dia

Diabetes in Young People on the Rise

[Domestic] :
Data shows that the number of young people being diagnosed with diabetes in the country is rising. According to the 2024 data released by the Korean Diabetes Association (KDA) on Sunday, four days ahead of World Diabetes Day, 308-thousand young people, or two-point-two percent of people aged between 19 ...

[more...]




dia

Quarantine Agency Develops Differential Diagnosis Technology for Lumpy Skin Disease

[Science] :
The Animal and Plant Quarantine Agency says it has developed, for the first time in the world, a differential diagnosis technology for lumpy skin disease(LSD), a viral disease that affects cattle. With the technology, jointly developed with Median Diagnostics, it can be determined within eight hours if a ...

[more...]




dia

Foreign Ministry: N. Korea-US Dialogue Must Reflect S. Korea’s Position

[Politics] :
A senior foreign ministry official says if the incoming Donald Trump administration were to engage in dialogue with North Korea, it would be crucial to reflect South Korea’s position in the process of realizing the talks. The official made the remarks to reporters in Seoul on Tuesday, saying ...

[more...]




dia

10 Poorest States in the U.S. by Median Household Income

The poorest states in the U.S. often face a multitude of economic and social challenges that contribute to and perpetuate their low median household incomes.




dia

What Does a Radiator Do?

The radiator of your car is composed of tubes that carry the coolant fluid, a protective cap that’s actually a pressure valve, and a tank on each side to catch the coolant overflow. Learn more about how a radiator cap works from this article.




dia

What Makes Virgo Men So Unique? Zodiac Insights

Explore Virgo men's traits, compatibility, and relationship dynamics. Learn what makes a Virgo man unique in love and if he's the right zodiac match for you.




dia

Zodiac Signs Elements: Discover the Power Behind Each Element

Discover the unique traits of each zodiac element—fire, earth, air, and water. Uncover how these elements shape personalities and compatibility in astrology.




dia

Tracking anharmonic oscillations in the structure of β 1,3-diacetylpyrene

A recently discovered β polymorph of 1,3-diacetylpyrene has turned out to be a prominent negative thermal expansion material. Its unique properties can be linked to anharmonic oscillations in the crystal structure. The onset and development of anharmonic behavior have been successfully tracked over a wide temperature range by single-crystal X-ray diffraction experiments. Sufficient diffraction data quality combined with modern quantum crystallography tools allowed a thorough analysis of the elusive anharmonic effects for a moderate-scattering purely organic compound.




dia

Exploiting fourth-generation synchrotron radiation for enzyme and photoreceptor characterization

(Time-resolved) macromolecular crystallography at the new ESRF-ID29 beamline is described.




dia

Atypical phase transition, twinning and ferroelastic domain structure in bis(ethylenediammonium) tetrabromozincate(II) bromide, [NH3(CH2)2NH3]2[ZnBr4]Br2

A unique phase transition, twinning and ferroelastic domain structure in [NH3(CH2)2NH3]2[ZnBr4]Br2 is found. The new additional domain structure is observed at the phase transition on heating, which is preserved after cooling to room temperature.




dia

Variable stoichiometry and salt-cocrystal intermediate in the multicomponents of flucytosine: structural elucidation and its impact on stability

Five multicomponent solid forms of an antifungal drug flucytosine are reported with a hygroscopic stability study. A detailed CSD search on the cocrystal/salts of flucytosine is evaluated and correlated the structures based on bond angles and bond distances.




dia

Atypical phase transition, twinning and ferroelastic domain structure in bis(ethylenediammonium) tetrabromozincate(II) bromide, [NH3(CH2)2NH3]2[ZnBr4]Br2

Single-crystal growth, differential thermal analysis (DTA), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC), X-ray structural studies and polarized microscopy observations of bis(ethylenediammonium) tetrabromozincate(II) bromide [NH3(CH2)2NH3]2[ZnBr4]Br2 are presented. A reversible phase transition is described. At room temperature, the complex crystallizes in the monoclinic system. In some cases, the single crystals are twinned into two or more large domains of ferroelastic type with domain walls in the (100) crystallographic plane. DTA and DTG measurements show chemical stability of the crystal up to ∼538 K. In the DSC studies, a reversible isostructural phase transition was revealed at ∼526/522 K on heating/cooling run, respectively. Optical observation on the heating run reveals that at the phase transition the plane of twinning (domain wall) does not disappear and additionally the appearance of a new domain structure of ferroelastic type with domain walls in the planes (101), (101), (100) and (001) is observed. The domain structure pattern is preserved after cooling to the room-temperature phase and the symmetry of this phase is unchanged.




dia

Morphological control for hollow rod crystals of a photochromic diarylethene on spherulites by surface properties of substrates

Sublimation methods utilizing the surface properties of substrates can address the challenge of controlling hollow morphologies in rod crystals. Spherulites were formed on the hydrophilic surface of the (0001) planes of α-quartz and sapphire substrates by sublimation of 1,2-bis(3,5-dimethyl-2-thienyl)perfluorocyclopentene (1a). Various types of hollow morphologies, distinguished by the size and shape of their cross sections and by the presence or absence of branching structures, were formed separately on α-quartz and sapphire substrates. Such precise control of the hollow morphologies was attributed to the wettability of each substrate, leading to the formation of spherulites of 1a. In addition, it was indicated that the formation process of the surface morphologies of spherulites was associated with the hollow morphologies of rod crystals of 1a.




dia

Instrumental broadening and the radial pair distribution function with 2D detectors

The atomic pair distribution function (PDF) is a real-space representation of the structure of a material. Experimental PDFs are obtained using a Fourier transform from total scattering data which may or may not have Bragg diffraction peaks. The determination of Bragg peak resolution in scattering data from the fundamental physical parameters of the diffractometer used is well established, but after the Fourier transform from reciprocal to direct space, these contributions are harder to identify. Starting from an existing definition of the resolution function of large-area detectors for X-ray diffraction, this approach is expanded into direct space. The effect of instrumental parameters on PDF peak resolution is developed mathematically, then studied with modelling and comparison with experimental PDFs of LaB6 from measurements made in different-sized capillaries.




dia

Specific radiation damage to halogenated inhibitors and ligands in protein–ligand crystal structures

This article reports an investigation into the effects of specific radiation damage to halogenated ligands in crystal structures of protein-inhibitor complexes.




dia

Crystal structure, Hirshfeld surface, DFT and mol­ecular docking studies of 2-{4-[(E)-(4-acetylphen­yl)diazen­yl]phen­yl}-1-(5-bromo­thio­phen-2-yl)ethanone; a bromine⋯oxygen type contact

The title compound is a non-liquid crystal mol­ecule. The mol­ecular crystal is consolidated by C—Br⋯O&z-dbnd;C type contacts running continuously along the [001] direction.




dia

Submillisecond in situ X-ray diffraction measurement system with changing temperature and pressure using diamond anvil cells at BL10XU/SPring-8

Recently, there has been a high demand for elucidating kinetics and visualizing reaction processes under extreme dynamic conditions, such as chemical reactions under meteorite impact conditions, structural changes under non­equilibrium conditions, and in situ observations of dynamic changes. To accelerate material science studies and Earth science fields under dynamic conditions, a submillisecond in situ X-ray diffraction measurement system has been developed using a diamond anvil cell to observe reaction processes under rapidly changing pressure and temperature conditions replicating extreme dynamic conditions. The development and measurements were performed at the high-pressure beamline BL10XU/SPring-8 by synchronizing a high-speed hybrid pixel array detector, laser heating and temperature measurement system, and gas-pressure control system that enables remote and rapid pressure changes using the diamond anvil cell. The synchronized system enabled momentary heating and rapid cooling experiments up to 5000 K via laser heating as well as the visualization of structural changes in high-pressure samples under extreme dynamic conditions during high-speed pressure changes.




dia

Grazing-incidence synchrotron radiation diffraction studies on irradiated Ce-doped and pristine Y-stabilized ZrO2 at the Rossendorf beamline

In this work, Ce-doped yttria-stabilized zirconia (YSZ) and pure YSZ phases were subjected to irradiation with 14 MeV Au ions. Irradiation studies were performed to simulate long-term structural and microstructural damage due to self-irradiation in YSZ phases hosting alpha-active radioactive species. It was found that both the Ce-doped YSZ and the YSZ phases had a reasonable tolerance to irradiation at high ion fluences and the bulk crystallinity was well preserved. Nevertheless, local microstrain increased in all compounds under study after irradiation, with the Ce-doped phases being less affected than pure YSZ. Doping with cerium ions increased the microstructural stability of YSZ phases through a possible reduction in the mobility of oxygen atoms, which limits the formation of structural defects. Doping of YSZ with tetravalent actinide elements is expected to have a similar effect. Thus, YSZ phases are promising for the safe long-term storage of radioactive elements. Using synchrotron radiation diffraction, measurements of the thin irradiated layers of the Ce-YSZ and YSZ samples were performed in grazing incidence (GI) mode. A corresponding module for measurements in GI mode was developed at the Rossendorf Beamline and relevant technical details for sample alignment and data collection are also presented.




dia

A differentiable simulation package for performing inference of synchrotron-radiation-based diagnostics

The direction of particle accelerator development is ever-increasing beam quality, currents and repetition rates. This poses a challenge to traditional diagnostics that directly intercept the beam due to the mutual destruction of both the beam and the diagnostic. An alternative approach is to infer beam parameters non-invasively from the synchrotron radiation emitted in bending magnets. However, inferring the beam distribution from a measured radiation pattern is a complex and computationally expensive task. To address this challenge we present SYRIPY (SYnchrotron Radiation In PYthon), a software package intended as a tool for performing inference of synchrotron-radiation-based diagnostics. SYRIPY has been developed using PyTorch, which makes it both differentiable and able to leverage the high performance of GPUs, two vital characteristics for performing statistical inference. The package consists of three modules: a particle tracker, Lienard–Wiechert solver and Fourier optics propagator, allowing start-to-end simulation of synchrotron radiation detection to be carried out. SYRIPY has been benchmarked against SRW, the prevalent numerical package in the field, showing good agreement and up to a 50× speed improvement. Finally, we have demonstrated how SYRIPY can be used to perform Bayesian inference of beam parameters using stochastic variational inference.




dia

Optimization of synchrotron radiation parameters using swarm intelligence and evolutionary algorithms

Alignment of each optical element at a synchrotron beamline takes days, even weeks, for each experiment costing valuable beam time. Evolutionary algorithms (EAs), efficient heuristic search methods based on Darwinian evolution, can be utilized for multi-objective optimization problems in different application areas. In this study, the flux and spot size of a synchrotron beam are optimized for two different experimental setups including optical elements such as lenses and mirrors. Calculations were carried out with the X-ray Tracer beamline simulator using swarm intelligence (SI) algorithms and for comparison the same setups were optimized with EAs. The EAs and SI algorithms used in this study for two different experimental setups are the Genetic Algorithm (GA), Non-dominated Sorting Genetic Algorithm II (NSGA-II), Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC). While one of the algorithms optimizes the lens position, the other focuses on optimizing the focal distances of Kirkpatrick–Baez mirrors. First, mono-objective evolutionary algorithms were used and the spot size or flux values checked separately. After comparison of mono-objective algorithms, the multi-objective evolutionary algorithm NSGA-II was run for both objectives – minimum spot size and maximum flux. Every algorithm configuration was run several times for Monte Carlo simulations since these processes generate random solutions and the simulator also produces solutions that are stochastic. The results show that the PSO algorithm gives the best values over all setups.




dia

X-ray beam diagnostics at the MID instrument of the European X-ray Free-Electron Laser Facility

The Materials Imaging and Dynamics (MID) instrument at the European X-ray Free-Electron Laser Facility (EuXFEL) is equipped with a multipurpose diagnostic end-station (DES) at the end of the instrument. The imager unit in DES is a key tool for aligning the beam to a standard trajectory and for adjusting optical elements such as focusing lenses or the split-and-delay line. Furthermore, the DES features a bent-diamond-crystal spectrometer to disperse the spectrum of the direct beam to a line detector. This enables pulse-resolved characterization of the EuXFEL spectrum to provide X-ray energy calibration, and the spectrometer is particularly useful in commissioning special modes of the accelerator. Together with diamond-based intensity monitors, the imager and spectrometer form the DES unit which also contains a heavy-duty beamstop at the end of the MID instrument. Here, we describe the setup in detail and provide exemplary beam diagnostic results.




dia

VerSoX B07-B: a high-throughput XPS and ambient pressure NEXAFS beamline at Diamond Light Source

The beamline optics and endstations at branch B of the Versatile Soft X-ray (VerSoX) beamline B07 at Diamond Light Source are described. B07-B provides medium-flux X-rays in the range 45–2200 eV from a bending magnet source, giving access to local electronic structure for atoms of all elements from Li to Y. It has an endstation for high-throughput X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine-structure (NEXAFS) measurements under ultrahigh-vacuum (UHV) conditions. B07-B has a second endstation dedicated to NEXAFS at pressures from UHV to ambient pressure (1 atm). The combination of these endstations permits studies of a wide range of interfaces and materials. The beamline and endstation designs are discussed in detail, as well as their performance and the commissioning process.




dia

Scattered high-energy synchrotron radiation at the KARA visible-light diagnostic beamline

To characterize an electron beam, visible synchrotron light is often used and dedicated beamlines at synchrotron sources are becoming a more common feature as instruments and methods for the diagnostics are, along with the accelerators, further developed. At KARA (Karlsruhe Research Accelerator), such a beamline exists and is based on a typical infrared/visible-light configuration. From experience at such beamlines no significant radiation was expected (dose rates larger than 0.5 µSv h−1). This was found not to be the case and a higher dose was measured which fortunately could be shielded to an acceptable level with 0.3 mm of aluminium foil or 2.0 mm of Pyrex glass. The presence of this radiation led to further investigation by both experiment and calculation. A custom setup using a silicon drift detector for energy-dispersive spectroscopy (Ketek GmbH) and attenuation experiments showed the radiation to be predominantly copper K-shell fluorescence and is confirmed by calculation. The measurement of secondary radiation from scattering of synchrotron and other radiation, and its calculation, is important for radiation protection, and, although a lot of experience exists and methods for radiation protection are well established, changes in machine, beamlines and experiments mean a constant appraisal is needed.




dia

A distributed data processing scheme based on Hadoop for synchrotron radiation experiments

With the development of synchrotron radiation sources and high-frame-rate detectors, the amount of experimental data collected at synchrotron radiation beamlines has increased exponentially. As a result, data processing for synchrotron radiation experiments has entered the era of big data. It is becoming increasingly important for beamlines to have the capability to process large-scale data in parallel to keep up with the rapid growth of data. Currently, there is no set of data processing solutions based on the big data technology framework for beamlines. Apache Hadoop is a widely used distributed system architecture for solving the problem of massive data storage and computation. This paper presents a set of distributed data processing schemes for beamlines with experimental data using Hadoop. The Hadoop Distributed File System is utilized as the distributed file storage system, and Hadoop YARN serves as the resource scheduler for the distributed computing cluster. A distributed data processing pipeline that can carry out massively parallel computation is designed and developed using Hadoop Spark. The entire data processing platform adopts a distributed microservice architecture, which makes the system easy to expand, reduces module coupling and improves reliability.




dia

Developing an in situ LED irradiation system for small-angle X-ray scattering at B21, Diamond Light Source

Beamline B21 at the Diamond Light Source synchrotron in the UK is a small-angle X-ray scattering (SAXS) beamline that specializes in high-throughput measurements via automated sample delivery systems. A system has been developed whereby a sample can be illuminated by a focused beam of light coincident with the X-ray beam. The system is compatible with the highly automated sample delivery system at the beamline and allows a beamline user to select a light source from a broad range of wavelengths across the UV and visible spectrum and to control the timing and duration of the light pulse with respect to the X-ray exposure of the SAXS measurement. The intensity of the light source has been characterized across the wavelength range enabling experiments where a quantitative measure of dose is important. Finally, the utility of the system is demonstrated via measurement of several light-responsive samples.




dia

GIWAXS experimental methods at the NFPS-BL17B beamline at Shanghai Synchrotron Radiation Facility

The BL17B beamline at the Shanghai Synchrotron Radiation Facility was first designed as a versatile high-throughput protein crystallography beamline and one of five beamlines affiliated to the National Facility for Protein Science in Shanghai. It was officially opened to users in July 2015. As a bending magnet beamline, BL17B has the advantages of high photon flux, brightness, energy resolution and continuous adjustable energy between 5 and 23 keV. The experimental station excels in crystal screening and structure determination, providing cost-effective routine experimental services to numerous users. Given the interdisciplinary and green energy research demands, BL17B beamline has undergone optimization, expanded its range of experimental methods and enhanced sample environments for a more user-friendly testing mode. These methods include single-crystal X-ray diffraction, powder crystal X-ray diffraction, wide-angle X-ray scattering, grazing-incidence wide-angle X-ray scattering (GIWAXS), and fully scattered atom pair distribution function analysis, covering structure detection from crystalline to amorphous states. This paper primarily presents the performance of the BL17B beamline and the application of the GIWAXS methodology at the beamline in the field of perovskite materials.




dia

Hard X-ray imaging and tomography at the Biomedical Imaging and Therapy beamlines of Canadian Light Source

The Biomedical Imaging and Therapy facility of the Canadian Light Source comprises two beamlines, which together cover a wide X-ray energy range from 13 keV up to 140 keV. The beamlines were designed with a focus on synchrotron applications in preclinical imaging and veterinary science as well as microbeam radiation therapy. While these remain a major part of the activities of both beamlines, a number of recent upgrades have enhanced the versatility and performance of the beamlines, particularly for high-resolution microtomography experiments. As a result, the user community has been quickly expanding to include researchers in advanced materials, batteries, fuel cells, agriculture, and environmental studies. This article summarizes the beam properties, describes the endstations together with the detector pool, and presents several application cases of the various X-ray imaging techniques available to users.




dia

Diamond sensors for hard X-ray energy and position resolving measurements at the European XFEL

The diagnostics of X-ray beam properties has a critical importance at the European X-ray Free-Electron Laser facility. Besides existing diagnostic components, utilization of a diamond sensor was proposed to achieve radiation-hard, non-invasive beam position and pulse energy measurements for hard X-rays. In particular, with very hard X-rays, diamond-based sensors become a useful complement to gas-based devices which lose sensitivity due to significantly reduced gas cross-sections. The measurements presented in this work were performed with diamond sensors consisting of an electronic-grade single-crystal chemical-vapor-deposition diamond with position-sensitive resistive electrodes in a duo-lateral configuration. The results show that the diamond sensor delivers pulse-resolved X-ray beam position data at 2.25 MHz with an uncertainty of less than 1% of the beam size. To our knowledge this is the first demonstration of pulse-resolved position measurements at the MHz rate using a transmissive diamond sensor at a free-electron laser facility. It can therefore be a valuable tool for X-ray free-electron lasers, especially for high-repetition-rate machines, enabling applications such as beam-based alignment and intra-pulse-train position feedback.




dia

The diamond–silicon carbide composite Skeleton® as a promising material for substrates of intense X-ray beam optics

The paper considers the possibility of using the diamond-silicon carbide composite Skeleton® with a technological coating of polycrystalline silicon as a substrate for X-ray mirrors used with powerful synchrotron radiation sources (third+ and fourth generation). Samples were studied after polishing to provide the following surface parameters: root-mean-square flatness ≃ 50 nm, micro-roughness on the frame 2 µm × 2 µm σ ≃ 0.15 nm. The heat capacity, thermal conductivity and coefficient of linear thermal expansion were investigated. For comparison, a monocrystalline silicon sample was studied under the same conditions using the same methods. The value of the coefficient of linear thermal expansion turned out to be higher than that of monocrystalline silicon and amounted to 4.3 × 10−6 K−1, and the values of thermal conductivity (5.0 W cm−1 K−1) and heat capacity (1.2 J K−1 g−1) also exceeded the values for Si. Thermally induced deformations of both Skeleton® and monocrystalline silicon samples under irradiation with a CO2 laser beam have also been experimentally studied. Taking into account the obtained thermophysical constants, the calculation of thermally induced deformation under irradiation with hard (20 keV) X-rays showed almost three times less deformation of the Skeleton® sample than of the monocrystalline silicon sample.




dia

Development of an advanced in-line multilayer deposition system at Diamond Light Source

A state-of-the-art multilayer deposition system with a 4200 mm-long linear substrate translator housed within an ultra-high vacuum chamber has been developed. This instrument is engineered to produce single and multilayer coatings, accommodating mirrors up to 2000 mm in length through the utilization of eight rectangular cathodes. To ensure the quality and reliability of the coatings, the system incorporates various diagnostic tools for in situ thickness uniformity and stress measurement. Furthermore, the system features an annealing process capable of heating up to 700°C within the load-lock chamber. The entire operation, including pump down, deposition and venting processes, is automated through user-friendly software. In addition, all essential log data, power of sputtering source, working pressure and motion positions are automatically stored for comprehensive data analysis. Preliminary commissioning results demonstrate excellent lateral film thickness uniformity, achieving 0.26% along the translation direction over 1500 mm in dynamic mode. The multilayer deposition system is poised for use in fabricating periodic, lateral-graded and depth-graded multilayers, specifically catering to the beamlines for diverse scientific applications at Diamond Light Source.




dia

Prediction of the treatment effect of FLASH radiotherapy with synchrotron radiation from the Circular Electron–Positron Collider (CEPC)

The Circular Electron–Positron Collider (CEPC) in China can also work as an excellent powerful synchrotron light source, which can generate high-quality synchrotron radiation. This synchrotron radiation has potential advantages in the medical field as it has a broad spectrum, with energies ranging from visible light to X-rays used in conventional radiotherapy, up to several megaelectronvolts. FLASH radiotherapy is one of the most advanced radiotherapy modalities. It is a radiotherapy method that uses ultra-high dose rate irradiation to achieve the treatment dose in an instant; the ultra-high dose rate used is generally greater than 40 Gy s−1, and this type of radiotherapy can protect normal tissues well. In this paper, the treatment effect of CEPC synchrotron radiation for FLASH radiotherapy was evaluated by simulation. First, a Geant4 simulation was used to build a synchrotron radiation radiotherapy beamline station, and then the dose rate that the CEPC can produce was calculated. A physicochemical model of radiotherapy response kinetics was then established, and a large number of radiotherapy experimental data were comprehensively used to fit and determine the functional relationship between the treatment effect, dose rate and dose. Finally, the macroscopic treatment effect of FLASH radiotherapy was predicted using CEPC synchrotron radiation through the dose rate and the above-mentioned functional relationship. The results show that the synchrotron radiation beam from the CEPC is one of the best beams for FLASH radiotherapy.




dia

(1H-Benzo­diazol-2-ylmeth­yl)di­ethyl­amine

In the crystal of the title compound, C12H17N3, the mol­ecules are linked by N—H⋯N hydrogen bonds, generating a C(4) chain extending along the c-axis direction. One of the ethyl groups is disordered over two sets of sites with a refined occupancy ratio of 0.582 (15):0.418 (15).




dia

α-d-2'-De­oxy­adenosine, an irradiation product of canonical DNA and a com­ponent of anomeric nucleic acids: crystal structure, packing and Hirshfeld surface analysis

α-d-2'-De­oxy­ribonucleosides are products of the γ-irradiation of DNA under oxygen-free conditions and are constituents of anomeric DNA. They are not found as natural building blocks of canonical DNA. Reports on their conformational properties are limited. Herein, the single-crystal X-ray structure of α-d-2'-de­oxy­adenosine (α-dA), C10H13N5O3, and its conformational parameters were determined. In the crystalline state, α-dA forms two conformers in the asymmetric unit which are connected by hydro­gen bonds. The sugar moiety of each conformer is arranged in a `clamp'-like fashion with respect to the other conformer, forming hydro­gen bonds to its nucleobase and sugar residue. For both conformers, a syn conformation of the nucleobase with respect to the sugar moiety was found. This is contrary to the anti conformation usually preferred by α-nucleosides. The sugar conformation of both conformers is C2'-endo, and the 5'-hydroxyl groups are in a +sc orientation, probably due to the hydro­gen bonds formed by the conformers. The formation of the supra­molecular assembly of α-dA is controlled by hydro­gen bonding and stacking inter­actions, which was verified by a Hirshfeld and curvedness surface analysis. Chains of hydro­gen-bonded nucleobases extend parallel to the b direction and are linked to equivalent chains by hydro­gen bonds involving the sugar moieties to form a sheet. A com­parison of the solid-state structures of the anomeric 2'-de­oxy­adenosines revealed significant differences of their conformational parameters.




dia

Identifying and avoiding radiation damage in macromolecular crystallography

Radiation damage remains one of the major impediments to accurate structure solution in macromolecular crystallography. The artefacts of radiation damage can manifest as structural changes that result in incorrect biological interpretations being drawn from a model, they can reduce the resolution to which data can be collected and they can even prevent structure solution entirely. In this article, we discuss how to identify and mitigate against the effects of radiation damage at each stage in the macromolecular crystal structure-solution pipeline.




dia

Chaperone-mediated MHC-I peptide exchange in antigen presentation

This work focuses on molecules that are encoded by the major histocompatibility complex (MHC) and that bind self-, foreign- or tumor-derived peptides and display these at the cell surface for recognition by receptors on T lymphocytes (T cell receptors, TCR) and natural killer (NK) cells. The past few decades have accumulated a vast knowledge base of the structures of MHC molecules and the complexes of MHC/TCR with specificity for many different peptides. In recent years, the structures of MHC-I molecules complexed with chaperones that assist in peptide loading have been revealed by X-ray crystallography and cryogenic electron microscopy. These structures have been further studied using mutagenesis, molecular dynamics and NMR approaches. This review summarizes the current structures and dynamic principles that govern peptide exchange as these relate to the process of antigen presentation.




dia

Evolution of structure and spectroscopic properties of a new 1,3-diacetylpyrene polymorph with temperature and pressure

A new polymorph of 1,3-diacetylpyrene has been obtained from its melt and thoroughly characterized using single-crystal X-ray diffraction, steady-state UV–Vis spectroscopy and periodic density functional theory calculations. Experimental studies covered the temperature range from 90 to 390 K and the pressure range from atmospheric to 4.08 GPa. Optimal sample placement in a diamond anvil cell according to our previously presented methodology ensured over 80% data coverage up to 0.8 Å for a monoclinic sample. Unrestrained Hirshfeld atom refinement of the high-pressure crystal structures was successful and anharmonic behavior of carbonyl oxygen atoms was observed. Unlike the previously characterized polymorph, the structure of 2°AP-β is based on infinite π-stacks of antiparallel 2°AP molecules. 2°AP-β displays piezochromism and piezofluorochromism which are directly related to the variation in interplanar distances within the π-stacking. The importance of weak intermolecular interactions is reflected in the substantial negative thermal expansion coefficient of −55.8 (57) MK−1 in the direction of C—H⋯O interactions.




dia

Lattice response to the radiation damage of molecular crystals: radiation-induced versus thermal expansivity

The interaction of intense synchrotron radiation with molecular crystals frequently modifies the crystal structure by breaking bonds, producing fragments and, hence, inducing disorder. Here, a second-rank tensor of radiation-induced lattice strain is proposed to characterize the structural susceptibility to radiation. Quantitative estimates are derived using a linear response approximation from experimental data collected on three materials Hg(NO3)2(PPh3)2, Hg(CN)2(PPh3)2 and BiPh3 [PPh3 = triphenylphosphine, P(C6H5)3; Ph = phenyl, C6H5], and are compared with the corresponding thermal expansivities. The associated eigenvalues and eigenvectors show that the two tensors are not the same and therefore probe truly different structural responses. The tensor of radiative expansion serves as a measure of the susceptibility of crystal structures to radiation damage.




dia

Synthesis, crystal structure and computational analysis of 2,7-bis­(4-chloro­phen­yl)-3,3-dimethyl-1,4-diazepan-5-one

In the title compound, C19H20Cl2N2O, the seven-membered 1,4-diazepane ring adopts a chair conformation while the 4-chloro­phenyl substituents adopt equatorial orientations. The chloro­phenyl ring at position 7 is disordered over two positions [site occupancies 0.480 (16):0.520 (16)]. The dihedral angle between the two benzene rings is 63.0 (4)°. The methyl groups at position 3 have an axial and an equatorial orientation. The compound exists as a dimer exhibiting inter­molecular N—H⋯O hydrogen bonding with R22(8) graph-set motifs. The crystal structure is further stabilized by C—H⋯O hydrogen bonds together with two C—Cl⋯π (ring) inter­actions. The geometry was optimized by DFT using the B3LYP/6–31 G(d,p) level basis set. In addition, the HOMO and LUMO energies, chemical reactivity parameters and mol­ecular electrostatic potential were calculated at the same level of theory. Hirshfeld surface analysis indicated that the most important contributions to the crystal packing are from H⋯H (45.6%), Cl⋯H/H⋯Cl (23.8%), H⋯C/C⋯H (12.6%), H⋯O/O⋯H (8.7%) and C⋯Cl/Cl⋯C (7.1%) inter­actions. Analysis of the inter­action energies showed that the dispersion energy is greater than the electrostatic energy. A crystal void volume of 237.16 Å3 is observed. A mol­ecular docking study with the human oestrogen receptor 3ERT protein revealed good docking with a score of −8.9 kcal mol−1.




dia

Crystal structure and Hirshfeld surface analysis of a new benzimidazole compound, 3-{1-[(2-hy­droxyphen­yl)meth­yl]-1H-1,3-benzo­diazol-2-yl}phenol

The title compound, C20H16N2O2, is composed of two monosubstituted benzene rings and one benzimidazole unit. The benzimidazole moiety subtends dihedral angles of 46.16 (7) and 77.45 (8)° with the benzene rings, which themselves form a dihedral angle of 54.34 (9)°. The crystal structure features O—H⋯N and O—H⋯O hydrogen-bonding inter­actions, which together lead to the formation of two-dimensional hydrogen-bonded layers parallel to the (101) plane. In addition, π–π inter­actions also contribute to the crystal cohesion. Hirshfeld surface analysis indicates that the most significant contacts in the crystal packing are: H⋯H (47.5%), O⋯H/H⋯O (12.4%), N⋯H/H⋯N (6.1%), C⋯H/H⋯C (27.6%) and C⋯C (4.6%).




dia

Crystal structure, Hirshfeld surface analysis and energy frameworks of 1-[(E)-2-(2-fluoro­phen­yl)diazan-1-yl­idene]naphthalen-2(1H)-one

The title compound, C16H11N2OF, is a member of the azo dye family. The dihedral angle subtended by the benzene ring and the naphthalene ring system measures 18.75 (7)°, indicating that the compound is not perfectly planar. An intra­molecular N—H⋯O hydrogen bond occurs between the imino and carbonyl groups. In the crystal, the mol­ecules are linked into inversion dimers by C—H⋯O inter­actions. Aromatic π–π stacking between the naphthalene ring systems lead to the formation of chains along [001]. A Hirshfeld surface analysis was undertaken to investigate and qu­antify the inter­molecular inter­actions. In addition, energy frameworks were used to examine the cooperative effect of these inter­molecular inter­actions across the crystal, showing dispersion energy to be the most influential factor in the crystal organization of the compound.




dia

Crystal structures and Hirshfeld surface analyses of methyl 4-{2,2-di­chloro-1-[(E)-phenyl­diazen­yl]eth­enyl}benzoate, methyl 4-{2,2-di­chloro-1-[(E)-(4-methyl­phen­yl)diazen­yl]ethen­yl}benzoate and methyl 4-

The crystal structures and Hirshfeld surface analyses of three similar azo compounds are reported. Methyl 4-{2,2-di­chloro-1-[(E)-phenyl­diazen­yl]ethen­yl}benzoate, C16H12Cl2N2O2, (I), and methyl 4-{2,2-di­chloro-1-[(E)-(4-methyl­phen­yl)diazen­yl]ethen­yl}benzoate, C17H14Cl2N2O2, (II), crystallize in the space group P21/c with Z = 4, and methyl 4-{2,2-di­chloro-1-[(E)-(3,4-di­methyl­phen­yl)diazen­yl]ethen­yl}benzoate, C18H16Cl2N2O2, (III), in the space group Poverline{1} with Z = 2. In the crystal of (I), mol­ecules are linked by C—H⋯N hydrogen bonds, forming chains with C(6) motifs parallel to the b axis. Short inter­molecular Cl⋯O contacts of 2.8421 (16) Å and weak van der Waals inter­actions between these chains stabilize the crystal structure. In (II), mol­ecules are linked by C—H⋯O hydrogen bonds and C—Cl⋯π inter­actions, forming layers parallel to (010). Weak van der Waals inter­actions between these layers consolidate the mol­ecular packing. In (III), mol­ecules are linked by C—H⋯π and C—Cl⋯π inter­actions forming chains parallel to [011]. Furthermore, these chains are connected by C—Cl⋯π inter­actions parallel to the a axis, forming (0overline{1}1) layers. The stability of the mol­ecular packing is ensured by van der Waals forces between these layers.




dia

CoII-catalysed synthesis of N-(4-meth­oxy­phen­yl)-5-(pyridin-4-yl)-1,3,4-oxa­diazol-2-amine hemi­hydro­chloride monohydrate

The title compound, C14H12N4O2·0.5HCl·H2O or H(C14H12N4O2)2+·Cl−·2H2O, arose from the unexpected cyclization of isonicotinoyl-N-phenyl hydrazine carbo­thio­amide catalysed by cobalt(II) acetate. The organic mol­ecule is almost planar and a symmetric N⋯H+⋯N hydrogen bond links two of them together, with the H atom lying on a crystallographic twofold axis. The extended structure features N—H⋯O and O—H⋯Cl hydrogen bonds, which generate [001] chains. Weak C—H⋯Cl inter­actions cross-link the chains. The chloride ion has site symmetry 2. The major contributions to the Hirshfeld surface are from H⋯H (47.1%), Cl⋯H/H⋯Cl (total 10.8%), O⋯H/H⋯O (7.4%) and N⋯H/H⋯N (6.7%) inter­actions.




dia

Synthesis, crystal structure and Hirshfeld surface analysis of bromido­tetra­kis­[5-(prop-2-en-1-yl­sulf­an­yl)-1,3,4-thia­diazol-2-amine-κN3]copper(II) bromide

A novel cationic complex, bromido­tetra­kis­[5-(prop-2-en-1-ylsulfan­yl)-1,3,4-thia­diazol-2-amine-κN3]copper(II) bromide, [CuBr](C5H7N3S2)4Br, was synthesized. The complex crystallizes with fourfold mol­ecular symmetry in the tetra­gonal space group P4/n. The CuII atom exhibits a square-pyramidal coord­ination geometry. The Cu atom is located centrally within the complex, being coordinated by four nitro­gen atoms from four AAT mol­ecules, while a bromine anion is located at the apex of the pyramid. The amino H atoms of AAT inter­act with bromine from the inner and outer spheres, forming a two-dimensional network in the [100] and [010] directions. Hirshfeld surface analysis reveals that 33.7% of the inter­mol­ecular inter­actions are from H⋯H contacts, 21.2% are from S⋯H/H⋯S contacts, 13.4% are from S⋯S contacts and 11.0% are from C⋯H/H⋯C, while other contributions are from Br⋯H/H⋯Br and N⋯H/H⋯N contacts.




dia

Crystal structure and Hirshfeld surface analysis of (1H-imidazole-κN3)[4-methyl-2-({[2-oxido-5-(2-phenyl­diazen-1-yl)phen­yl]methyl­idene}amino)penta­noate-κ3O,N,O']copper(II)

The title copper(II) complex, [Cu(C18H19N3O3)(C3H4N2)], consists of a tridentate ligand synthesized from l-leucine and azo­benzene-salicyl­aldehyde. One imidazole mol­ecule is additionally coordinated to the copper(II) ion in the equatorial plane. The crystal structure features N—H⋯O hydrogen bonds. A Hirshfeld surface analysis indicates that the most important contributions to the packing are from H⋯H (52.0%) and C⋯H/H⋯C (17.9%) contacts.




dia

Synthesis, crystal structure and Hirshfeld surface analysis of (3Z)-4-[(4-amino-1,2,5-oxa­diazol-3-yl)amino]-3-bromo-1,1,1-tri­fluoro­but-3-en-2-one

In the title compound, C6H4BrF3N4O2, the oxa­diazole ring is essentially planar with a maximum deviation of 0.003 (2) Å. In the crystal, mol­ecular pairs are connected by N—H⋯N hydrogen bonds, forming dimers with an R22(8) motif. The dimers are linked into layers parallel to the (10overline{4}) plane by N—H⋯O hydrogen bonds. In addition, C—O⋯π and C—Br⋯π inter­actions connect the mol­ecules, forming a three-dimensional network. The F atoms of the tri­fluoro­methyl group are disordered over two sites in a 0.515 (6): 0.485 (6) ratio. The inter­molecular inter­actions in the crystal structure were investigated and qu­anti­fied using Hirshfeld surface analysis.




dia

Crystal structure of (6,9-diacetyl-5,10,15,20-tetra­phenyl­secochlorinato)nickel(II)

Title compound 1Ni, [Ni(C46H32N4O2)], a secochlorin nickel complex, was prepared by diol cleavage of a precursor trans-di­hydroxy­dimethyl­chlorin. Two crystallographically independent mol­ecules in the structure are related by pseudo-A lattice centering, with mol­ecules differing mainly by a rotation of one of the acetyls and an adjacent phenyl groups. The two mol­ecules have virtually identical conformations characterized by noticeable in-plane deformation in the A1g mode and a prominent out-of-plane deformation in the B1u (ruffling) mode. Directional inter­actions between mol­ecules are scarce, limited to just a few C—H⋯O contacts, and inter­molecular inter­actions are mostly dispersive in nature.




dia

Synthesis, mol­ecular and crystal structures of 4-amino-3,5-di­fluoro­benzo­nitrile, ethyl 4-amino-3,5-di­fluoro­benzoate, and diethyl 4,4'-(diazene-1,2-di­yl)bis­(3,5-di­fluoro­benzoate)

The crystal structures of two inter­mediates, 4-amino-3,5-di­fluoro­benzo­nitrile, C7H4F2N2 (I), and ethyl 4-amino-3,5-di­fluoro­benzoate, C9H9F2NO2 (II), along with a visible-light-responsive azo­benzene derivative, diethyl 4,4'-(diazene-1,2-di­yl)bis­(3,5-di­fluoro­benzoate), C18H14F4N2O4 (III), obtained by four-step synthetic procedure, were studied using single-crystal X-ray diffraction. The mol­ecules of I and II demonstrate the quinoid character of phenyl rings accompanied by the distortion of bond angles related to the presence of fluorine substituents in the 3 and 5 (ortho) positions. In the crystals of I and II, the mol­ecules are connected by N—H⋯N, N—H⋯F and N—H⋯O hydrogen bonds, C—H⋯F short contacts, and π-stacking inter­actions. In crystal of III, only stacking inter­actions between the mol­ecules are found.




dia

Crystal structure of propane-1,3-diaminium squarate dihydrate

Propane-1,3-diaminium squarate dihydrate, C3H12N22+·C4O42−·2H2O, results from the proton-transfer reaction of propane-1,3-di­amine with squaric acid and subsequent crystallization from aqueous medium. The title compound crystallizes in the tetra­gonal crystal system (space group P4bm) with Z = 2. The squarate dianion belongs to the point group D4h and contains a crystallographic fourfold axis. The propane-1,3-diaminium dication exhibits a C2v-symmetric all-anti conformation and resides on a special position with mm2 site symmetry. The orientation of the propane-1,3-diaminium ions makes the crystal structure polar in the c-axis direction. The solid-state supra­molecular structure features a triperiodic network of strong hydrogen bonds of the N—H⋯O and O—H⋯O types.




dia

The use of ethanol as contrast enhancer in Synchrotron X-ray phase-contrast imaging leads to heterogeneous myocardial tissue shrinkage: a case report

In this work, we showed that the use of ethanol to increase image contrast when imaging cardiac tissue with synchrotron X-ray phase-contrast imaging (X-PCI) leads to heterogeneous tissue shrinkage, which has an impact on the 3D organization of the myocardium.




dia

Using XAS to monitor radiation damage in real time and post-analysis, and investigation of systematic errors of fluorescence XAS for Cu-bound amyloid-β

X-ray absorption spectroscopy (XAS) is a promising technique for determining structural information from sensitive biological samples, but high-accuracy X-ray absorption fine structure (XAFS) requires corrections of systematic errors in experimental data. Low-temperature XAS and room-temperature X-ray absorption spectro-electrochemical (XAS-EC) measurements of N-truncated amyloid-β samples were collected and corrected for systematic effects such as dead time, detector efficiencies, monochromator glitches, self-absorption, radiation damage and noise at higher wavenumber (k). A new protocol was developed using extended X-ray absorption fine structure (EXAFS) data analysis for monitoring radiation damage in real time and post-analysis. The reliability of the structural determinations and consistency were validated using the XAS measurement experimental uncertainty. The correction of detector pixel efficiencies improved the fitting χ2 by 12%. An improvement of about 2.5% of the structural fitting was obtained after dead-time corrections. Normalization allowed the elimination of 90% of the monochromator glitches. The remaining glitches were manually removed. The dispersion of spectra due to self-absorption was corrected. Standard errors of experimental measurements were propagated from pointwise variance of the spectra after systematic corrections. Calculated uncertainties were used in structural refinements for obtaining precise and reliable values of structural parameters including atomic bond lengths and thermal parameters. This has permitted hypothesis testing.