ue

Apparatus and method for sequentially anchoring multiple graft ligaments in a bone tunnel

An apparatus for anchoring at least two graft ligaments within a longitudinal bone tunnel includes a longitudinal sleeve having at least two ligament-contacting surfaces located in lateral opposition to a sleeve inner lumen. The sleeve is configured for at least partial insertion into the bone tunnel with each graft ligament positioned laterally adjacent a different ligament-contacting surface and at least partially located between the bone tunnel and the sleeve. An actuating member has proximal and distal actuating member ends. An asymmetrically offset profile is defined by the sleeve and/or the actuating member. The asymmetrically offset profile has engagement thresholds. The actuating member is inserted into the sleeve to cause frictional engagement of each graft ligament with both the bone tunnel and at least one ligament-contacting surface, the frictional engagement of each graft ligament being temporally spaced apart from the frictional engagement of at least one other graft ligament.




ue

RoCE packet sequence acceleration

A method, network device and system for remote direct memory access (RDMA) over Converged Ethernet (RoCE) packet sequence acceleration are disclosed. The network device comprises one or more functionality components for communicating with a host system. The host system is configured for implementing a first set of functionalities of a network communication protocol, such as RoCE. The one or more functionality components are also operable to implement a second set of functionalities of the network communication protocol.




ue

Gain calibration technique for digital imaging systems

A computer-implemented method for gain calibration is provided. The method includes sorting the calibration data of each pixel location from the offset-corrected X-ray image data into a sequence. The method also includes removing part of the calibration data from one end or both ends of the respective sequence for each pixel location. The method further includes averaging the calibration data remaining within each respective sequence to obtain an average pixel value for each pixel location. The method yet further includes generating a gain map based on the average pixel value for each pixel location.




ue

System and method for teaching injection techniques of the human head and face

An anatomical model assembly of the human head for use in teaching medical personnel. The anatomical model has an inner base that is shaped as part of the human skull. A first layer of material covers the base. The first layer of material provides a visual indication of at least some muscle groups contained within a human head. A second layer of material is provided that covers the first layer. The second layer of material has an exterior that is shaped with at least some human facial features. The second layer of material and the first layer of material are separate, unattached layers. The material selected for the first layer mimics the suppleness of muscle. The material selected for the top second layer mimics the feel and elasticity of skin. The result is an anatomical model that can be used to accurately teach, plan and practice medical procedures.




ue

Generating sentence completion questions

The subject disclosure is directed towards automated processes for generating sentence completion questions based at least in part on a language model. Using the language model, a sentence is located, and alternates for a focus word (or words) in the sentence are automatically provided. Also described is automated filtering candidate sentences to locate the sentence, filtering the alternates based upon elimination criteria, scoring sentences with the correct word and as modified the alternates, and ranking the alternates. Manual selection may be used along with the automated processes.




ue

Carrier frequency offset compensation apparatus and associated method

A carrier frequency offset compensation method for a communication system is provided. The method includes: mixing, filtering and interpolating an input signal according to a mixing parameter, a first filtering parameter and a first interpolation parameter, respectively, to generate a processed result; calculating a carrier frequency offset estimation value of the input signal according to the processed result; adjusting the mixing parameter according to the carrier frequency offset estimation value; and mixing, filtering and interpolating the input signal according to the adjusted mixing parameter, a second filtering parameter and a second interpolation parameter, respectively. The first interpolation parameter is associated with a cut-off frequency corresponding to the first filtering parameter.




ue

Radio frequency (RF) receivers with whitened digital clocks and related methods

Radio frequency (RF) receivers having whitened digital clocks and related methods are disclosed. Disclosed embodiments generate whitened clocks having random variations that are used to operate digital processing blocks so that interference created by the whitened clocks is seen as white noise within the received RF signal spectrum. RF input signals are received by RF front-ends (RFFEs) that output analog signals associated with channels within the RF input signals. These analog signals are converted to digital information and processed by digital receive path circuitry that outputs digital data associated with the channel. The digital receive path circuitry includes a whitened clock generator that generates a whitened clock having random variations and which a digital processing block that operates based upon the whitened clock. Further, the RFFE and the digital receive path circuitry are located within a single integrated circuit.




ue

Very low intermediate frequency (VLIF) receiver and method of controlling a VLIF receiver

A very-low intermediate frequency (VLIF) receiver and a method of controlling a VLIF receiver. The method comprises receiving a first signal, the first signal including one or both of an on-channel signal portion and an adjacent channel interferer (ACI) portion; determining that the first signal includes a portion having a strength that is above a threshold; in response to determining that the first signal includes a portion having a strength that is above the threshold, estimating one or more IQ imbalance parameters for at least a portion of the first signal; and compensating for an IQ imbalance in at least the portion of the first signal using the one or more IQ imbalance parameters.




ue

Wideband multi-channel receiver with fixed-frequency notch filter for interference rejection

A wideband multi-channel receiver comprises an antenna configured to receive a radio frequency band. A band-pass filter is in signal communication with the antenna, and a low-noise amplifier is in signal communication with the band-pass filter. A mixer is in signal communication with the low-noise amplifier and is configured to translate a radio frequency band to an intermediate frequency (IF) band. A tunable local oscillator is in signal communication with the mixer. At least one fixed-frequency notch filter is in signal communication with the mixer, with the notch filter configured to reject at least one interference signal in the IF band while passing remaining signals in the IF band. An analog-to-digital converter is in signal communication with the notch filter and is configured to convert the remaining signals in the IF band to digital signals.




ue

Data transmission apparatus having frequency synthesizer with integer division factor, corresponding method, and data transmission system

A data transmission apparatus disposed within two network layers operative at different data rates is provided. The data transmission apparatus is coupled to a clock generator which provides a reference clock for a lower network layer and is coupled to a frequency synthesizer with an integer division factor that generates a divided clock for an upper network layer according to the reference clock and the integer division factor. The data transmission apparatus includes a first processing circuit and a second processing circuit. The first processing circuit corresponding to the upper network layer receives and transmits data by using the divided clock as its operation frequency. The second processing circuit corresponding to the lower network layer receives and transmits data from the first processing circuit by using the reference clock as an operation frequency for encoding data. The divided clock is generated from the frequency synthesizer with the integer division factor.




ue

System and method for blind frequency recovery

Described herein are systems and methods for accurately estimating and removing a carrier frequency offset. One exemplary embodiment relates to a system comprising a frequency offset detection circuit detecting a carrier frequency offset in an optical signal, and a frequency testing circuit calculating an estimated frequency offset value of the carrier frequency offset, wherein the frequency testing circuit removes a carrier phase based on the estimated frequency offset value and recovers the optical signal. Another exemplary embodiment relates to a method comprising detecting a carrier frequency offset in an optical signal, calculating an estimated frequency offset value of the carrier frequency offset, removing a carrier phase based on the estimated frequency offset value, and recovering the optical signal.




ue

Techniques for navigation among multiple images

Aspects of the disclosure relate generally to providing a user with an image navigation experience. In order to do so, a reference image may be identified. A set of potential target images for the reference image may also be identified. A drag vector for user input relative to the reference image is determined. For particular image of the set of target images an associated cost is determined based at least in part on a cost function and the drag vector. A target image is selected based on the determined associated costs.




ue

High frequency switch

There is provided a high frequency switch having a reduced circuit scale while maintaining satisfactory harmonic characteristics in a transfer path of a high frequency signal. The high frequency switch includes: at least one transmission port; at least one reception port; a common port; transmission side series switches each including a body contact type FET; transmission side shunt switches each including a body contact type FET; reception side series switches each including a body contact type FET; and reception side shunt switches each including at least one floating body type FET.




ue

Frequency-tunable filter

A frequency tunable filter is disclosed. The frequency tunable filter includes a filter unit that can tune a frequency band of a frequency signal being filtered, a communication module that receives a control signal for controlling the tuning of the frequency band, and a control unit that controls the tuning of the frequency band based on the control signals. The disclosed filter can control the tuning of the filter's frequency band wirelessly.




ue

Attenuation reduction control structure for high-frequency signal transmission lines of flexible circuit board

An attenuation reduction control structure for high-frequency signal transmission lines of a flexible circuit board includes an impedance control layer formed on a surface of a substrate. The impedance control layer includes an attenuation reduction pattern that is arranged in an extension direction of the high-frequency signal transmission lines of the substrate and corresponds to bottom angle structures of the high-frequency signal transmission lines in order to improve attenuation of a high-frequency signal transmitted through the high-frequency signal transmission lines. An opposite surface of the substrate includes a conductive shielding layer formed thereon. The conductive shielding layer is formed with an attenuation reduction pattern corresponding to top angle structures of the high-frequency signal transmission lines.




ue

High frequency electronic component

An electronic component includes: a first circuit connected to a first common terminal for inputting/outputting a first signal set, a second common terminal for inputting/outputting a second signal set having a frequency higher than the first signal set, and a third common terminal for being connected to an antenna; and a second circuit connected in parallel to the first circuit between the first and second common terminals, wherein the first circuit includes a first filter transmitting the first signal set and reflecting the second signal set, and a second filter transmitting the second signal set and reflecting the first signal set, the third common terminal is located between the first and second filters, and the second circuit reflects a first transmission signal and a second transmission signal, transmits parts of the first and second transmission signals, and inverts phases of the parts of the first and second transmission signals.




ue

Minimal intrusion very low insertion loss technique to insert a device to a semi-rigid coaxial transmission line

A signal conditioning apparatus can include a coaxial cable having at least one slot formed therein. A conductive film can be applied to the coaxial cable so as to cover each slot. A device mounting surface can be formed within the slot and a protection device can be mounted on the device mounting surface. A housing consisting of one or more interlockable portions can be coupled to the coaxial cable.




ue

Systems and methods for determining cell capacity values in a multi-cell battery

Systems and methods to determine cell capacities of a vehicle battery pack. Cell capacities may be determined using state of charge (SOC) estimates for the cells and a charge count for the battery pack. The SOC estimates may be determined when the SOC of the battery pack is below a lower threshold and above an upper threshold. Error values may also be generated for the cell capacity values.




ue

Battery fuel gauge apparatus

A battery fuel gauge apparatus comprises a current amplifier formed by a first transistor and a second transistor. Both transistors operate in the same operation conditions except that the second transistor has a smaller channel width in comparison with that of the first transistor. The first transistor is connected in series with a battery pack. The second transistor is connected in series with a sensing device. The sensing device comprises a first resistor and a second resistor connected in series. The first resistor has a positive temperature coefficient and the second resistor has a negative temperature coefficient.




ue

Method and device for primary frequency regulation based on bang-bang control

The present invention provides a method and a device for primary frequency regulation based on bang-bang control, the method comprises: obtaining in real-time a power grid frequency of a steam turbine generator set; performing a subtraction operation on a rated power grid frequency and said power grid frequency to generate a power grid frequency difference; performing a dead zone process on the power grid frequency difference according to a dead zone fixed value to generate a frequency difference; performing a frequency difference compensation operation on the frequency difference to generate a frequency difference compensation instruction; and combining an original primary frequency regulation output instruction with the frequency difference compensation instruction and outputting the result to a steam turbine speed regulation system when a selecting switch is 1.




ue

Heater for liquefied petroleum gas storage tank

A catalytic tank heater includes a catalytic heating element supported on an LPG tank by a support structure that holds the element in a position facing the tank. Vapor from the tank is provided as fuel to the heating element, and is regulated to increase heat output as tank pressure drops. The heating element is internally separated into a pilot heater and a main heater, with respective separate fuel inlets. The pilot heater remains in continual operation, but the main heater is operated only while tank pressure is below a threshold. Operation of the pilot heater keeps a portion of the catalyst hot, so that, when tank pressure drops below the threshold, and fuel is supplied to the main heater, catalytic combustion quickly expands from the area surrounding the pilot heater to the remainder of the catalyst.




ue

Ultra low NOx burner using distributed direct fuel injection

A burner box includes a housing, a fuel tube and a porous heat dissipating surface. The housing is bounded by a sidewall and has a top and an opposite bottom that are each open so that the sidewall defines an open passage that allows unimpeded vertical airflow. The fuel tube extends into the passage and defines a plurality of spaced apart orifices that distribute fuel into the open passage. The fuel tube is at a distance from the top of the housing so that substantially all of the fuel is entrained by the combustion air before the fuel reaches the top. The heat dissipating surface is disposed across the top of the housing and supports a flame. The heat dissipating surface includes enough open area so that the fuel/air mixture passes through the porous heat dissipating surface unimpeded. The heat dissipating surface dissipates heat from the flame and prevents flashback.




ue

Simultaneous winding of tissue webs

A system and process is described for producing spirally wound products. According to the process of the present disclosure, two or more webs are conveyed together in a superimposed relationship. The webs are then separated such that one web goes to a first winding module while a second web goes to a second winding module, etc. In this manner, at least two spirally wound products can be produced simultaneously. The process and system of the present disclosure are particularly well suited for processing tissue webs, such as paper towels and bath tissue. The process of the present disclosure can effectively at least double throughput on existing winding systems.




ue

Low torque and vacuum seed meter

A seed meter is provided for use with a row crop planter or seed planter that includes a seed disk assembly that rotates within a meter housing cavity and that has a seed disk assembly cavity in which a vacuum pressure is applied for pulling seeds into seed pockets of a seed disk of the seed disc assembly. The vacuum pressure is applied to the seed disk assembly by pulling a vacuum airflow through a spindle that supports the seed disk assembly. A wiper seal is arranged in a fixed position within the seed disk assembly cavity and seals against the seed disk assembly as a support plate and seed disk of the seed disk assembly rotate over the wiper seal, so that the wiper seal creates a boundary between a vacuum zone and a non-vacuum zone inside of the seed disc assembly cavity.




ue

Electric arc for aqueous fluid treatment

An aqueous fluid treatment method and system is provided which preferably uses a 3 step electro-chemical oxidation process to remove organic contaminates from water. A high surface area electro-chemical reaction cell can be employed to remove organic particles and precipitate hardness salts from the aqueous solution. Several 3-phase spark arcs generated mixed oxidants and acoustic cavitations to remove dissolved organic compounds and oxidize organic metal compounds in the next step. Finally, a dielectric discharge in aqueous foam is used to eliminate recalcitrant organic compounds such as, but not limited to, polychlorinated aromatics, disinfectants, pesticides, and pharmaceuticals before release to environment or recycled.




ue

Fuel cell stack with combined flow patterns in a fuel cell stack or an electrolysis cell stack

A cell stack comprising a plurality of fuel cells or electrolysis cells has a combination of flow patterns between anode gas and cathode gas internally in each of the cells and between the cells relative to each other such that cathode and anode gas internally in a cell flows in either co-flow, counter-flow or cross-flow and further that anode and cathode gas flow in one cell has co-flow, counter-flow or cross-flow relative to the anode and cathode gas flow in adjacent cells.




ue

Tongue pulled spreader and grader with auxiliary electric motor for lowering or raising wheels

A tongue pulled spreader and grader system having a pair of spaced apart sidewalls and cross beams to define a frame portion, a plurality of moveable or fixed blades extending between the sidewalls, each blade positionable along the length of each sidewall and fixed in position at a predetermined angle; a tongue for mounting the frame to the rear of a vehicle; a pair of wheels positioned on an axle on either side of the sidewalls; means for manually or hydraulically extending the wheels to a down position to make contact with a surface in order to transport the spreader and grader and for retracting the wheels to an up position so that the spreader and grader can undertake the grading process. The spreader and grader can attach to and be operated by ATVs, SUVs, light trucks, lawn tractors, sub compact tractors, side by side ATVs and fork trucks.




ue

THz frequency range antenna

A THz frequency range antenna is provided which comprises: a semiconductor film (3) having a surface adapted to exhibit surface plasmons in the THz frequency range. The surface of the semiconductor film (3) is structured with an antenna structure (4) arranged to support localized surface plasmon resonances in the THz frequency range.




ue

Apparatus and methods for large particle ash separation from flue gas using screens having semi-elliptical cylinder surfaces

Apparatus for separating ash particles from a flue gas. The apparatus includes a screen that has a plurality of semi-elliptical cylinder surfaces. The semi-elliptical cylinder surfaces having holes through which said flue gas flows and through which the ash particles will not pass. The screen has a single layer for performing the separation in a manner such that the ash particles fall away from the screen and collect outside of the screen. A method of reducing velocity of a flue gas passing through screening apparatus for separating flue gas from ash particles. The method includes replacing a first screen of the screening apparatus with a second screen that has a plurality of semi-elliptical cylinder surfaces.




ue

Methods and apparatus for the improved treatment of carbonaceous fuel and/or feedstocks

The inventive technology includes methods and apparatus for the generation and application of segregated catalytic additives for the pre-combustion treatment of carbonaceous fuel and/or feedstocks. The application of such segregated additives results in the reduction of environmentally harmful emissions during combustion as well as gasification processes. Specifically, pre-combustion treatment of carbonaceous materials with the inventive additives results in the reduction of NOx and/or mercury emissions by least 20% and 40% respectively.




ue

System and method for cogeneration from mixed oil and inert solids, furnace and fuel nozzle for the same

This invention provides a system and method for efficiently and completely combusting oil in mixture with particulate solids. A furnace (kiln) having a feed nozzle with a lead screw drives the mixture from a feed hopper. This nozzle includes forced-air jets/ports at its tip providing makeup air and allowing atomization of the mixture. The nozzle thereby directs the mixture into a rotating combustion chamber that is tilted downwardly from the front toward a solid waste outlet port at the rear. Uncombusted fuel and air backflow to an upper, secondary chamber near the primary chamber front, and are completely combusted at a high temperature. Gasses exit a flue that can include a heat exchanger. This heat exchanger can be operatively connected to a heating device or other mechanism that converts the heat into usable energy. The nozzle can include a cone with axially tilted air ports about its perimeter.




ue

Dust coal boiler, dust coal combustion method, dust coal fuel thermal power generation system, and waste gas purification system for dust coal boiler

A pulverized coal thermal power generation system that significantly reduces the amount of NOx emissions from a boiler and does not require a denitration unit is provided. When a denitration unit is not used, performance to remove mercury from a boiler waste gas is reduced. A waste gas purification system for a pulverized coal boiler, that compensates for this is provided. A pulverized coal boiler having a furnace for burning pulverized coal, burners for supplying pulverized coal and air used for combustion into the furnace so as to burn the pulverized coal in an insufficient air state and after-air ports provided on the downstream side of the burners for supplying air used for perfect combustion characterized in that, an air ratio in the furnace is 1.05 to 1.14, and the residence time of a combustion gas from the burner disposed on the uppermost stage to a main after-air port is 1.1 to 3.3 seconds. Preferably, water is mixed in advance with the air supplied from the after-air port so as to increase the specific heat. Furthermore, pulverized coal carrying air in the burner and a part of air used for combustion are mixed together in advance before they are jetted into the furnace.A waste gas purification system having a pulverized coal boiler, an air heater disposed downstream of the pulverized coal boiler for exchanging heat with a boiler waste gas to heat air used for combustion in the pulverized coal boiler, a dust removing unit, and a desulfurizing unit characterized in that, at least one of a halogen gas supply unit, a catalyst unit for oxidizing a mercury gas, and a mercury adsorbent blowing device is provided so as to oxidize mercury included in the waste gas.




ue

Slag remover for discharging combustion residues of an incineration plant

A slag remover for discharging combustion residues of an incineration plant comprises a trough, which has a trough housing having two side walls, which define the trough width, and having a trough bottom, and which is intended to collect the combustion residues evacuated from a combustion chamber of the incineration plant. The trough further comprises at least two push rams for pushing the combustion residues out of the trough, and a shaft rotatably mounted in two shaft bearings and on which at least one drive lever cooperating with a cylinder-piston unit and at least two output levers connected to respectively one of the push rams are disposed in a rotationally secure manner. The cylinder-piston unit is here designed such that the push rams move back and forth between a retracted position and an extended position. The drive lever is disposed between two output levers.




ue

Method and multi-component nozzle for reducing unwanted substances in a flue gas

A method is illustrated and described for reducing unwanted substances by injecting a reactant into a flue gas of a steam generator. In order that the reactant can also be used in larger steam generators and/or combustion chambers, a method is proposed, in which the reactant is injected into the combustion chamber of the steam generator via a reactant opening of a multi-component nozzle, in which an enveloping medium is injected into the combustion chamber through at least one enveloping medium opening arranged outside the reactant opening, and in which the enveloping medium at least partly envelops the reactant in the combustion chamber and in this way at least partly shields the reactant from the flue gas.




ue

Elevated fixed-grate apparatus for use with multi-fuel furnaces

A combustion device in the form of an elevated fixed-grate that includes arcuately shaped solid refractory brick with ribs placed thereunder so as to allow horizontal air flow for fuel combustion. The brick are arranged atop one another in a stacked concentric configuration that forms a central fuel passageway and allows cascading of a fuel pile throughout the combustion stages. The device provides the benefit of proper de-ashing online while distributing the underfire air radially around the fuel pile. The elevated design of the bricks allows the air to be evenly distributed throughout the fuel pile and further allows the isolation of overfire and underfire air. Segregating overfire and underfire air in an evenly distributed manner allows the burner to combust a wide range of fuel moisture contents without modifying the mechanical components of the burner.




ue

Solid fuel unit which burns solid fuels together with their volatile gases

The invention relates to solid fuel units having a fuel supply chamber wherein the fuel to be sent for combustion to the combustion region found in the body is placed and the feed mechanism carrying the solid fuel found in the chamber forward. It is characterized in that it includes a main burning block having a fuel and air cell connected to the solid fuel supply chamber and air outlet vents formed on the external wall surface. A preventive surface is positioned on the main burning block external wall surface in a way that it would form a closed volume in a certain distance.




ue

Methods of combustion of powdered fuels and powdered fuel dispersions

Methods of combustion include metering a substantially explosible powder into an oxidizing gas using a positive displacement powder dispersion device to suspend the powder in the gas and directing the powder in the gas to form a controlled stream of a moving explosible powder dispersion. In some embodiments, the method further includes igniting the dispersion with an ignition source to produce a stationary deflagrating combustion wave and sustaining combustion by continuing to meter the powder into the gas. In other embodiments, the method further includes adjusting a nozzle velocity of the dispersion to reflect properties of the dispersion to create a sustainable flame and igniting the dispersion to produce a stationary deflagrating wave of the dispersion. In other embodiments, the method further includes igniting the dispersion in a combustion area to produce a stationary deflagrating wave such that a conductive heat transfer from combustion brings the powder to combustion temperature.




ue

Burner system for consumption of waste fuel

A burner system for consumption of waste fuel comprises a screw conveyor having a longitudinal hollow interior for air distribution and radially disposed air intake orifices connecting the hollow interior to a plurality of combustion chambers, which includes a first combustion chamber disposed centrally around the screw conveyor and at least one orifice; a second combustion chamber disposed concentrically around the first combustion chamber, receiving burning waste fuel from the first combustion chamber, and in fluid communication with the air intake orifice to provide air from an air blower through the orifice; and a third combustion chamber disposed concentrically around the second combustion chamber, receiving waste fuel from the second combustion chamber, and in fluid communication with the air intake orifice to provide air from the air blower.




ue

Powdered fuel conversion systems and methods

The burner preferably exclusively burns substantially explosible solid fuels and preferably has instant ON-OFF thermostat control, wastes no energy preheating the enclosure or external air supply, achieves stable combustion the moment the powder-air mix is ignited in our burner, is used in the upward vertical mode except for oil burner retrofits, burns a solid fuel in a single-phase regime as if it were a vaporized liquid or gas, is designed to complete combustion within the burner housing itself rather than in a large, high temperature furnace enclosure which it feeds, has an ultra-short residence time requirement, is a recycle consuming burner with self-contained management of initially unburned particles, is much smaller, simpler and lower cost, has a wider dynamic range/turndown ratio, is more efficient in combustion completeness and thermal efficiency, and operates with air-fuel mix approximately at the flame speed.




ue

Variable frequency ratiometric multiphase pulse width modulation generation

Groups of phase shifted Pulse Width Modulation signals are generated that maintain their duty-cycle and phase relationships as a function of the period of the PWM signal frequency. The multiphase PWM signals are generated in a ratio-metric fashion so as to greatly simplify and reduce the computational workload for a processor used in a PWM system. The groups of phase shifted PWM signals may also be synchronized with and automatically scaled to match external synchronization signals.




ue

Systems and methods for frequency synthesis to improve coexistence

A frequency synthesizer for a WLAN transceiver is disclosed that may be used to generate 5.4 GHz and 2.4 GHz signals. The frequency synthesizer may be configured to minimize VCO pulling by using VCO operating frequencies that are not integer multiples of the RF bands. Further, the frequency synthesizer may be configured to minimize interference with other frequency bands used by existing wireless systems.




ue

Glitch-free frequency modulation synthesis of sounds

A time-varying formant is generated at a formant frequency by generating first and second harmonic phase signals having first and second harmonic numbers, respectively, in relation to a modulation frequency. The first and second harmonic phase signals are generated in proportion to a master phase signal, which varies at the modulation frequency, modulo a factor corresponding to their harmonic numbers. First and second sound signals, based on the first and second harmonic phase signals, are frequency modulated to create an arbitrarily rich harmonic spectrum, depending on an FM index. The time-varying formant is generated by generating a time-varying combination of the first and second harmonic sound signals, weighting the first and second harmonic sound signals in accordance with their spectral proximities to the formant frequency. One or more of the harmonic numbers are updated when the time-varying formant frequency passes the frequency of either sound signal.




ue

Sequence generation and transmission method based on time and frequency domain transmission unit

A method for generating/transmitting a transmission-unit symbol sequence is disclosed. In the case of transmission information, the information is modulated in time and frequency domains on the basis of a predetermined transmission unit (e.g., a transmission time interval TTI or slot), simultaneous transmission of the information is made, and then a transmission unit symbol is generated/transmitted. A transmission sequence is masked in each symbol contained in one transmission unit. Symbol-unit circular shift (cyclic shift) is applied to the masked result, so that transmission efficiency increases. A control signal transmission method for supporting a variety of formats and a signal transmission method based on a prime-length sequence are also provided.




ue

Polar transmitter having frequency modulating path with interpolation in compensating feed input and related method thereof

A frequency modulating path for generating a frequency modulated clock includes a direct feed input arranged for directly modulating frequency of an oscillator, and a compensating feed input arranged for compensating effects of frequency modulating on a phase error; wherein the compensating feed input is resampled by a down-divided clock that is an integer edge division of the oscillator. A reference phase generator for generating a reference phase output includes a resampling circuit, an accumulator and a sampler. The resampling circuit is for resampling a modulating frequency command word (FCW) input to produce a plurality of samples. The accumulator is for accumulating the samples to generate an accumulated result. The sampler is for sampling the accumulated result according to a frequency reference clock, and accordingly generating a sampled result, wherein the reference phase output is updated according to at least the sampled result.




ue

Frequency modulator having digitally-controlled oscillator with modulation tuning and phase-locked loop tuning

A frequency modulator includes a digitally-controlled oscillator (DCO) arranged for producing a frequency deviation in response to a modulation tuning word and a phase-locked loop (PLL) tuning word. In addition, another frequency modulator includes a DCO and a DCO interface circuit. The DCO is arranged for producing a frequency deviation in response to an integer tuning word and a fractional tuning word. The DCO interface circuit is arranged for generating the integer tuning word and the fractional tuning word to the DCO, wherein the fractional tuning word is obtained through asynchronous sampling of a fixed-point tuning word.




ue

High-frequency, high-speed precision digital bi-phase modulator and method for bi-phase modulation

Embodiments of digital high-speed bi-phase modulator and method for bi-phase modulation are generally described herein. In some embodiments, the digital high-speed bi-phase modulator comprises a high-speed digital divider, a high-speed digital multiplexer, and matched signal paths provided between the divider and the multiplexer. The high-speed digital divider is configured to receive a carrier signal and generate complementary output signals. The high-speed digital multiplexer is configured to switch between the complementary output signals and generate a bi-phase modulated output at a carrier frequency (fc) modulated with a bi-phase code. The bi-phase code may be provided to control inputs of the multiplexer.




ue

System and methods of bimodal automatic power and frequency tuning of RF generators

A radio frequency generator includes a power control module, a frequency control module and a pulse generating module. The power control module is configured to generate a power signal indicating power levels for target states of a power amplifier. The frequency control module is configured to generate a frequency signal indicating frequencies for the target states of the power amplifier. The pulse generating module is configured to (i) supply an output signal to the power amplifier, (ii) recall at least one of a latest power level or a latest frequency for one of the target states of the power amplifier, and (iii) adjust a current power level and a current frequency of the output signal from a first state to a second state based on the power signal, the frequency signal, and at least one of the latest power level and the latest frequency of the power amplifier.




ue

System and method for generating a radio frequency pulse-width modulated signal

In an embodiment, a method of producing a multi-level RF signal includes producing plurality of pulse-width modulated signals based on an input signal. The method further includes driving a corresponding plurality of parallel amplifiers with the plurality of pulse-width modulated signals by setting a parallel amplifier to have a first output impedance when a corresponding pulse-width modulated signal is in an active state and setting the parallel amplifier to have a second output impedance when the corresponding pulse-width is in an inactive state. The method also includes phase shifting the outputs of the plurality of parallel amplifiers, wherein phase shifting transforms the second output impedance into a third impedance that is higher than the second output impedance, and combining the phase shifted outputs.




ue

Ultra-wide band frequency modulator

An ultra-wide band frequency modulator is disclosed. The frequency modulator includes a direct modulation phase lock loop that receives a small component. The frequency modulator also includes a delay module that produces a plurality of delay lines. The frequency modulator further includes an edge selector that receives a large component and the plurality of delay lines.




ue

Oscillators having arbitrary frequencies and related systems and methods

Systems and methods for operating with oscillators configured to produce an oscillating signal having an arbitrary frequency are described. The frequency of the oscillating signal may be shifted to remove its arbitrary nature by application of multiple tuning signals or values to the oscillator. Alternatively, the arbitrary frequency may be accommodated by adjusting operation one or more components of a circuit receiving the oscillating signal.