f

Automated systems and methods for making braided barbed sutures

A system for making braided barbed sutures includes a filament winding assembly, and a guide assembly including at least one barbed insert dispenser opening defining a passageway for orienting a barbed insert. The guide assembly is adapted to dispense at least one barbed insert from the dispenser opening into the filament winding assembly for winding a plurality of filaments around the at least one barbed insert for making a braided barbed suture. The passageway of the dispenser opening is adapted to allow longitudinal movement of the barbed insert relative to the passageway while simultaneously preventing twisting movement of the barbed insert relative to the passageway. As the barbed insert is being dispensed, the barbed insert dispenser opening is selectively rotatable for imparting rotation to the barbed insert as the filaments are wound about the barbed insert. The passageway may be an elongated slit having a greater width than height.




f

Method for producing an upper part of a shoe, in particular of a sports shoe

The method produces an upper part of a shoe, in particular a sport shoe, with enhanced wearing comfort. The method entails supplying a shoe last, which corresponds to the inner shape of the upper part of the shoe to a radial braiding machine having an annular creel, which is designed for weaving and/or braiding along three axes; Guiding the at least one shoe last through the center of the creel and simultaneously weaving and/or braiding along three axes using a fiber material around the outer circumference of the shoe last; and Terminating the weaving and/or braiding and removing the woven and/or braided material from the shoe last.




f

Closed tubular fibrous architecture and manufacturing method

A tubular fibrous architecture is disclosed. According to one aspect, the tubular fibrous architecture includes a closed tubular part in at least one of its ends or bottom. The closed tubular part includes an architecture in which a textile material, such as a thread, roving, ribbon or bundle of threads, is continuously output from the bottom. Each textile material that is output from the bottom is continuously wound about the tubular part. All of the textile materials at the junction between the bottom and the remainder of the tubular part are continuous and there is a continuous geometric transition between the bottom architecture and the architecture of the remainder of the tubular part such that the textile materials in the tubular part cross over. A method of making such a tubular fibrous architecture is also disclosed.




f

Methods of manufacturing vascular treatment devices

Vascular treatment and methods include a plurality of self-expanding bulbs and a hypotube including interspersed patterns of longitudinally spaced rows of kerfs. Joints between woven structures and hypotubes include solder. Woven structures include patterns of radiopaque filaments measureable under x-ray. Structures are heat treated to include at least shapes at different temperatures. A catheter includes a hypotube including interspersed patterns of longitudinally spaced rows of kerfs. Heat treating systems include a detachable flange. Laser cutting systems include a fluid flow system.




f

Methods of manufacturing woven vascular treatment devices

Vascular treatment and methods include a plurality of self-expanding bulbs and a hypotube including interspersed patterns of longitudinally spaced rows of kerfs. Joints between woven structures and hypotubes include solder. Woven structures include patterns of radiopaque filaments measurable under x-ray. Structures are heat treated to include at least shapes at different temperatures. A catheter includes a hypotube including interspersed patterns of longitudinally spaced rows of kerfs. Heat treating systems include a detachable flange. Laser cutting systems include a fluid flow system.




f

Machine for alternating tubular and flat braid sections and method of using the machine

A braider comprises a plurality of horngears. The horngears can be arranged for forming at least two closed paths for braiding. Each horngear has a driving gear and a hornplate. Each horngear can be selectably operated in a first mode, to rotate with the driving gear, and in a second mode, in which the driving gear rotates, but the hornplate does not. Bobbin carriers are positioned on some of the horngears. A track is configurable in: a first flat braiding mode with the carriers arranged on the horngears, so that there is one or more separate closed path for forming a first flat braid configuration; and a second flat braiding mode for forming a second flat braid configuration different from the first flat braid configuration. A switch is provided for changing a configuration of the track between the first and second flat braiding modes.




f

Method for operating a machine for plaiting reinforcing fibers

The invention relates to a method for the operation of a plaiting machine (1) that comprises a ring (2) carrying fiber spools (3) for plaiting layers (16, 22) of fibers (3) about a mandrel (13, 17) carried by a carrier (12) capable of movement along the axis (AX) of the ring (2), wherein after plaiting the fibers (3) are cut in order to withdraw the mandrel (13, 17), and that comprises: a hub (5, 6; 18) carried by the carrier (12) and secured to the mandrel (13; 17) while being mounted upstream therefrom; an operation for tightening the fibers (3) around the hub (5, 6; IS) with a link (11, 14) surrounding said fibers (3) after the mandrel (13, 17) has passed through the ring (2); and in which the fibers (3) are cut between the mandrel (13, 17) and the hub (5, 6; 18) before withdrawing the mandrel (13, 17).




f

Methods of manufacturing variable porosity flow diverting devices

Vascular treatment and methods include a plurality of self-expanding bulbs and a hypotube including interspersed patterns of longitudinally spaced rows of kerfs. Joints between woven structures and hypotubes include solder. Woven structures include patterns of radiopaque filaments measureable under x-ray. Structures are heat treated to include at least shapes at different temperatures. A catheter includes a hypotube including interspersed patterns of longitudinally spaced rows of kerfs. Heat treating systems include a detachable flange. Laser cutting systems include a fluid flow system.




f

3D braided composited tubes with throat sections and manufacture method thereof

A manufacture method of a three dimensional (3D) braided composite tube with a throat section includes: providing an assembled mandrel comprising an upper mandrel and a lower mandrel, and braiding an 3D braided inner layer on the upper mandrel; winding fiber yarns to form a fiber yarn layer over the 3D braided inner layer; tightening the 3D braided inner layer to the assembled mandrel by an appropriate tension force when winding; and infiltrating resin and increasing temperature to cure the resin for obtaining a composite tube with a narrower throat section. The present invention takes advantage of winding fiber yarn outer layer to keep the radius of the throat of the 3D braided inner layer to meet design requirement. Additionally, the hoop strength of the throat section is increased so that the metal shell can be made thinner to reduce the weight of the rocket nozzle.




f

Braiding mechanism and methods of use

A tubular braid and mechanisms for forming the braid are described. The mechanism for braiding includes a disc, a mandrel, a plurality of catch mechanisms, and a plurality of actuators. The disc defines a plane and a circumferential edge. The mandrel extends from a center of the disc and is adapted to hold a plurality of filaments extending radially from the mandrel toward the circumferential edge of the disc. The plurality of catch mechanisms are positioned circumferentially around the edge of the disc and are adapted to engage a filament. The plurality of actuators are configured to move relative to one another and are adapted to move the plurality of catch mechanisms in a substantially radial direction relative to the circumferential edge of the disc.




f

Braiding mechanism and methods of use

Devices and methods for forming a tubular braid comprising a plurality of filaments. The braiding machine includes a circular array of filament guiding members defining a plane; a mandrel defining an axis and adapted to carry one or more filaments extending from the mandrel to the circular array; a plurality of filaments extending from the mandrel in a radial array; a plurality of actuator mechanisms disposed operably about the disc; and a rotating mechanism adapted to rotate one or more filaments. The actuator mechanisms and rotating mechanism are configured to move each of the one or more filaments about the mandrel axis in a path comprising a series of arcs and radial movements. The braiding machine may alternately first and second annular members, a mandrel, first and second plurality of tubular wire guides, and a plurality of wires extending from the mandrel.




f

Braiding mechanism and methods of use

Devices and methods for forming a tubular braid comprising a plurality of filaments. The method for braiding includes the step of loading a plurality of filaments on a mandrel and extending the filaments radially from the mandrel, the plurality of filaments have a first subset and a second subset. Tension is applied to the plurality of filaments using a weight attached to each filament. The first subset of the plurality of filaments is engaged, moved circumferentially relative to the second subset, and then released. The second subset of filaments is then engaged and moved circumferentially relative to the first subset of filaments, such that a tubular braid of filaments is formed.




f

Process for manufacturing a mechanical member made of a composite having increased mechanical strength

A method of fabricating a mechanical member for aircraft, including a plurality of operations of braiding and depositing layers of braided reinforcing fibers on a mandrel (11) by using braiding machine. Each operation comprises braiding a braided layer and depositing it by moving the mandrel (11) along a central axis of the braiding machine. Each of the various superposed braided layers comprises both longitudinal fibers (12, 12G) that are parallel to a main direction of the mandrel (11), and interlacing fibers that are inclined. At least one operation is configured to form and deposit a braided layer having, in at least one cross-section of the member, a density of longitudinal fibers that differs depending on whether consideration is given to one angular region (S1) or another angular region (S2) of the same extent around the center of gravity (G) of the mandrel (11) in the section under consideration.




f

Synthetic rope for powered blocks and methods for production

Disclosed is a method for producing a high strength synthetic strength member (7) containing rope (1) capable of being used with powered blocks where such rope has lighter weight and similar or greater strength than steel wire strength member containing ropes used with powered blocks. Disclosed also is the product resulting from such method. The product includes a synthetic strength member, a first synthetic portion (9) and a second synthetic portion. The first synthetic portion is enclosed within the strength member and the second synthetic portion is situated external the strength member. At least a portion of the second synthetic portion also is situated internal a sheath (8) formed about the strength member. The second synthetic portion has a minimal of 8% at a temperature of between negative 20 and negative 15° C.




f

Methods of manufacturing flow diverting devices

Vascular treatment and methods include a plurality of self-expanding bulbs and a hypotube including interspersed patterns of longitudinally spaced rows of kerfs. Joints between woven structures and hypotubes include solder. Woven structures include patterns of radiopaque filaments measurable under x-ray. Structures are heat treated to include at least shapes at different temperatures. A catheter includes a hypotube including interspersed patterns of longitudinally spaced rows of kerfs. Heat treating systems include a detachable flange. Laser cutting systems include a fluid flow system.




f

Methods of manufacturing variable porosity devices

Vascular treatment and methods include a plurality of self-expanding bulbs and a hypotube including interspersed patterns of longitudinally spaced rows of kerfs. Joints between woven structures and hypotubes include solder. Woven structures include patterns of radiopaque filaments measureable under x-ray. Structures are heat treated to include at least shapes at different temperatures. A catheter includes a hypotube including interspersed patterns of longitudinally spaced rows of kerfs. Heat treating systems include a detachable flange. Laser cutting systems include a fluid flow system.




f

Energy-absorbing textile structure, in particular for use in vehicle construction and method for producing said structure

Energy-absorbing textile structure, in particular for use in vehicle construction, which has high-tensile yarns for absorbing force, is formed by a braided fabric (2) with standing ends (3) in the force input direction and in that the textile structure has at least one region (4) with local modification of the fiber structure (2, 3).




f

Cables with intertwined strain relief and bifurcation structures

An electrical device such as a headset may have a cable. Wires in the cable may be used to connect speakers in the headset to a connector such as an audio jack. The cable may have a tubular intertwined cable cover that covers the wires. Computer-controlled servo motors in fiber intertwining equipment may be adjusted in real time so that intertwined attributes such as intertwining density and intertwining tension are varied as a function of length along the intertwined cable cover. The fiber intertwining equipment may make these variations to locally increase the strength of the intertwined cable cover and the cable in the vicinity of a bifurcation in the cable and in the vicinity of the portion of the cable that terminates at the audio jack.




f

Methods of using non-cylindrical mandrels

Methods of forming a structure for treating a vessel include providing a mandrel and braiding a plurality of filaments around the mandrel. The mandrel may include a strand having a longitudinal axis and a plurality of balls coupled to the strand along the longitudinal axis. Pairs of the plurality of balls may be spaced along the longitudinal axis. Braiding the plurality of filaments around the mandrel may include, during braiding, forming a plurality of bulbs around the plurality of balls and forming necks between pairs of the plurality of balls. The methods may include, after braiding the plurality of filaments, heat treating (e.g., shape setting) the plurality of filaments on the mandrel. Portions of the braided plurality of filaments may be secured to the mandrel, for example using bangles, wire, and/or adhesive.




f

Protective sleeve for motor component and method for manufacturing same

The protective sleeve for a motor component of the present invention is obtained by braiding multifilament yarns made of synthetic fibers into a cylindrical braided cord of at least 24 strands. The multifilament yarns have a single-yarn fineness of at least 15 dtex but less than 30 dtex and the yarn total fineness of a single braid unit of the braided cord is in the range of 800 to 1500 dtex. This protective sleeve has good covering properties and few voids. Therefore, a protective sleeve for a motor component is provided that has high partial discharge characteristics (electrical insulation performance) and good electrical insulation properties even when a step of washing away the raw yarn oil solution applied to the filaments was omitted.




f

Braided tube to braided flat to braided tube with reinforcing material

A continuous braid structure has one or more first braid sections, each having a respective single flat braid or a respective single tubular braid. A plurality of second braid sections each have at least two flat braids with a gap between them. The second braid sections alternate with the one or more first braid sections. The adjacent first and second braid sections are continuous with each other. A length of material extends through the respective gap of at least one of the one or more second braid sections, so the length of material crosses one or more times between a first side of the continuous braid and a second side of the continuous braid.




f

Method for braiding reinforcing fibers with variation in the inclination of the braided fibers

A method of braiding reinforcing fibers on a mandrel (8) with a machine having a ring (9) carrying at least two series of reels of fibers, by moving the mandrel at a predetermined forward speed while moving the two series of reels along the ring (9) so that they cross while rotating in opposite directions and at a predetermined speed of rotation about an axis (AX) of the ring. The braid is formed on the mandrel (8) in the vicinity of a region of convergence (R) of the fibers that together define a conical shape (C). The method comprises: a step of reconfiguring the machine in which the angle (a2) at the apex of the cone (C) defined by the fibers takes on a new value (a2); and a step of restarting braiding in which the movement of the reels along the ring (9) and the forward movement of the mandrel (8) are re-established with a new speed of rotation and a new speed of advance.




f

Cut-resistant jacket for tension member

A rope having a cut-resistant jacket which includes a core comprised of a plurality of sub-ropes. The sub-ropes may be in a parallel strand configuration. The sub-ropes and the strands thereof may be made of fibers of a synthetic material, such as polyester, nylon, polypropylene, polyethylene, aramids, or acrylics. A cut-resistant jacket surrounds the core and is made from a material that has increased strength and/or abrasion resistance over the material of the core. The cut-resistant jacket may comprise steel wires and may further comprise braided steel wires or rope. The braided steel wires or rope may be covered with a plastic material for increased corrosion resistance. A filter layer may be disposed between the core and the cut-resistant jacket and may be wrapped around an outer surface of the core prior to the cut-resistant jacket being formed.




f

Medical implant and method for producing medical implant

The invention relates to a medical implant, particularly a stent, having a wall (11) braided out of multiple wires (10a, 10b) said wall extending along a longitudinal axis L and curving around the longitudinal axis L at least in sections, wherein in each case at least two wire ends (12) of the wires (10a, 10b, 10c, 10d) are connected to at least two first braid ends (13a, 13b) forming a first circumferential section (16a) of the wall (11) extending around the longitudinal axis L. The invention is characterised in that in each case at least two first braid ends (13a, 13b) are connected to one or more second braid ends (14a, 14b), wherein the second braid ends (14a, 14b) form a second circumferential section (16b) of the wall (11) extending around the longitudinal axis L and following the first circumferential section (16a) in sequence in the longitudinal direction or the second braid ends (14a, 14b) are arranged in the circumferential direction U of the wall (11).




f

Method for manufacturing exhaust connection member with preformed braided cover

An exhaust connection coupler and a method for manufacturing a braid cover incorporated therein are provided. The method of manufacturing comprises the steps of providing a tubular sleeve formed of braided wire filaments and forming at least one end of the sleeve into shape using a forming die such that the at least one end of the cover includes a circumferential neck portion having a diameter smaller than the diameter of a body portion of the cover. In the method, the sleeve may be pressed between male and female forming dies in order to create the cover's desired shape, which can include a shoulder extending radially outwardly from the cover's neck portion and meeting the cover's body portion at a corner.




f

Method of manufacturing corrugated preform using braiding process

A method of manufacturing a corrugated preform that allows a fiber volume fraction and an orientation angle to be substantially the same at a concave portion and at a convex portion when the corrugated preform is manufactured based on a braiding process. The method includes braiding a composite material corresponding to an outer diameter of a cylindrical cylinder shape, braiding the composite material by connecting a plurality of separate composite materials to one side of the braided composite material, and braiding the composite material to one side of the separate composite material corresponding to the outer diameter of the cylindrical cylinder shape.




f

System and method for vehicle communication, vehicle control, and/or route inspection

In a system and method for communicating data in a locomotive consist or other vehicle consist (comprising at least first and second linked vehicles), a first electronic component in the first vehicle of the vehicle consist is monitored to determine if the component is in (or enters) a failure state. In the failure state, the first electronic component is unable to perform a designated function. Upon determining the failure state, data is transmitted from the first vehicle to a second electronic component on the second vehicle, over a communication channel linking the first vehicle and the second vehicle. The second electronic component is operated based on the transmitted data, with the second electronic component performing the designated function that the first electronic component is unable to perform.




f

Method and instrumentation for detection of rail defects, in particular rail top defects

Method and instrumentation for detection of rail defects, in particular rail top defects, in a railway-track by measuring an axle box acceleration signal of a rail vehicle, wherein a longitudinal axle box acceleration signal is used as a measure to detect the occurrence of said rail defects. The method also includes measuring a vertical axle box acceleration signal of said rail vehicle, whereby the longitudinal axle box acceleration signal is used in combination and simultaneously with said vertical axle box acceleration signal. It is preferred that the longitudinal axle box acceleration signal is used to remove from said vertical axle box acceleration signal a signal-part that relates to vibrations of the rail vehicle's wheel set, including the bearing and axle box, and that the axle box acceleration signals are filtered for removing signal-parts contributed by vibrations of the track, including the rail, rail pads, fasteners, sleepers, and ballast.




f

Train signaling system and method for detecting distance-to-go of a train

A train signaling system, including a traffic signaling chain terminus set up unit configured to set a terminus location of a train running on the track and transmit a wireless traffic signal, a plurality of traffic signaling chain relay units installed along the track and configured to forward the wireless traffic signal and allow the wireless traffic signal to form a traffic signaling chain comprising distance-to-go information of the train, and a traffic signaling chain detection unit configured to allow the train to achieve the receipt of the information on the traffic signaling chain and calculate the distance-to-go of the train. A method for detecting distance-to-go of a train is also provided.




f

System and method for automated locomotive startup and shutdown recommendations

Data representative of a train consist (the train consist comprising a plurality of locomotives and a plurality of cars) and data representative of a route for the train consist can be processed by a processor to automatically determine which locomotives in the train consist should be powered on and which locomotives in the train consist should be shut down for each segment of the route. The processor can make these determinations based on an analysis of the train consist data and the route data with respect to a plurality of considerations that affect train efficiency. Recommendations for locomotive startups and shutdowns in accordance with such automated determinations can then be presented to the train crew for the crew to use during train operations. It is believed that when train crews are in compliance with such recommendations, significant improvements in efficiency, particularly with respect to fuel consumption, can be achieved.




f

Automated calibration method for a dragging equipment detector

A method for calibrating a moving object impact detector is disclosed. A controller may receive input indicative of movement of an impact element from a first position to a second position. The controller may also receive an activation signal corresponding to the movement of the impact element. The controller may further receive input indicative of instructions to correlate the activation signal with the movement of the impact element. The controller may selectively set the activation signal as a reference signal for the detector, with the reference signal being indicative of an impact the moving object impact detector is set to detect.




f

Vehicle coupling fault detecting system

A vehicle coupling fault detecting system is disclosed. The system may include first and second selectively-pressurized fluid conduits containing first and second communication cables that are communicatively coupled when the first and second fluid conduits are connected together. A pressure sensor may detect a pressure within the fluid conduits when the conduits are connected together, and communicate a signal indicative of the pressure through at least one of the first and second communication cables. A controller may receive the signal and determine from the signal whether there is a fault in the connection between the first and second selectively-pressurized fluid conduits.




f

Systems and methods for determining route location

A system includes a communication module and a determination module. The communication module is configured to be located onboard a vehicle configured to travel along a route including plural sub-routes. The communication module is configured to receive route occupancy information from an off-board wayside module disposed along the route. The route occupancy information corresponds to a presence or absence of vehicular traffic on each sub-route within a range of a route detection system operably coupled to the wayside module. The determination module is configured to be located onboard the vehicle, and to obtain position information from one or more onboard detection units disposed onboard the vehicle. The determination module is configured to determine a particular sub-route on which the vehicle is disposed using a comparison of the position information obtained from the one or more onboard detection units and the occupancy information received from the off-board wayside module.




f

Wayside measurement of railcar wheel to rail geometry

Considerable damage to rails, wheels, and trucks can result from geometric anomalies in the wheelsets, rails, and truck hardware. A solution for identifying and quantifying geometric anomalies known to influence the service life of the rolling stock or the ride comfort for the case of passenger service is described. The solution comprises an optical system, which can be configured to accurately perform measurements at mainline speeds (e.g., greater than 100 mph). The optical system includes laser line projectors and imaging cameras and can utilize structured light triangulation.




f

Train end and train integrity circuit for train control system

A train system that includes a plurality of train units including a first train unit and second train unit coupled together. Each first and second train unit includes a controller configured to detect a change in train configuration of the train units, and comprising a plurality of inputs; train integrity signal lines spanning each train unit and coupled with the controller at the plurality of inputs and configured to transmit signals between a front end and a rear end of the train system, the signals indicating a status of train integrity of the train system; and a plurality of relays in communication with the controller, and configured to indicate a coupling or non-coupling status of each train unit.




f

Method and apparatus for positioning a rail vehicle or rail vehicle consist

A tower control system, under an indexing mode of operation, receives a first signal from rail yard equipment. In response to the first signal, the tower control system establishes a positioning mode of operation. Under the positioning mode of operation, and in response to actuation of an interface of the tower control system, the tower control system sends a second signal to a lead powered rail vehicle of a consist. The second signal includes a first command to adjust a throttle setting of the lead powered rail vehicle, along with a second command to idle a throttle of any remote powered rail vehicle of the consist.




f

Device for automatically controlling signals and multiple trans traveling on the same track

An electrical device not only controls train signals as trains advance, but also alters the voltage in the tracks leading up to the signals so that the trains will actually stop at a red signal, slow at an amber aspect and continue on at full speed when the signal is showing green. The electrical device of the present invention can change the “block signal” from “green” to “red”, thereby signaling the engineer behind the train to come to a stop. In addition, the electrical device can simultaneously change the voltage in the tracks to stop the approaching train at the red signal. Only when the forward train has cleared will the approaching train get a clear signal and voltage to resume its forward progress.




f

Method of detecting and signalling a hot box condition

A method of detecting and signaling a hot box condition on a rail vehicle comprising the steps of acquiring temperature data from undercarriage components of the rail vehicle through temperature sensors provided in hot box detection devices; relaying temperature data through a wireless network of the hot box detection devices to a data recorder.




f

Method to replace an instrument case and replacement case therefor

A method designed to replace a compromised instrument case with a new case without the need to disconnect any wire, relay or any other electric equipment is described herein. The instrument panel is supported for example by a temporary support frame during the dismantling of the old case and the assembly of the new case. The new case is therefore assembled on site around the instrument panel. The new instrument case includes a floor which is made of at least two parts, one on each side of the wiring. The instrument case therefore remains in a normal working mode during the entire replacement procedure thus preventing downtime. As well, the amount of manpower required for the replacement of an instrument case is drastically reduced.




f

Wireless video for model railroad engines providing an engineer's view

An Engineer's View (EV) wireless video system for powered and unpowered model railroad engines is disclosed. The invention uses commercially available wireless spy cameras, powered by a custom power supply circuit which is compatible with either DC or DCC track systems. The present invention is compatible with all commercial model railroad gauge diesel engines including HO and N Gauge or may be factory installed. The EV system demonstrates a remarkably stable and realistic image of a model railroad layout. Moreover, the present invention may also provide a stable source of power to the engine where stalling could occur at points of track defects.




f

Method for improving operation density of rail vehicles and preventing head-on collision and rear-ending collision

The present invention provides a method for improving operation density of rail vehicles and for preventing head-on collision and rear-ending collision. Said method divides a rail line into equidistant electronic zones, the length of a zone being greater than the shortest safe distance between two running vehicles. Said method installs a locomotive passing detection alarm device in each zone, when a locomotive travels at high speed on the rail, the locomotive passing detection alarm device corresponding to the zone occupied by the locomotive itself will simultaneously access adjacent front and back zones, and determine whether the two adjacent zones are simultaneously occupied by locomotives. If the two adjacent. zones are simultaneously occupied by locomotives, the locomotive passing alarm device will send an alarm signal to the locomotives to warn or otherwise take measures. The aforesaid method can avoid locomotive head-on collision and rear-end collision and increase transportation density according to the vehicle speed and distance at the same time, thus improving the transportation efficiency.




f

On-board device for train control system

An on-board device capable of receiving train control signals from ground-side equipment of train control systems of different types or the like to control the speed of a train and the like appropriately, is provided. An on-board device 10 mounted on a train 1 includes ATC/TD antennas 11a, 11b that receive an ATC signal including train control information from loop coils installed along a route of the train 1, a vehicle radio set 12 that receives a CBTC signal including train control information from wayside radio sets installed along the route, an ATC control unit 141 that controls the train 1 based on the train control information in the ATC signal, a CBTC control unit 142 that controls the train 1 based on the train control information in the CBTC signal, and a selection unit 143 that selects the ATC control unit 141 or the CBTC control unit 142.




f

Electronic condition detection system and method for railcars

A railcar has an on-board system for detecting conditions of the railcar. The on-board system includes a plurality of condition sensors positioned on the railcar. A transceiver is in communication with each of the plurality of condition sensors so as to receive condition data from the plurality of condition sensors. The transceiver transmits the condition data to a receiving station remote from the railcar for review and analysis.




f

Swivel point connector for railroad switches

A mechanism for coupling a switch point to a point detector box having a point detector bar includes a first portion structured to be slidably coupled to the point detector bar and a second portion structured to be slidably coupled to the switch point.




f

1,3,5-triazine derivatives of spiro bicyclic oxalamide-compounds for treatment of hepatitis C

Compounds of Formula I, including pharmaceutically acceptable salts, as well as compositions containing these compounds, have activity against hepatitis C virus (HCV) and may be useful in treating those infected with HCV:




f

Apparatus and method for implementing safe visual information provision

The invention relates to an apparatus and method which allows information representing a state or condition or an action to be performed as part of a control system to be present to one or more users. The information is selected and generated in a manner which removes or at least reduces the risk of potentially catastrophic error occurring which would be possible if, for example, the information is corrupt or lost during subsequent transmission, remote processing and/or displaying. One such use of the apparatus and method of the invention is in relation to transport vehicles and the control of the movement of said vehicles along predefined geographical paths.




f

Railroad signaling and communication system using a fail-safe voltage sensor to verify trackside conditions in safety-critical railroad applications

A method and system for verifying trackside conditions in safety critical railroad applications by reporting the status of trackside signals and switches to a remote train control system. The system comprises at least one sensor for providing trackside conditions electrically connected to a circuit for providing trackside conditions to a railroad, said sensor being powered by voltage applied to the circuit such that the sensor is energized only when said electrical component is engaged. The system and method further comprises a method and system which is failsafe and which enables the control system to independently verify signals from each sensor.




f

Method for operating a railway section and corresponding railway section

A method for operating a railway section that includes section elements, which are each actuated by a processor that is reliable in terms of signaling and cyclically carries out a test routine. A railway section is configured for carrying out the method. In order to save energy and cost, the processor is operated selectively in active mode or sleep mode. From the sleep mode the processor is switched to the active mode for the duration of the test routine by way of a timer logic element that is reliable in terms of signaling.




f

System and method for determining a slack condition of a vehicle system

A method for determining a slack condition of a vehicle system includes determining when each of first and second vehicles reaches a designated location along a route. The method also includes communicating a response message from the second vehicle to the first vehicle responsive to the second vehicle reaching the designated location, calculating a separation distance between the first vehicle and the second vehicle based on a time delay between a first time when the first vehicle reached the designated location and a second time when the second vehicle reached the designated location, and determining a slack condition of the vehicle system based on the separation distance. The slack condition is representative of an amount of slack in the vehicle system between the first and second vehicles.




f

Ground device for train control system

A ground device 1 transmits train control information to an on-board device mounted on a train. The ground device 1 receives a train detection signal (TD signal) from a train with an ATC/TD on-board device mounted thereon through loop coils 21 to 2m, and receives a train position signal from a train with a CBTC on-board device mounted thereon through wayside radio sets 61 to 6n. Based on the input train detection signal and train position signal, the ground device 1 detects the position of each train traveling on a route R, generates control information on each train based on the detected position of each train, and converts the control information to an ATC signal and a CBTC signal. The ATC signal is transmitted to the loop coils 21 to 2m through information transmission units 4, and the CBTC signal is transmitted through the wayside radio sets 61 to 6n.