inform

Die mechanische Bedeutung ser Schienbeinform : mit besonderer Berücksichtigung der Platyknemie ... / von Hugo Hieronymus Hirsch ; mit einem Vorwort von Rudolf Virchow.

Berlin : J. Springer, 1895.




inform

Management information systems in the drug field / edited by George M. Beschner, Neil H. Sampson, National Institute on Drug Abuse ; and Christopher D'Amanda, Coordinating Office for Drug and Alcohol Abuse, City of Philadelphia.

Rockville, Maryland : National Institute on Drug Abuse, 1979.




inform

Evaluating drug information programs / Panel on the Impact of Information on Drug Use and Misuse, National Research Council ; prepared for National Institute of Mental Health.

Springfield, Virginia : National Technical Information Service, 1973.




inform

Survey of drug information needs and problems associated with communications directed to practicing physicians : part III : remedial ad survey / [Arthur Ruskin, M.D.]

Springfield, Virginia : National Technical Information Service, 1974.




inform

Making the connection : health care needs of drug using prostitutes : information pack / by Jean Faugier and Steve Cranfield.

[Manchester] : School of Nursing Studies, University of Manchester, [1995?]




inform

Drug abuse information source book / [Foreword by Edward S. Brady].

[West Point, Pa.] : [Merck Sharp & Dohme], [1977?]




inform

Bayesian variance estimation in the Gaussian sequence model with partial information on the means

Gianluca Finocchio, Johannes Schmidt-Hieber.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 239--271.

Abstract:
Consider the Gaussian sequence model under the additional assumption that a fixed fraction of the means is known. We study the problem of variance estimation from a frequentist Bayesian perspective. The maximum likelihood estimator (MLE) for $sigma^{2}$ is biased and inconsistent. This raises the question whether the posterior is able to correct the MLE in this case. By developing a new proving strategy that uses refined properties of the posterior distribution, we find that the marginal posterior is inconsistent for any i.i.d. prior on the mean parameters. In particular, no assumption on the decay of the prior needs to be imposed. Surprisingly, we also find that consistency can be retained for a hierarchical prior based on Gaussian mixtures. In this case we also establish a limiting shape result and determine the limit distribution. In contrast to the classical Bernstein-von Mises theorem, the limit is non-Gaussian. We show that the Bayesian analysis leads to new statistical estimators outperforming the correctly calibrated MLE in a numerical simulation study.




inform

Weighted Message Passing and Minimum Energy Flow for Heterogeneous Stochastic Block Models with Side Information

We study the misclassification error for community detection in general heterogeneous stochastic block models (SBM) with noisy or partial label information. We establish a connection between the misclassification rate and the notion of minimum energy on the local neighborhood of the SBM. We develop an optimally weighted message passing algorithm to reconstruct labels for SBM based on the minimum energy flow and the eigenvectors of a certain Markov transition matrix. The general SBM considered in this paper allows for unequal-size communities, degree heterogeneity, and different connection probabilities among blocks. We focus on how to optimally weigh the message passing to improve misclassification.




inform

Estimation of a Low-rank Topic-Based Model for Information Cascades

We consider the problem of estimating the latent structure of a social network based on the observed information diffusion events, or cascades, where the observations for a given cascade consist of only the timestamps of infection for infected nodes but not the source of the infection. Most of the existing work on this problem has focused on estimating a diffusion matrix without any structural assumptions on it. In this paper, we propose a novel model based on the intuition that an information is more likely to propagate among two nodes if they are interested in similar topics which are also prominent in the information content. In particular, our model endows each node with an influence vector (which measures how authoritative the node is on each topic) and a receptivity vector (which measures how susceptible the node is for each topic). We show how this node-topic structure can be estimated from the observed cascades, and prove the consistency of the estimator. Experiments on synthetic and real data demonstrate the improved performance and better interpretability of our model compared to existing state-of-the-art methods.




inform

Modified information criterion for testing changes in skew normal model

Khamis K. Said, Wei Ning, Yubin Tian.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 2, 280--300.

Abstract:
In this paper, we study the change point problem for the skew normal distribution model from the view of model selection problem. The detection procedure based on the modified information criterion (MIC) for change problem is proposed. Such a procedure has advantage in detecting the changes in early and late stage of a data comparing to the one based on the traditional Schwarz information criterion which is well known as Bayesian information criterion (BIC) by considering the complexity of the models. Due to the difficulty in deriving the analytic asymptotic distribution of the test statistic based on the MIC procedure, the bootstrap simulation is provided to obtain the critical values at the different significance levels. Simulations are conducted to illustrate the comparisons of performance between MIC, BIC and likelihood ratio test (LRT). Such an approach is applied on two stock market data sets to indicate the detection procedure.




inform

Restricting the Flow: Information Bottlenecks for Attribution. (arXiv:2001.00396v3 [stat.ML] UPDATED)

Attribution methods provide insights into the decision-making of machine learning models like artificial neural networks. For a given input sample, they assign a relevance score to each individual input variable, such as the pixels of an image. In this work we adapt the information bottleneck concept for attribution. By adding noise to intermediate feature maps we restrict the flow of information and can quantify (in bits) how much information image regions provide. We compare our method against ten baselines using three different metrics on VGG-16 and ResNet-50, and find that our methods outperform all baselines in five out of six settings. The method's information-theoretic foundation provides an absolute frame of reference for attribution values (bits) and a guarantee that regions scored close to zero are not necessary for the network's decision. For reviews: https://openreview.net/forum?id=S1xWh1rYwB For code: https://github.com/BioroboticsLab/IBA




inform

Nonparametric Estimation of the Fisher Information and Its Applications. (arXiv:2005.03622v1 [cs.IT])

This paper considers the problem of estimation of the Fisher information for location from a random sample of size $n$. First, an estimator proposed by Bhattacharya is revisited and improved convergence rates are derived. Second, a new estimator, termed a clipped estimator, is proposed. Superior upper bounds on the rates of convergence can be shown for the new estimator compared to the Bhattacharya estimator, albeit with different regularity conditions. Third, both of the estimators are evaluated for the practically relevant case of a random variable contaminated by Gaussian noise. Moreover, using Brown's identity, which relates the Fisher information and the minimum mean squared error (MMSE) in Gaussian noise, two corresponding consistent estimators for the MMSE are proposed. Simulation examples for the Bhattacharya estimator and the clipped estimator as well as the MMSE estimators are presented. The examples demonstrate that the clipped estimator can significantly reduce the required sample size to guarantee a specific confidence interval compared to the Bhattacharya estimator.




inform

Physics-informed neural network for ultrasound nondestructive quantification of surface breaking cracks. (arXiv:2005.03596v1 [cs.LG])

We introduce an optimized physics-informed neural network (PINN) trained to solve the problem of identifying and characterizing a surface breaking crack in a metal plate. PINNs are neural networks that can combine data and physics in the learning process by adding the residuals of a system of Partial Differential Equations to the loss function. Our PINN is supervised with realistic ultrasonic surface acoustic wave data acquired at a frequency of 5 MHz. The ultrasonic surface wave data is represented as a surface deformation on the top surface of a metal plate, measured by using the method of laser vibrometry. The PINN is physically informed by the acoustic wave equation and its convergence is sped up using adaptive activation functions. The adaptive activation function uses a scalable hyperparameter in the activation function, which is optimized to achieve best performance of the network as it changes dynamically the topology of the loss function involved in the optimization process. The usage of adaptive activation function significantly improves the convergence, notably observed in the current study. We use PINNs to estimate the speed of sound of the metal plate, which we do with an error of 1\%, and then, by allowing the speed of sound to be space dependent, we identify and characterize the crack as the positions where the speed of sound has decreased. Our study also shows the effect of sub-sampling of the data on the sensitivity of sound speed estimates. More broadly, the resulting model shows a promising deep neural network model for ill-posed inverse problems.




inform

Relevance Vector Machine with Weakly Informative Hyperprior and Extended Predictive Information Criterion. (arXiv:2005.03419v1 [stat.ML])

In the variational relevance vector machine, the gamma distribution is representative as a hyperprior over the noise precision of automatic relevance determination prior. Instead of the gamma hyperprior, we propose to use the inverse gamma hyperprior with a shape parameter close to zero and a scale parameter not necessary close to zero. This hyperprior is associated with the concept of a weakly informative prior. The effect of this hyperprior is investigated through regression to non-homogeneous data. Because it is difficult to capture the structure of such data with a single kernel function, we apply the multiple kernel method, in which multiple kernel functions with different widths are arranged for input data. We confirm that the degrees of freedom in a model is controlled by adjusting the scale parameter and keeping the shape parameter close to zero. A candidate for selecting the scale parameter is the predictive information criterion. However the estimated model using this criterion seems to cause over-fitting. This is because the multiple kernel method makes the model a situation where the dimension of the model is larger than the data size. To select an appropriate scale parameter even in such a situation, we also propose an extended prediction information criterion. It is confirmed that a multiple kernel relevance vector regression model with good predictive accuracy can be obtained by selecting the scale parameter minimizing extended prediction information criterion.




inform

Important information: COVID-19

The Library will be closed to the public and to staff from Monday 23 March 2020.




inform

Trusted computing and information security : 13th Chinese conference, CTCIS 2019, Shanghai, China, October 24-27, 2019

Chinese Conference on Trusted Computing and Information Security (13th : 2019 : Shanghai, China)
9789811534188 (eBook)




inform

Space information networks : 4th International Conference, SINC 2019, Wuzhen, China, September 19-20, 2019, Revised Selected Papers

SINC (Conference) (4th : 2019 : Wuzhen, China)
9789811534423 (electronic bk.)




inform

Information retrieval technology : 15th Asia Information Retrieval Societies Conference, AIRS 2019, Hong Kong, China, November 7-9, 2019, proceedings

Asia Information Retrieval Societies Conference (15th : 2019 : Hong Kong, China)
9783030428358




inform

Enterprise information systems : 21st International Conference, ICEIS 2019, Heraklion, Crete, Greece, May 3-5, 2019, Revised Selected Papers

International Conference on Enterprise Information Systems (21st : 2019 : Ērakleion, Greece)
9783030407834 (electronic bk.)




inform

Empirical Bayes analysis of RNA sequencing experiments with auxiliary information

Kun Liang.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2452--2482.

Abstract:
Finding differentially expressed genes is a common task in high-throughput transcriptome studies. While traditional statistical methods rank the genes by their test statistics alone, we analyze an RNA sequencing dataset using the auxiliary information of gene length and the test statistics from a related microarray study. Given the auxiliary information, we propose a novel nonparametric empirical Bayes procedure to estimate the posterior probability of differential expression for each gene. We demonstrate the advantage of our procedure in extensive simulation studies and a psoriasis RNA sequencing study. The companion R package calm is available at Bioconductor.




inform

Bayesian Estimation Under Informative Sampling with Unattenuated Dependence

Matthew R. Williams, Terrance D. Savitsky.

Source: Bayesian Analysis, Volume 15, Number 1, 57--77.

Abstract:
An informative sampling design leads to unit inclusion probabilities that are correlated with the response variable of interest. However, multistage sampling designs may also induce higher order dependencies, which are ignored in the literature when establishing consistency of estimators for survey data under a condition requiring asymptotic independence among the unit inclusion probabilities. This paper constructs new theoretical conditions that guarantee that the pseudo-posterior, which uses sampling weights based on first order inclusion probabilities to exponentiate the likelihood, is consistent not only for survey designs which have asymptotic factorization, but also for survey designs that induce residual or unattenuated dependence among sampled units. The use of the survey-weighted pseudo-posterior, together with our relaxed requirements for the survey design, establish a wide variety of analysis models that can be applied to a broad class of survey data sets. Using the complex sampling design of the National Survey on Drug Use and Health, we demonstrate our new theoretical result on multistage designs characterized by a cluster sampling step that expresses within-cluster dependence. We explore the impact of multistage designs and order based sampling.




inform

Low Information Omnibus (LIO) Priors for Dirichlet Process Mixture Models

Yushu Shi, Michael Martens, Anjishnu Banerjee, Purushottam Laud.

Source: Bayesian Analysis, Volume 14, Number 3, 677--702.

Abstract:
Dirichlet process mixture (DPM) models provide flexible modeling for distributions of data as an infinite mixture of distributions from a chosen collection. Specifying priors for these models in individual data contexts can be challenging. In this paper, we introduce a scheme which requires the investigator to specify only simple scaling information. This is used to transform the data to a fixed scale on which a low information prior is constructed. Samples from the posterior with the rescaled data are transformed back for inference on the original scale. The low information prior is selected to provide a wide variety of components for the DPM to generate flexible distributions for the data on the fixed scale. The method can be applied to all DPM models with kernel functions closed under a suitable scaling transformation. Construction of the low information prior, however, is kernel dependent. Using DPM-of-Gaussians and DPM-of-Weibulls models as examples, we show that the method provides accurate estimates of a diverse collection of distributions that includes skewed, multimodal, and highly dispersed members. With the recommended priors, repeated data simulations show performance comparable to that of standard empirical estimates. Finally, we show weak convergence of posteriors with the proposed priors for both kernels considered.




inform

The Representation of Semantic Information Across Human Cerebral Cortex During Listening Versus Reading Is Invariant to Stimulus Modality

Fatma Deniz
Sep 25, 2019; 39:7722-7736
BehavioralSystemsCognitive




inform

What Visual Information Is Processed in the Human Dorsal Stream?

Martin N. Hebart
Jun 13, 2012; 32:8107-8109
Journal Club




inform

The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding

Michael N. Shadlen
May 15, 1998; 18:3870-3896
Articles




inform

Informe Trimestral del BPI, marzo de 2018: La volatilidad vuelve a cobrar protagonismo tras un episodio de inestabilidad en los mercados bursátiles

Spanish translation of the BIS press release about the BIS Quarterly Review, March 2018




inform

Informe Trimestral del BPI, marzo de 2018

Spanish translation of the BIS Quarterly Review, March 2018




inform

Informe Trimestral del BPI, junio de 2018

Spanish translation of the BIS Quarterly Review, June 2018




inform

Informe Económico Anual 2018

Spanish translation of the Annual Economic Report 2018 of the BIS, June 2018 - Las autoridades pueden prolongar el actual repunte económico más allá del corto plazo aplicando reformas estructurales, reconstruyendo el espacio de las políticas monetaria y fiscal para afrontar futuras amenazas y fomentando una pronta implementación de las reformas reguladoras, sostiene el Banco de Pagos Internacionales (BPI) en su Informe Económico Anual.




inform

Las divergencias se amplían en los mercados: Informe Trimestral del BPI

Spanish translation of the BIS press release about the BIS Quarterly Review, September 2018




inform

Informe Trimestral del BPI, septiembre de 2018

Spanish translation of the BIS Quarterly Review, September 2018




inform

Nuevos baches en la senda de la normalización: Informe Trimestral del BPI

Spanish translation of the BIS press release about the BIS Quarterly Review, December 2018




inform

Informe Trimestral del BPI, diciembre de 2018

Spanish translation of the BIS Quarterly Review, December 2018




inform

El Informe Trimestral del BPI analiza la caída y posterior rebote de los mercados

Spanish translation of the BIS press release about the BIS Quarterly Review, March 2019




inform

Informe Trimestral del BPI, marzo de 2019

Spanish translation of the BIS Quarterly Review, March 2019




inform

Ha llegado la hora de poner en marcha todos los motores, afirma el BPI en su Informe Económico Anual

Spanish translation of the BIS press release on the presentation of the Annual Economic Report 2019, 30 June 2019.




inform

Far-Right Spreads COVID-19 Disinformation Epidemic Online

Far-right groups and individuals in the United States are exploiting the COVID-19 pandemic to promote disinformation, hate, extremism and authoritarianism. "COVID-19 has been seized by far-right groups as an opportunity to call for extreme violence," states a report from ISD, based on a combination of natural language processing, network analysis and ethnographic online research.




inform

Information Security: New Rules

Warren Buffet once said, "Only when the tide goes out do you discover who's been swimming naked." You can cover over a host of sins when times are good, but bad or unsafe practices will be exposed when times are rough. Time and experience have borne out the accuracy of this witticism in the financial arena -- and we're now seeing its applicability to the intersection of infosec and COVID-19.




inform

Shipping Information




inform

The Effect of Counterfactual Information on Outcome Value Coding in Medial Prefrontal and Cingulate Cortex: From an Absolute to a Relative Neural Code

Adaptive coding of stimuli is well documented in perception, where it supports efficient encoding over a broad range of possible percepts. Recently, a similar neural mechanism has been reported also in value-based decision, where it allows optimal encoding of vast ranges of values in PFC: neuronal response to value depends on the choice context (relative coding), rather than being invariant across contexts (absolute coding). Additionally, value learning is sensitive to the amount of feedback information: providing complete feedback (both obtained and forgone outcomes) instead of partial feedback (only obtained outcome) improves learning. However, it is unclear whether relative coding occurs in all PFC regions and how it is affected by feedback information. We systematically investigated univariate and multivariate feedback encoding in various mPFC regions and compared three modes of neural coding: absolute, partially-adaptive and fully-adaptive.

Twenty-eight human participants (both sexes) performed a learning task while undergoing fMRI scanning. On each trial, they chose between two symbols associated with a certain outcome. Then, the decision outcome was revealed. Notably, in one-half of the trials participants received partial feedback, whereas in the other half they got complete feedback. We used univariate and multivariate analysis to explore value encoding in different feedback conditions.

We found that both obtained and forgone outcomes were encoded in mPFC, but with opposite sign in its ventral and dorsal subdivisions. Moreover, we showed that increasing feedback information induced a switch from absolute to relative coding. Our results suggest that complete feedback information enhances context-dependent outcome encoding.

SIGNIFICANCE STATEMENT This study offers a systematic investigation of the effect of the amount of feedback information (partial vs complete) on univariate and multivariate outcome value encoding, within multiple regions in mPFC and cingulate cortex that are critical for value-based decisions and behavioral adaptation. Moreover, we provide the first comparison of three possible models of neural coding (i.e., absolute, partially-adaptive, and fully-adaptive coding) of value signal in these regions, by using commensurable measures of prediction accuracy. Taken together, our results help build a more comprehensive picture of how the human brain encodes and processes outcome value. In particular, our results suggest that simultaneous presentation of obtained and foregone outcomes promotes relative value representation.




inform

How COVID-19 Could Inform the Future of Hospital Design

Modified hospital designs have become necessary as the first wave of the pandemic tears through U.S. communities




inform

National Cyber Security Drill for Critical Information Infrastructures (CIIs)

Cyber risk is now one of the most commonly talked about topics as the impact of cybercrime reaches an all-time high. Heavily connected industries, such as financial services and critical national infrastructure (CNI) pose a systemic risk to the markets they serve. We are now seeing national cybersecurity incident simulation exercises being carried out by governments and/or industry associations. This helps to exercise the reaction to cybersecurity incidents, which impact various parts of the supply chain, from financial transactions to the operational technology that underpins our daily lives.
 In line with this, the Computer Emergency Response Team of Mauritius (CERT-MU), a division of the National Computer Board operating under the aegis of the Ministry of Technology, Communication & Innovation is organizing a National Cybersecurity Drill from the 25th – 28th June 2019 for the Financial Sector and the Civil Aviation Department. The main objective of the 4 days’ event is to assess the preparedness of these sectors to resist cyber threats and enable timely detection, response, and mitigation and recovery actions in the event of cyber-attacks.
The activities to be organized are as follows:
·         One-day workshop on Cyber Attack Preparedness & Response (25th June 2019)
·         Three-days Cyber Drill exercise (26th – 28th June 2019)




inform

How to Detect the Age-Old Traditions of Folklore in Today’s COVID-19 Misinformation

Smithsonian folklorist James Deutsch says the fast spread of stories and memes are cultural expressions that build cohesion and support




inform

City sending in 'park ambassadors' to inform, not to ticket

"Park ambassadors" will soon be on patrol at some of Ottawa's busiest public green spaces to help confused residents navigate the newly loosened COVID-19 restrictions, Mayor Jim Watson announced Friday.



  • News/Canada/Ottawa

inform

Cyber Criminals Use Fake Job Listings To Target Applicants' Personally Identifiable Information




inform

Worries about food shortages have people scratching for information on backyard chickens

Mary Ellen Dalgleish, a poultry expert at Purity Feeds in Kamloops, B.C., believes the increased interest in backyard chickens follows concerns about food security when consumers saw grocery store shelves cleared out early in the COVID-19 pandemic in B.C.



  • News/Canada/British Columbia

inform

The impact of information laws on consumer credit access: evidence from Chile

Central Bank of Chile Working Papers by Carlos Madeira




inform

New iOS feature automatically sends medical information to emergency services



Apple's latest iOS 13.5 beta release includes a new Health app feature that allows iPhone and Apple Watch users to automatically send Medical ID information to first responders.




inform

Perspectives on Informed Consent Practices for Minimal-Risk Research Involving Foster Youth




inform

Thwarting misinformation

Dear Editor,Rumours have more potential to cause chaos now more than ever before. Previously, misconceptions and mischaracterisations took longer to infect the minds of a society. Maybe that left us unprepared.