f

Portable lifting system

A portable lifting system includes a moveable base component including a scissors lift assembly, and a crane assembly coupled the movable base component, the crane assembly including a support member and a boom coupled to the support member.




f

Device and method for mounting and dismantling a component of a wind turbine

The invention relates to a device for mounting and/or dismantling a component (10), in particular a rotor blade of a wind turbine (20) comprising a tower head (21). Said device comprises at least one guide element (30) that stretches between the tower head (21) and the ground (40) and has at least one supporting device (60) that is essentially fixed in the air, supporting at least a partial load of the weight of the component (10) during the transport of the latter (10) between the ground (40) and the wind turbine (20). At least one guy (70) leads from the supporting device (60) to the component (10), whereby the length of said guy between the supporting device (60) and the component (10) can be modified.




f

Device for selecting boom extension pattern

When an extension pattern selection device is activated, a normal mode is displayed on a screen of a monitor. An operator presses a manual mode switch key of an operation unit to switch the display mode of the screen from the normal mode to an extension pattern manual rearrangement mode. In the extension pattern manual rearrangement mode, the operator rearranges extension patterns so that frequently selected extension patterns P may be displayed at upper positions. Thus, the frequently selected extension patterns P are more preferentially displayed than the other extension patterns P.




f

Field adjustable gas valve and method of control

A valve unit includes a valve member that moves relative to a valve seat in response to a magnetic field generated by a coil. An input signal to the coil controls the extent of movement of the valve member relative to the valve seat, to control a gas flow rate therethrough. The gas valve unit also includes a setting adjustment device that provides a setting adjustment input utilized for calibrating or adjusting at least one gas flow rate. A valve controller is configured to receive an activation signal and to responsively send an input signal to the coil to move the valve member and establish at least one desired gas flow rate corresponding to the activation signal, wherein the valve controller is configured to adjust the input signal to the coil based on the setting adjustment input, to thereby enable field adjustment of at least one gas flow rate.




f

Handle mechanism for an HVAC damper actuator

A damper system may include a handle mechanism for use with a damper actuator system. Illustratively, the handle mechanism may include a drive gear mechanism, a handle, a housing, and a spring, and may be actuated to set a crack pressure for the damper system. The handle may connect to the drive gear mechanism at a drive gear arm of the drive gear mechanism and may flip over or about the drive gear arm to move from a first position to a second position. In some instances, once the handle is in the second position, a force may be applied thereto to disengage the drive gear from a stop member and thereafter, the handle may be rotated to change the crack pressure of the damper system.




f

Fire suppression circulation system

An arrangement for testing a fire suppression sprinkler system includes a supply conduit for supplying a fire suppression fluid to a plurality of sprinklers. A sensor senses a flow of fire suppression fluid through the supply conduit. A drain conduit drains fire suppression fluid when the fire suppression system is tested. A drain valve controls the flow of the fire suppression fluid so that when the fire suppression system is tested the fire suppression fluid is controlled to enter the drain conduit. A fire suppression fluid collection tank collects the fire suppression fluid which has entered the drain conduit for reintroducing the collected fire suppression fluid to the supply conduit. A circulation valve controls the flow of the fire suppression fluid so that when the fire suppression system is tested the fire suppression fluid enters the fire suppression fluid collection tank.




f

Shaft sealing device and valve structure using the same

A shaft sealing device switches a sealing state and an unsealing state of a fluid, with high sealing performance maintained, because no abrasion accompanies movement of a sealing material or a sealing member, enabling feeding a fluid at a predetermined flow rate, and adjusts the expanding rate of the sealing material with the quantity of an external electric signal and accordingly adjusts the contact face pressure to enable controlling the amount of leakage of the fluid highly precisely, so that it can be used for all applications. The shaft sealing device includes a shaft sealing body formed of a macromolecular material and made expansible or contractible, or deformable, through external electrostimuli applied to a shaft sealing portion disposed in a device body, and flow passages disposed in the shaft sealing portion for feeding the fluid leaked due to the expansion or contraction, or the deformation, of the shaft sealing body.




f

Fluid coupling

A fluid coupling includes a socket with a socket main body, a fixed valve, a guide which is engaged with the fixed valve and biased to be pressed against an inner surface of the socket main body, and a guide spring which biases the guide, and a plug with a plug main body, a movable valve, a valve spring, and a valve holder which supports the movable valve and the valve spring. When the plug is inserted into the socket, the guide moves rearward against a biasing force of the guide spring to connect a flow path between the plug and the socket. A fitted portion, which is fitted into the distal end of the plug, is disposed at the end portion of the guide. First seal members are disposed between the fitted portion and a distal end of the plug.




f

Distributor device for hydraulic power steering

A rotary distributor device for a hydraulic power steering, which receives oil from a pump and sends the oil selectively to a discharge or to an actuator of the steering in a desired direction, comprises a jacket, a slide, sealedly rotating in the jacket, a series of openings that cross the wall of the jacket, located in front of a series of corresponding openings which cross the wall of the slide, elastic member located between the jacket and the slide configured to maintain the openings of the jacket at the openings of the slide, in which each opening in the jacket includes, in succession starting from the outside, at least one radial hole, a slot lying in a radial plane, arranged symmetrically with respect to the axis of the hole, the width being smaller than the diameter of the hole, and the depth being such as to intersect the hole.




f

Valve cartridge with low point of contact for installation

A one-handle valve cartridge has a low point of contact for installing the valve cartridge in a valve body. A retention nut bears down on the low point of contact to secure the valve cartridge in the valve body.




f

Fluidic impulse generator

A device for vibrating tubing as it is inserted into a wellbore is disclosed. The device has a fluidic switch that has no moving parts. The fluidic switch is connected to a piston that oscillates back and forth in a cylinder. The piston is the only moving part. As the piston oscillates, it blocks and unblocks openings in the cylinder or other components. The movement of the piston controls the timing of the oscillation, and also generates an impulse or vibration. The vibration may reduce the friction between the tubing and the wellbore.




f

Valve for lab-on-a-chip systems, method for actuating and for producing valve

A substrate of a lab-on-a-chip system has two adjacent recesses, one serving as a flow channel and the other one being filled with an elastomer compound. In a first state, the elastomer compound and the substrate delimit the flow channel in a section. In a second state, the elastomer compound takes up the space in the recess in the substrate along a cross-section of the flow channel, thereby completely closing the flow channel. The substrate and the elastomer compound may be produced by injection molding techniques.




f

Valve, fluid control device

In a fluid control device, a check valve includes a first valve housing and a first diaphragm. The first diaphragm defines a first valve chamber and a second valve chamber. An exhaust valve includes a second valve housing and a second diaphragm. The second diaphragm defines a third valve chamber and a fourth valve chamber. The check valve is opened and closed by a difference in pressure between the first valve chamber and the second valve chamber. The exhaust valve is opened and closed by a difference in pressure between the third valve chamber and the fourth valve chamber.




f

Hydraulically powered ball valve lift apparatus and method for downhole pump travelling valves

The Invention provided is a hydraulic powered down hole reciprocating pump traveling valve component to provided lifting hydraulics on the down stroke using the derived motion and pressure of petroleum liquids and gasses, such as oil, water and natural gas and also utilizing the frictional traveling forces driven by the surface equipment. Designed to utilize the elements within the pumping apparatus to obtain the hydraulic power within and transfer the energy's force to the exposed bottom end of the pressure locked traveling ball valve adjacent within the ball valve containment cage, providing ultimate lifting power to open the ball valve on the initiation of the down stroke. The component consist of a Hollow Hydraulic Power Shaft, Hollow Pressure Motion House, and a Fluid Cavity Power Drag Plunger.




f

Method and apparatus for condition monitoring of valve

In the method and apparatus of the invention, the process point is taken into account when the condition and performance of a control valve are monitored. In the condition monitoring of the valve, process measurements are used in addition to measurements inside the valve in such a manner that the process measurements identify the operating point at which the valve operates, and the measurements inside the valve are observed at these operating points to detect changes and to determine the condition of the valve. According to an aspect of the invention, the variables representing the operating point of an industrial process are considered when changes in the friction load of the valve and/or the load factor of the actuator are observed.




f

Flow control device and flow control method

Disclosed herein is an improved method for reversed flow through a self-adjustable (autonomous) valve or flow control device (2), comprising the step of providing an overpressure on the side of the valve (2) opposite of the side of the inlet (10) exceeding a predetermined biasing force of the resilient member (24) causing lifting of the inner body part (4a) within the outer body part (4b) against said biasing force from a first position of fluid flow between an inner and an outer side of the valve (2) via the flow path (11) and to a second position of reversed fluid flow between said inner and outer side through the second flow path (25). An improved self-adjustable (autonomous) valve or flow control device (2) and use of said improved valve or flow control device are also disclosed.




f

Calibration of a chemical dispense system

In one implementation, a method for providing a fluid at a target pressure may include providing a fluid at a velocity to a supply line through a dispenser, measuring a pressure of the fluid flowing through the supply line, comparing the measured pressure with the target pressure, and adjusting the velocity based on the results of the comparison.




f

Inflatable device

An inflatable device is provided, comprising a carcass and an internal air intake mechanism assembly. The carcass defines a surface of the device and surrounds an inner volume of the device, and has an opening. The internal air intake mechanism assembly comprises a primary one way valve mechanism joined to the carcass to cover the opening. The primary one way valve mechanism extends into the inner volume and is configured for enabling air to be directed into inner volume from an environment external to the carcass, while preventing or limiting air flow from the inner to the external environment.




f

Double-handle faucet

The present invention discloses a double-handle faucet, comprising two valve seats, two spools, two inlet pins, two handles, an outlet pipe, a connecting tube, an upper panel, and a lower panel. The double-handle faucet further comprises two semi-cladding members. The two valve seats, the connecting tube, and the two semi-cladding members are all made of a plastic material. Each of the valve seats is provided with an upper annular flange and a lower annular flange. Each of the inlet pins is further provided with a connecting ring. Each of the semi-cladding members comprises two first enveloping parts and a second enveloping part. The two first enveloping parts are located at both sides and correspond to the positions of the valve seats. The second enveloping parts of the two valve seats together cover the outer side of the connecting tube. The two semi-cladding members oppositely cover the outer side of two valve seats to fasten the inlet pin and the valve seats. As compared with the prior art, the present invention not only avoids lead contamination, but also has a low cost.




f

Double-handle faucet

The present invention discloses a novel double-handle faucet comprising two valve seats, two spools, two inlet pins, two handles, an outlet pipe, a connecting tube, an upper panel, a lower panel, a cladding member, and two caps, the two valve seats, the connecting tube, the cladding member, and two caps are all made of a plastic material, each of the valve seats is provided with an upper annular flange and a lower annular flange, each of the inlet pins is further provided with a connecting ring, the cladding member comprises two first enveloping parts and a second enveloping part, the two first enveloping parts are located at both sides and are both provided with a chamber for accommodating the valve seats at respective side, the chamber is provided with a positioning step at the bottom, the connecting ring is abutted against the positioning step, the second enveloping part covers the outer side of the connecting tube, each of the caps is provided with a cover body and a circular engaging edge which is formed along the periphery of the cover body. As compared with the prior art, the present invention not only avoids lead contamination, but also has a low cost.




f

Clamp ring for welded diaphragms

A diaphragm sealed flow cavity comprises a first body comprising a support surface, a diaphragm comprising an outer portion that is joined by a weld to the first body, a clamped portion, and an inner portion that is movable along an axis, with the clamped portion of the diaphragm being compressed between the bearing surface and the support surface. The diaphragm sealed flow cavity may include a cylindrical body having a crimped portion for joining the cylindrical body to the first body. The diaphragm sealed flow cavity may also include a member that applies a live load to the clamped portion of the diaphragm. In the exemplary embodiments, the diaphragm sealed flow cavity may be realized as part of a diaphragm flow control valve having a valve body, diaphragm and a housing.




f

Gas valve and method of control

A stepper-motor gas valve control is disclosed that includes a main diaphragm in a chamber that controllably displaces a valve relative to an opening in response to changes in pressure, to adjust fuel flow through the valve. A servo-regulator diaphragm is provided to regulate flow to the main diaphragm, to thereby control the rate of fuel flow. A stepper motor is configured to move in a stepwise manner to displace the servo-regulator diaphragm, to control fluid flow to the main diaphragm. A controller mounted on the stepper-motor regulated gas valve control receives and converts an input control signal from a heating system to a reference value between 0 and 5 volts, and selects a corresponding motor step value. The control responsively moves the stepper-motor in a step wise manner to displace the servo-regulator diaphragm and thereby regulates the rate of fuel flow through the valve.




f

Relief valve device

The invention allows securing greater discharge pressure and flow rate at high revolutions of an engine in order to secure lubrication and cooling, while reducing discharge pressure and flow rate at low and medium revolutions of the engine in order to improve efficiency. The invention includes a housing; a relief valve; a valve passage; a main discharge flow channel; a main relief flow channel; an auxiliary relief flow channel; a solenoid valve mounted on the auxiliary relief flow channel; and a spring. The solenoid valve is controlled so as to switch between communication and shut-off between the auxiliary relief flow channel and the large-diameter passage section in accordance with an increase or decrease in engine revolutions, and oil in the large-diameter passage section is discharged when the shut-off is implemented.




f

Non-return valve assembly of the pivoting flap type, typically for insertion in floor drains

A valve assembly (10) is to be used in conjunction with a tubular member having an internal surface surrounding a passage into which the valve assembly is to be sealingly inserted. The valve assembly includes a tubular body (25) having a longitudinal passage and an outer surface to be located adjacent the internal surface. A seal (29) is mounted on the outer surface to engage the internal surface to sealingly connect the tubular body with the tubular member. A movable valve member (33) is movable between an open position providing for the flow of water from an upstream end to a downstream end of the passage of the tubular body and a closed position closing the passage. Resilient means, such as a spring (34) urges the valve member to the closed position. The resilient means is configured to provide for displacement of the valve member toward the open position when pressure beyond a predetermined pressure is applied upon the movable valve member.




f

High pressure relief valve spring assembly

In one featured embodiment, a spring assembly for a valve comprises a spring, a spring seat including a cup-shaped portion for seating one end of the spring, and a ball received within a recess formed within the cup-shaped portion of the spring seat. The ball is defined by a ball diameter. A disc prevents the ball from contacting a piston. The disc is defined by an outer diameter and includes a center opening defined by an inner diameter. A ratio of the inner diameter to the ball diameter is between 0.60 and 0.65.




f

Opening degree detection device for automatically operated valve

To provide an opening degree detection device for an automatically operated valve which is easily assembled into an automatically operated valve, makes it easy to ensure detection accuracy at the time of assembling the opening degree detection device, and is easily applicable to an existing automatically operated valve. The opening degree detection device includes: a base plate 4 which is detachably mounted on an automatically operated valve 2; a displacement sensor 5; and a target 6 having an inclined detection surface 6a which is detected by the displacement sensor 5. The target 6 is fixed to the base plate 4. The displacement sensor 5 is supported on a valve stem 14 by way of a sensor support member 21, and the sensor support member 21 is supported on the base plate 4 by way of a guide means.




f

Fluid flow control device having a seat ring retainer

A control valve having a retainer for securing a seat ring within the valve body of the device is disclosed. The seat ring is disposed within a bore in the fluid flow path of the valve body of the control valve, and the retainer is attached to the inner surface of the valve body to retain the seat ring within the bore. The retainer includes threaded openings therethrough for receiving bolts that are tightened down on the seat ring to hold the seat ring against the inner surface of the bore and/or a gasket to form a tight seal and prevent leakage when the control device is in the closed position.




f

Electromagnetic flow controller

Systems, methods and apparatus for providing an electromagnetic flow controller. In one embodiment, an electromagnetic flow controller can have two substrates, a permanent magnet, and two electrical traces. One of the substrates may deflect away from the other substrate upon applying an electrical signal to at least one of the two electrical traces.




f

Vehicle mountable arm for valve operating machine

A valve operating device includes a mounting for attachment to a vehicle and an elongate arm, the free end of which is only moveable across the underlying ground. The joints of the arm pivot around vertical axes and the arm is locked into a desired orientation by a brake at each joint. A valve turning machine is at the free end of the arm. The brakes are engaged and released by a control on the valve turning machine.




f

Fuel transfer system controlled by float valves

A fuel transfer system for an aircraft includes an upper tank, a lower tank, a fuel transfer line connecting the upper tank to the lower tank, an upper fuel transfer line outlet in the lower tank, a lower fuel transfer line outlet in the lower tank, an upper float valve associated with the upper fuel transfer line outlet, and a lower float valve associated with the lower fuel transfer line outlet. The upper fuel transfer line outlet, which is in the lower tank, is in fluid communication with the upper tank. The lower fuel transfer line outlet, which is located in the lower tank, is in fluid communication with the upper tank.




f

Medication safety enhancement for secondary infusion

A system and method determine when fluid is not flowing properly from a secondary infusion source during a secondary infusion. The system includes an upstream pressure sensor and a processor programmed to receive signals from the sensor and analyze the signals to determine if secondary fluid flow is proper. The processor samples the output signals from the upstream pressure sensor and analyzes the sampled signals to determine if a pressure rise in the infusion line has occurred when the secondary infusion is initiated. If a pressure rise, indicating that fluid from the secondary container has begun flowing into the infusion line, has not been detected, the processor is programmed to provide a signal indicating that attention should be given to the infusion set up.




f

Valve box platform

A valve box platform is disclosed. The valve box platform may include a peripheral wall having a receiving surface for receiving a valve box. A first recess may be positioned within the peripheral wall. The first recess may include a knockout portion selectively disclosed therein. The peripheral wall may also include a U-shaped recess having a rounded receiving portion with the U-shaped recess being aligned with the first recess.




f

Plastic composite spring for vehicle suspension and apparatus and method for manufacturing the same

Disclosed is a corrugated plastic composite spring for a vehicle suspension and an apparatus and method for manufacturing the same. The apparatus includes a corrugated extrusion part, a braiding part, and a pultrusion part. The corrugated extrusion part forms a preform having a hollow corrugated structure. The braiding part weaves a three-dimensional woven fabric on the preform. The pultrusion part impregnates the three-dimensional woven fabric with thermosetting resin.




f

Tubular structure and method for making the same

A tubular structure and method for making a tubular structure are provided, where the tubular structure includes at least one layer of braided strands. In general, at least one portion of the braided strands exhibits a braid pattern of crests and troughs (e.g., a wave pattern, which may include sinusoidal, square, and/or sawtooth waves) along a length of the tubular structure. The wave pattern can be created by rotating the mandrel onto which the tubular structure is braided during the braiding process, such as by angularly oscillating the mandrel about its longitudinal axis or about its transverse axis. As a result, the tubular structures may have increased radial strength, collapse resistance, torque transmission, column strength, and kink resistance. The tubular structures may be used in medical devices, such as stent-grafts, as well as in other medical and non-medical devices, such as in hoses, tubing, filters, and other devices.




f

Colored yarn object, process for producing the same, and fishing line

A yarn object which, even though made of ultra-high-molecular-weight polyethylene, can be satisfactorily prevented from color fading caused by contact with other objects or the like, can be produced easily at low cast, and can maintain high strength. The yarn object is colored with a colorant. The yarn object includes a core yarn 2 colored with a predetermined colorant and an outer-layer yarn 3 disposed on the periphery of the core yarn. The outer-layer yarn 3 is disposed in such a manner that the core yarn 2 is prevented from contacting with other objects. The outer-layer yarn 3 includes a transparent filament and a space 4 is formed between the outer-layer yarns 3. The color applied to the core yarn 2 is externally visible through the transparent outer-layer yarn 3 and the space therebetween 4.




f

Coated textile sleeve and method of construction thereof

A textile sleeve and method of construction thereof is provided. The textile sleeve has a water-based, impervious coating for protecting elongate members contained within the sleeve. The sleeve has a flexible, tubular wall of tightly braided yarns with a coating applied thereto to render the wall impervious to fluid. The coating is a water-based coating applied as two distinct, first and second layers. The first, underlying layer includes a dielectric enhancing additive and a thickening agent to enhance the impermeability of the wall. The second, outer layer contains a similar formulation as the underlying first layer, however, it is free of the thickening agent.




f

Method and apparatus for braiding micro strands

A method and apparatus for fabricating microbraided structures is provided. A microbraiding device includes first and second carrier members that are movable with respect to each other. Each carrier includes a plurality of shelters. Spool-less strands of microfiber are retained in shuttles that are movable between the first and second shelters under magnetic forces. The microbraid structure is fabricated as the shuttles move between the first shelters, and as the first carrier member moves relative to the second carrier member.




f

Method for making a composite material, composite material and end product

A method is presented for making a composite material from strips comprising longitudinal fibers and a binder or resin, which material comprises a number of layer assemblies one on top of the other. Each layer assembly comprises m sets (with m at least 2) of parallel strips each extending in a different direction, Each layer assembly is manufactured by successive steps of depositing groups of parallel strips according to a well defined pattern (without longitudinally interweaving strips with previously deposited strips). Before completing a layer assembly, with the exception of the last layer assembly, by depositing its last group of parallel strips, the first group of parallel strips of the following layer assembly is already deposited. A composite material manufactured with such a method is presented too.




f

Braided carbon nanotube threads and methods of manufacturing the same

A braided carbon nanotube thread includes at least three carbon nanotube filaments braided into a thread. The carbon nanotube filaments include a plurality of carbon nanotubes, each of the carbon nanotubes having a length L. The carbon nanotube filaments are braided such that the carbon nanotube thread has at least 8 intersections per the length L of each carbon nanotube. The carbon nanotube thread has a tensile strength greater than the tensile strength of the constituent carbon nanotube filaments.




f

Elastic longitudinal net of a closed periphery, in particular for wrapping up sausage and food products

An elastic longitudinal net (1) for longitudinal food products, especially cold meat products, is formed as a sleeve having at least one longitudinal main warp (21) of a tightening chain weave having at least one substantially inextensible thread (213, 214), and at least one weft (3) having at least one elastic fiber and circumferential sections (31), the ends of which are interweaved substantially perpendicularly between the substantially inextensible fiber and longitudinal sections (32) existing between neighboring circumferential sections (31) and running in a concurrent manner relative to and weaved with at least one main warp (21). The longitudinal sections are interweaved through at least one main warp (21) substantially perpendicularly relative to its longitudinal axis, passing through loops (215, 216) of the at least one substantially inextensible thread (213, 214) of the main warp, forming a serpentine run having at least two external loops (321).




f

Balloon with dividing fabric layers and method for braiding over three-dimensional forms

A medical balloon with a variable diameter that is reinforced with continuous fibers woven to form a fabric with a varying number of layers and fiber densities. Portions of the balloon having a relatively smaller diameter are reinforced with a fabric having a reduced fiber density and an increased number of layers to facilitate the placement of the layers. The fabric also includes a braiding pattern that facilitates the transition from a single layer fabric to a multiple layer fabric. Also described is a manufacturing method for the braiding and layering.




f

Device and method for treating vascular abnormalities

A vascular device is provided that includes a tubular structure and an occluding structure. The tubular structure has inner and outer layers, with the occluding structure located between the inner and outer layers. Each of the inner and outer layers may define a different pick count, and the tubular structure may include a leading edge at a transition between the pick counts. The leading edge may be disposed at the distal end of the vascular device when the device is deployed from a delivery device. Furthermore, the occluding structure may have first and second layers formed by the inversion or eversion of the occluding structure and the subsequent coupling of its free ends to form a continuous structure. Thus, any loose ends may be sealed to minimize unraveling and/or shifting of the occluding structure within the tubular structure. A method of making the vascular device is also provided.




f

Branched stent/graft and method of fabrication

Branched braided stent or graft devices and processes for fabrication of the devices are disclosed in which a trunk portion and two hinge leg portions are fabricated in one piece braided from a single plurality of filaments, whereby the legs contain the full plurality of filaments and the trunk portion contains a subset of the same plurality of filaments. The fabrication process involves braiding the hinged legs on a mandrel while retaining loops of filament between the hinged leg portions for subsequent braiding of the trunk portion of the stent or graft.




f

Preforms, composite components formed therewith, and processes therefor

A three-dimensional preform, composite components formed with the preform, and processes for producing the preform and composite materials. The three-dimensional preform includes first and second sets of tows containing filaments. Each tow of the first set has a predetermined polygonal cross-sectional shape and is embedded within a temporary matrix. The preform is fabricated from the first and second sets of tows, in which the second set of tows are transverse to the first set of tows, adjacent tows of the second set are spaced apart to define interstitial regions therebetween, and the polygonal cross-sectional shapes of the first set of tows are substantially congruent to the cross-sectional shapes of the interstitial regions so as to substantially fill the interstitial regions.




f

Self-expanding pseudo-braided intravascular device

A self-expanding, pseudo-braided device embodying a high expansion ratio and flexibility as well as comformability and improved radial force. The pseudo-braided device is particularly suited for advancement through and deployment within highly tortuous and very distal vasculature. Various forms of the pseudo-braided device are adapted for the repair of aneurysms and stenoses as well as for use in thrombectomies and embolic protection therapy.




f

Toothed cable, cable device provided with a toothed cable, and system for moving a moving object, said system provided with a toothed cable

A toothed cable is provided in which a strand can be securely joined to a core cable while maintaining flexibility of the strand. The toothed cable includes the core cable, a wire disposed spirally around the core cable at a fixed pitch, and the strand having a core thread and piles fixed to the core thread, the strand being disposed spirally along a groove having side walls and a bottom formed by the wire and the core cable. The toothed cable is obtained by a manufacturing method of disposing a meltable filament thread in the groove, disposing the strand in the groove with tension after the filament thread is disposed, melting the filament thread after the strand is disposed, and joining the strand to the core cable by solidifying the melted filament thread.




f

Braiding device for catheter having acuately varying pullwires

A braider for braiding wires to a tube comprising an iris assembly having stacked iris plates. Each of the iris plates includes a center aperture, a wire orifice disposed radially outward from the center aperture, and an arcuate channel. The iris plates are rotatable relative to each other to adjust a circumferential orientation of the wire orifices relative to each other. The arcuate channel(s) of each respective iris plate is coincident with the wire orifice(s) of the remaining iris(es). The braider comprises a feeder assembly configured for advancing the tube through the center apertures, and advancing the wires through the respective wire orifices. The braider further comprises a braiding assembly configured for braiding a plurality of filaments around the tube and the plurality of wires as they are fed through the iris assembly, thereby creating a braided tube assembly.




f

Atraumatic stent and method and apparatus for making the same

A method of braiding a stent includes braiding a number of elongate filaments around a mandrel using tensioned braiding carriers without spooling the filaments to the tensioned braiding carriers to form a braided stent having atraumatic ends.




f

Composite material, composite part and methods for making such

A composite material comprising a plurality of fiber tape strips woven or braided together. Each of the plurality of fiber tape strips is made of a single layer of unidirectional fibers. The fibers are at least partially embedded in a thermoplastic matrix. A tubular composite part is made from this composite material and of an internal film. A method of manufacturing the composite material comprises weaving or braiding the fiber tape strips, especially in the form of a tube. A method of manufacturing a composite part comprises pressurizing the film inside the tube while heating both the tube and the film up to their forming temperature so as to bond the film to the woven fiber tape strips.




f

Braided prosthetic sockets with attachment plates and methods of manufacture

This invention provides new above knee (AK) and below the knee (BK) prosthetic sockets and implements specific manufacturing processes for the production of prosthetic sockets through the automated, computer controlled bi-axial and tri-axial braiding of sockets, over a mold or mandrel made of carved foam, plaster material or wax that is a replica of the patient's truncated limb, and is created by a Computer Aided Design (CAD) file controlling a Numerically Controlled (CNC) machine tool. This method of manufacture using aerospace fibers such as graphite or Kevlar, and high performance resins, is used to create a socket which is stronger and lighter weight than conventionally manufactured sockets. Braiding also allows incorporation of woven cloth, tapes and other reinforcements into the braiding process for added strength at selected areas. The method dramatically decreases the production time and cost of the prosthetic relative to conventional methods.