School of Economics in February, they should instead forge a stronger EU industrial policy focused on creating more ‘European champions’.Laschet, the Merkel loyalist, is four years younger, and from the left of the party. Like Merz, he is a former member of the European parliament. In 2015, he defended Merkel’s open border policy to accept refugees stranded in the Balkans. On Russia, however, he is more critical, calling for a new effort to re-engage with Vladimir Putin. Most recently, at the Munich Security Conference, he called for stronger Franco-German relations, and more support for the eurozone reforms proposed by Emmanuel Macron.As CDU leader in North Rhine-Westphalia, Laschet has the strongest power base. He earned his political spurs there by winning the last state election in 2017, in contrast to Röttgen, who lost to the SPD and Greens five years earlier.Röttgen, chairman of the Bundestag foreign affairs committee, is the surprise candidate. Once a Merkel favourite, they fell out when she sacked him as environment minister after he lost the North Rhine-Westphalia election. By throwing his hat in the ring, he has forced it to become an open contest. He is independent-minded and outspoken, but not as bitterly hostile to the chancellor as Merz, so he could be a compromise candidate.Laschet is clearly the man Merkel would find it easiest to live with. The decision will be taken by a party congress, not a grassroots ballot, which gives him a better chance. But Merz is the most eloquent orator and seen as the best campaigner. The challenge for party members is whether they believe it is better to swing right and squeeze the AfD, or stick to the centre to hold onto voters tempted by the Greens, who have replaced the SPD as the second-most popular party in Germany.The race is wide open. So is the future of the CDU. The only prediction one can make with much certainty is that as long as Merkel remains chancellor, any successor will struggle to get out of her shadow. Full Article
race 'RuPaul's Drag Race' announces 'All Stars 5' cast By www.upi.com Published On :: Fri, 08 May 2020 15:09:53 -0400 'RuPaul's Drag Race' announced the 10 competitors from previous seasons who will get another chance in the fifth 'All Stars' season, premiering June 5 on VH1. Full Article
race A Race Against the Clock: Meeting Seasonal Labor Needs in the Age of COVID-19 By www.migrationpolicy.org Published On :: Mon, 30 Mar 2020 21:04:03 -0400 As governments have reacted to the coronavirus pandemic by closing borders, seasonal workers have been kept out, raising a pressing question: who is going to produce the food amid agricultural labor shortages? Policymakers in the Asia Pacific, Europe, and North America have responded by seeking to recruit residents, lengthen stays for already present seasonal workers, and find ways to continue admitting foreign seasonal labor, as this commentary explores. Full Article
race Embrace the Ultimate Unknown By rss.sciam.com Published On :: Sun, 03 May 2020 19:00:00 GMT The best way to have a good death is to live a good life -- Read more on ScientificAmerican.com Full Article Mind Cognition
race In Today's Rat Race, the Most Overworked Win By www.washingtonpost.com Published On :: Mon, 04 Sep 2006 00:00:00 EDT For years, economists have taught their students a simple maxim: As employers hunt for workers, they want to get the best talent at the lowest price. Full Article Nation In Today's Rat Race the Most Overworked Win
race Subprime Mortgages and Race: A Bit of Good News May Be Illusory By www.washingtonpost.com Published On :: Mon, 30 Jun 2008 00:00:00 EDT Subprime mortgages have been linked to a meltdown in housing and questionable Wall Street practices, and they may have been the original domino that set off America's current economic crisis. Full Article Opinions Subprime Mortgages and Race: A Bit of Good News May Be Illusory
race No race balance, but desegregation ends for Georgia district By feedproxy.google.com Published On :: 2020-05-02T13:05:28-04:00 Full Article Education
race Rural educator enters race for state schools superintendent By feedproxy.google.com Published On :: 2020-05-07T16:08:30-04:00 Full Article Education
race Teacher Tensions Fuel Kentucky Governor's Race By feedproxy.google.com Published On :: Tue, 18 Jun 2019 00:00:00 +0000 After clashing with the teacher community in often confrontational terms, Republican Gov. Matt Bevin faces a fierce battle to win re-election against Democratic rival Andy Beshear, the state's attorney general. Full Article Kentucky
race Teacher Activism Played Prominent Role in Southern Governors' Races By feedproxy.google.com Published On :: Wed, 06 Nov 2019 00:00:00 +0000 Governors' races in Kentucky and Mississippi took center stage, testing the political muscle of teacher activists and yielding possible policy implications for everything from public employee pensions to teacher pay. Full Article Kentucky
race Education Is on the Ballot in These Governors' Races By feedproxy.google.com Published On :: Sun, 03 Nov 2019 00:00:00 +0000 Voters in three southern states will head to the polls for governors races that have shined a spotlight on educator activism, school funding, and teacher pay. Full Article Kentucky
race Education Issues Resonate in Governors' Races By feedproxy.google.com Published On :: Tue, 12 Nov 2019 00:00:00 +0000 This year's November elections—a preview to next year's nationwide showdowns—cast their own spotlight on education, a dynamic that played out most prominently in the Kentucky governor's race, where teachers organized to unseat a combative incumbent who'd sparred with them. Full Article Kentucky