on Model Reduction and Neural Networks for Parametric PDEs. (arXiv:2005.03180v1 [math.NA]) By arxiv.org Published On :: We develop a general framework for data-driven approximation of input-output maps between infinite-dimensional spaces. The proposed approach is motivated by the recent successes of neural networks and deep learning, in combination with ideas from model reduction. This combination results in a neural network approximation which, in principle, is defined on infinite-dimensional spaces and, in practice, is robust to the dimension of finite-dimensional approximations of these spaces required for computation. For a class of input-output maps, and suitably chosen probability measures on the inputs, we prove convergence of the proposed approximation methodology. Numerically we demonstrate the effectiveness of the method on a class of parametric elliptic PDE problems, showing convergence and robustness of the approximation scheme with respect to the size of the discretization, and compare our method with existing algorithms from the literature. Full Article
on MAZE: Data-Free Model Stealing Attack Using Zeroth-Order Gradient Estimation. (arXiv:2005.03161v1 [stat.ML]) By arxiv.org Published On :: Model Stealing (MS) attacks allow an adversary with black-box access to a Machine Learning model to replicate its functionality, compromising the confidentiality of the model. Such attacks train a clone model by using the predictions of the target model for different inputs. The effectiveness of such attacks relies heavily on the availability of data necessary to query the target model. Existing attacks either assume partial access to the dataset of the target model or availability of an alternate dataset with semantic similarities. This paper proposes MAZE -- a data-free model stealing attack using zeroth-order gradient estimation. In contrast to prior works, MAZE does not require any data and instead creates synthetic data using a generative model. Inspired by recent works in data-free Knowledge Distillation (KD), we train the generative model using a disagreement objective to produce inputs that maximize disagreement between the clone and the target model. However, unlike the white-box setting of KD, where the gradient information is available, training a generator for model stealing requires performing black-box optimization, as it involves accessing the target model under attack. MAZE relies on zeroth-order gradient estimation to perform this optimization and enables a highly accurate MS attack. Our evaluation with four datasets shows that MAZE provides a normalized clone accuracy in the range of 0.91x to 0.99x, and outperforms even the recent attacks that rely on partial data (JBDA, clone accuracy 0.13x to 0.69x) and surrogate data (KnockoffNets, clone accuracy 0.52x to 0.97x). We also study an extension of MAZE in the partial-data setting and develop MAZE-PD, which generates synthetic data closer to the target distribution. MAZE-PD further improves the clone accuracy (0.97x to 1.0x) and reduces the query required for the attack by 2x-24x. Full Article
on On the Optimality of Randomization in Experimental Design: How to Randomize for Minimax Variance and Design-Based Inference. (arXiv:2005.03151v1 [stat.ME]) By arxiv.org Published On :: I study the minimax-optimal design for a two-arm controlled experiment where conditional mean outcomes may vary in a given set. When this set is permutation symmetric, the optimal design is complete randomization, and using a single partition (i.e., the design that only randomizes the treatment labels for each side of the partition) has minimax risk larger by a factor of $n-1$. More generally, the optimal design is shown to be the mixed-strategy optimal design (MSOD) of Kallus (2018). Notably, even when the set of conditional mean outcomes has structure (i.e., is not permutation symmetric), being minimax-optimal for variance still requires randomization beyond a single partition. Nonetheless, since this targets precision, it may still not ensure sufficient uniformity in randomization to enable randomization (i.e., design-based) inference by Fisher's exact test to appropriately detect violations of null. I therefore propose the inference-constrained MSOD, which is minimax-optimal among all designs subject to such uniformity constraints. On the way, I discuss Johansson et al. (2020) who recently compared rerandomization of Morgan and Rubin (2012) and the pure-strategy optimal design (PSOD) of Kallus (2018). I point out some errors therein and set straight that randomization is minimax-optimal and that the "no free lunch" theorem and example in Kallus (2018) are correct. Full Article
on Towards Frequency-Based Explanation for Robust CNN. (arXiv:2005.03141v1 [cs.LG]) By arxiv.org Published On :: Current explanation techniques towards a transparent Convolutional Neural Network (CNN) mainly focuses on building connections between the human-understandable input features with models' prediction, overlooking an alternative representation of the input, the frequency components decomposition. In this work, we present an analysis of the connection between the distribution of frequency components in the input dataset and the reasoning process the model learns from the data. We further provide quantification analysis about the contribution of different frequency components toward the model's prediction. We show that the vulnerability of the model against tiny distortions is a result of the model is relying on the high-frequency features, the target features of the adversarial (black and white-box) attackers, to make the prediction. We further show that if the model develops stronger association between the low-frequency component with true labels, the model is more robust, which is the explanation of why adversarially trained models are more robust against tiny distortions. Full Article
on Joint Multi-Dimensional Model for Global and Time-Series Annotations. (arXiv:2005.03117v1 [cs.LG]) By arxiv.org Published On :: Crowdsourcing is a popular approach to collect annotations for unlabeled data instances. It involves collecting a large number of annotations from several, often naive untrained annotators for each data instance which are then combined to estimate the ground truth. Further, annotations for constructs such as affect are often multi-dimensional with annotators rating multiple dimensions, such as valence and arousal, for each instance. Most annotation fusion schemes however ignore this aspect and model each dimension separately. In this work we address this by proposing a generative model for multi-dimensional annotation fusion, which models the dimensions jointly leading to more accurate ground truth estimates. The model we propose is applicable to both global and time series annotation fusion problems and treats the ground truth as a latent variable distorted by the annotators. The model parameters are estimated using the Expectation-Maximization algorithm and we evaluate its performance using synthetic data and real emotion corpora as well as on an artificial task with human annotations Full Article
on A comparison of group testing architectures for COVID-19 testing. (arXiv:2005.03051v1 [stat.ME]) By arxiv.org Published On :: An important component of every country's COVID-19 response is fast and efficient testing -- to identify and isolate cases, as well as for early detection of local hotspots. For many countries, producing a sufficient number of tests has been a serious limiting factor in their efforts to control COVID-19 infections. Group testing is a well-established mathematical tool, which can provide a serious and rapid improvement to this situation. In this note, we compare several well-established group testing schemes in the context of qPCR testing for COVID-19. We include example calculations, where we indicate which testing architectures yield the greatest efficiency gains in various settings. We find that for identification of individuals with COVID-19, array testing is usually the best choice, while for estimation of COVID-19 prevalence rates in the total population, Gibbs-Gower testing usually provides the most accurate estimates given a fixed and relatively small number of tests. This note is intended as a helpful handbook for labs implementing group testing methods. Full Article
on Adaptive Invariance for Molecule Property Prediction. (arXiv:2005.03004v1 [q-bio.QM]) By arxiv.org Published On :: Effective property prediction methods can help accelerate the search for COVID-19 antivirals either through accurate in-silico screens or by effectively guiding on-going at-scale experimental efforts. However, existing prediction tools have limited ability to accommodate scarce or fragmented training data currently available. In this paper, we introduce a novel approach to learn predictors that can generalize or extrapolate beyond the heterogeneous data. Our method builds on and extends recently proposed invariant risk minimization, adaptively forcing the predictor to avoid nuisance variation. We achieve this by continually exercising and manipulating latent representations of molecules to highlight undesirable variation to the predictor. To test the method we use a combination of three data sources: SARS-CoV-2 antiviral screening data, molecular fragments that bind to SARS-CoV-2 main protease and large screening data for SARS-CoV-1. Our predictor outperforms state-of-the-art transfer learning methods by significant margin. We also report the top 20 predictions of our model on Broad drug repurposing hub. Full Article
on Entries open for State Library’s $20,000 short film competition By feedproxy.google.com Published On :: Thu, 21 Nov 2019 05:39:54 +0000 Thursday 21 November 2019 The State Library of NSW is inviting entries for its short film prize Shortstacks, with a total of $20,000 on offer across two categories. Full Article
on Entries now open for the 2020 National Biography Award By feedproxy.google.com Published On :: Mon, 09 Dec 2019 23:38:42 +0000 Tuesday 10 December 2019 Entries are now open for the 2020 National Biography Award – Australia's richest prize for biography and memoir writing. Full Article
on Call for nominations: NSW Premier’s History Awards 2020 By feedproxy.google.com Published On :: Tue, 18 Feb 2020 22:04:55 +0000 Wednesday 19 February 2020 The State Library announces the opening of nominations for the NSW Premier’s History Awards 2020. Full Article
on State Library creates a new space for Aboriginal communities to connect with their cultural heritage By feedproxy.google.com Published On :: Wed, 19 Feb 2020 23:11:15 +0000 Thursday 20 February 2020 In an Australian first, the State Library of NSW launched a new digital space for Aboriginal communities to connect with their histories and cultures. Full Article
on Flexible Imputation of Missing Data (2nd Edition) By www.jstatsoft.org Published On :: Sat, 18 Apr 2020 03:35:08 +0000 Full Article
on mgm: Estimating Time-Varying Mixed Graphical Models in High-Dimensional Data By www.jstatsoft.org Published On :: Mon, 27 Apr 2020 00:00:00 +0000 We present the R package mgm for the estimation of k-order mixed graphical models (MGMs) and mixed vector autoregressive (mVAR) models in high-dimensional data. These are a useful extensions of graphical models for only one variable type, since data sets consisting of mixed types of variables (continuous, count, categorical) are ubiquitous. In addition, we allow to relax the stationarity assumption of both models by introducing time-varying versions of MGMs and mVAR models based on a kernel weighting approach. Time-varying models offer a rich description of temporally evolving systems and allow to identify external influences on the model structure such as the impact of interventions. We provide the background of all implemented methods and provide fully reproducible examples that illustrate how to use the package. Full Article
on lslx: Semi-Confirmatory Structural Equation Modeling via Penalized Likelihood By www.jstatsoft.org Published On :: Mon, 27 Apr 2020 00:00:00 +0000 Sparse estimation via penalized likelihood (PL) is now a popular approach to learn the associations among a large set of variables. This paper describes an R package called lslx that implements PL methods for semi-confirmatory structural equation modeling (SEM). In this semi-confirmatory approach, each model parameter can be specified as free/fixed for theory testing, or penalized for exploration. By incorporating either a L1 or minimax concave penalty, the sparsity pattern of the parameter matrix can be efficiently explored. Package lslx minimizes the PL criterion through a quasi-Newton method. The algorithm conducts line search and checks the first-order condition in each iteration to ensure the optimality of the obtained solution. A numerical comparison between competing packages shows that lslx can reliably find PL estimates with the least time. The current package also supports other advanced functionalities, including a two-stage method with auxiliary variables for missing data handling and a reparameterized multi-group SEM to explore population heterogeneity. Full Article
on Object-Oriented Software for Functional Data By www.jstatsoft.org Published On :: Mon, 27 Apr 2020 00:00:00 +0000 This paper introduces the funData R package as an object-oriented implementation of functional data. It implements a unified framework for dense univariate and multivariate functional data on one- and higher dimensional domains as well as for irregular functional data. The aim of this package is to provide a user-friendly, self-contained core toolbox for functional data, including important functionalities for creating, accessing and modifying functional data objects, that can serve as a basis for other packages. The package further contains a full simulation toolbox, which is a useful feature when implementing and testing new methodological developments. Based on the theory of object-oriented data analysis, it is shown why it is natural to implement functional data in an object-oriented manner. The classes and methods provided by funData are illustrated in many examples using two freely available datasets. The MFPCA package, which implements multivariate functional principal component analysis, is presented as an example for an advanced methodological package that uses the funData package as a basis, including a case study with real data. Both packages are publicly available on GitHub and the Comprehensive R Archive Network. Full Article
on mvord: An R Package for Fitting Multivariate Ordinal Regression Models By www.jstatsoft.org Published On :: Sat, 18 Apr 2020 03:35:08 +0000 The R package mvord implements composite likelihood estimation in the class of multivariate ordinal regression models with a multivariate probit and a multivariate logit link. A flexible modeling framework for multiple ordinal measurements on the same subject is set up, which takes into consideration the dependence among the multiple observations by employing different error structures. Heterogeneity in the error structure across the subjects can be accounted for by the package, which allows for covariate dependent error structures. In addition, different regression coefficients and threshold parameters for each response are supported. If a reduction of the parameter space is desired, constraints on the threshold as well as on the regression coefficients can be specified by the user. The proposed multivariate framework is illustrated by means of a credit risk application. Full Article
on lmSubsets: Exact Variable-Subset Selection in Linear Regression for R By www.jstatsoft.org Published On :: Tue, 28 Apr 2020 00:00:00 +0000 An R package for computing the all-subsets regression problem is presented. The proposed algorithms are based on computational strategies recently developed. A novel algorithm for the best-subset regression problem selects subset models based on a predetermined criterion. The package user can choose from exact and from approximation algorithms. The core of the package is written in C++ and provides an efficient implementation of all the underlying numerical computations. A case study and benchmark results illustrate the usage and the computational efficiency of the package. Full Article
on Semi-Parametric Joint Modeling of Survival and Longitudinal Data: The R Package JSM By www.jstatsoft.org Published On :: Sat, 18 Apr 2020 03:35:08 +0000 This paper is devoted to the R package JSM which performs joint statistical modeling of survival and longitudinal data. In biomedical studies it has been increasingly common to collect both baseline and longitudinal covariates along with a possibly censored survival time. Instead of analyzing the survival and longitudinal outcomes separately, joint modeling approaches have attracted substantive attention in the recent literature and have been shown to correct biases from separate modeling approaches and enhance information. Most existing approaches adopt a linear mixed effects model for the longitudinal component and the Cox proportional hazards model for the survival component. We extend the Cox model to a more general class of transformation models for the survival process, where the baseline hazard function is completely unspecified leading to semiparametric survival models. We also offer a non-parametric multiplicative random effects model for the longitudinal process in JSM in addition to the linear mixed effects model. In this paper, we present the joint modeling framework that is implemented in JSM, as well as the standard error estimation methods, and illustrate the package with two real data examples: a liver cirrhosis data and a Mayo Clinic primary biliary cirrhosis data. Full Article
on ManifoldOptim: An R Interface to the ROPTLIB Library for Riemannian Manifold Optimization By www.jstatsoft.org Published On :: Sat, 18 Apr 2020 03:35:08 +0000 Manifold optimization appears in a wide variety of computational problems in the applied sciences. In recent statistical methodologies such as sufficient dimension reduction and regression envelopes, estimation relies on the optimization of likelihood functions over spaces of matrices such as the Stiefel or Grassmann manifolds. Recently, Huang, Absil, Gallivan, and Hand (2016) have introduced the library ROPTLIB, which provides a framework and state of the art algorithms to optimize real-valued objective functions over commonly used matrix-valued Riemannian manifolds. This article presents ManifoldOptim, an R package that wraps the C++ library ROPTLIB. ManifoldOptim enables users to access functionality in ROPTLIB through R so that optimization problems can easily be constructed, solved, and integrated into larger R codes. Computationally intensive problems can be programmed with Rcpp and RcppArmadillo, and otherwise accessed through R. We illustrate the practical use of ManifoldOptim through several motivating examples involving dimension reduction and envelope methods in regression. Full Article
on Anxiety and compassion: emotions and the surgical encounter in early 19th-century Britain By blog.wellcomelibrary.org Published On :: Thu, 02 Nov 2017 12:49:06 +0000 The next seminar in the 2017–18 History of Pre-Modern Medicine seminar series takes place on Tuesday 7 November. Speaker: Dr Michael Brown (University of Roehampton), ‘Anxiety and compassion: emotions and the surgical encounter in early 19th-century Britain’ The historical study of the… Continue reading Full Article Early Medicine Events and Visits 19th century emotions seminars surgery
on The archaeology of monastic healing: spirit, mind and body By blog.wellcomelibrary.org Published On :: Fri, 17 Nov 2017 10:06:12 +0000 The next seminar in the 2017–18 History of Pre-Modern Medicine seminar series takes place on Tuesday 21 November. Speaker: Professor Roberta Gilchrist (University of Reading), ‘The archaeology of monastic healing: spirit, mind and body’ This paper highlights the potential of archaeology to… Continue reading Full Article Early Medicine Events and Visits archaeology Early Health and Well-being Early Medicine and Religion hospitals
on Broadcasting Health and Disease conference By blog.wellcomelibrary.org Published On :: Thu, 25 Jan 2018 15:19:45 +0000 Broadcasting Health and Disease: Bodies, markets and television, 1950s–1980s An ERC BodyCapital international conference to be held at the Wellcome Trust, 19–21 February 2018 In the television age, health and the body have been broadcasted in many ways: in short… Continue reading Full Article Events and Visits conferences
on Important information: COVID-19 By feedproxy.google.com Published On :: Fri, 13 Mar 2020 04:16:37 +0000 The Library will be closed to the public and to staff from Monday 23 March 2020. Full Article
on Shortstacks postponed By feedproxy.google.com Published On :: Mon, 23 Mar 2020 02:02:00 +0000 In light of the current situation, we have decided to run the Shortstacks Short Film competition at a later date. Full Article
on Staying connected By feedproxy.google.com Published On :: Wed, 01 Apr 2020 02:05:30 +0000 Stay connected with our virtual drop-in sessions for NSW public library staff. Full Article
on The Library wants your self-isolation images By feedproxy.google.com Published On :: Wed, 08 Apr 2020 22:26:48 +0000 The State Library launched a new collecting drive on Instagram today called #NSWathome to ensure your self-isolation images become part of the historic record. Full Article
on Wood microbiology : decay and its prevention By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Zabel, R. A. (Robert A.), authorCallnumber: OnlineISBN: 9780128205730 (electronic bk.) Full Article
on Wine science : principles and applications By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Jackson, Ron S., author.Callnumber: OnlineISBN: 9780128161180 Full Article
on Tumor microenvironments in organs : from the brain to the skin. By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030362140 (electronic bk.) Full Article
on Tumor microenvironment : hematopoietic cells. By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030357238 (electronic bk.) Full Article
on Tumor microenvironment : signaling pathways. By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030355821 (electronic bk.) Full Article
on Tumor microenvironment : the main driver of metabolic adaptation By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030340254 (electronic bk.) Full Article
on Trusted computing and information security : 13th Chinese conference, CTCIS 2019, Shanghai, China, October 24-27, 2019 By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Chinese Conference on Trusted Computing and Information Security (13th : 2019 : Shanghai, China)Callnumber: OnlineISBN: 9789811534188 (eBook) Full Article
on Translational neuroscience of speech and language disorders By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030356873 (electronic bk.) Full Article
on Transgender and gender nonconforming health and aging By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783319950310 (electronic bk.) Full Article
on Theranostics approaches to gastric and colon cancer By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9789811520174 (electronic bk.) Full Article
on The root canal anatomy in permanent dentition By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783319734446 (electronic bk.) Full Article
on The neuroethology of birdsong By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030346836 (electronic bk.) Full Article
on The interaction of food industry and environment By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9780128175156 (electronic bk.) Full Article
on The evolution of feathers : from their origin to the present By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030272234 electronic book Full Article
on The ecology of invasions by animals and plants By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Elton, Charles S. (Charles Sutherland), 1900-1991.Callnumber: OnlineISBN: 9783030347215 (electronic bk.) Full Article
on The Washington manual internship survival guide By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9781975116859 Full Article
on The Scientific basis of oral health education By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Levine, R. S., Dr., author.Callnumber: OnlineISBN: 9783319982076 (electronic bk.) Full Article
on The Routledge companion to rural planning By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9781315102375 (electronic bk.) Full Article
on Terrestrial hermit crab populations in the Maldives : ecology, distribution and anthropogenic impact By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Steibl, Sebastian, authorCallnumber: OnlineISBN: 9783658295417 (electronic bk.) Full Article
on Temporomandibular disorders : a translational approach from basic science to clinical applicability By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783319572475 (electronic bk.) Full Article
on Sustainable digital communities : 15th International Conference, iConference 2020, Boras, Sweden, March 23–26, 2020, Proceedings By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: iConference (Conference) (15th : 2020 : Boras, Sweden)Callnumber: OnlineISBN: 9783030436872 Full Article
on Structured object-oriented formal language and method : 9th International Workshop, SOFL+MSVL 2019, Shenzhen, China, November 5, 2019, Revised selected papers By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: SOFL+MSVL (Workshop) (9th : 2019 : Shenzhen, China)Callnumber: OnlineISBN: 9783030414184 (electronic bk.) Full Article
on Space information networks : 4th International Conference, SINC 2019, Wuzhen, China, September 19-20, 2019, Revised Selected Papers By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: SINC (Conference) (4th : 2019 : Wuzhen, China)Callnumber: OnlineISBN: 9789811534423 (electronic bk.) Full Article
on Skin decontamination By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030240097 Full Article