semiconductor

Semiconductor device

A semiconductor device which shifts a low-level signal is provided. In an example, a first transistor including a first terminal electrically connected to a first wiring and a second terminal electrically connected to a second wiring, a second transistor including a first terminal electrically connected to a third wiring and a second terminal electrically connected to the second wiring, a third transistor including a first terminal electrically connected to a fourth wiring and a second terminal electrically connected to a gate of the second transistor, a fourth transistor including a first terminal electrically connected to a fifth wiring, a second terminal electrically connected to a gate of the third transistor, and a gate electrically connected to a sixth wiring, and a first switch including a first terminal electrically connected to the third wiring and a second terminal electrically connected to a gate of the first transistor are included.




semiconductor

Semiconductor integrated circuit

A semiconductor integrated circuit includes: a main-interconnect to which supply voltage or reference voltage is applied; a plurality of sub-interconnects; a plurality of circuit cells configured to be connected to the plurality of sub-interconnects; a power supply switch cell configured to control, in accordance with an input control signal, connection and disconnection between the main-interconnect and the sub-interconnect to which a predetermined one of the circuit cells is connected, of the plurality of sub-interconnects; and an auxiliary interconnect configured to connect the plurality of sub-interconnects to each other.




semiconductor

Isolator circuit and semiconductor device

An isolator circuit capable of two-way electrical disconnection and a semiconductor device including the isolator circuit are provided. A data holding portion is provided in an isolator circuit without the need for additional provision of a data holding portion outside the isolator circuit, and data which is to be input to a logic circuit that is in an off state at this moment is stored in the data holding portion. The data holding portion may be formed using a transistor with small off-state current and a buffer. The buffer can include an inverter circuit and a clocked inverter circuit.




semiconductor

Semiconductor device having serializer converting parallel data into serial data to output serial data from output buffer circuit

Disclosed herein is a device that includes first and second buffer circuits connected to a data terminal and a first control circuit controlling the first and second buffer circuits. The first control circuit receives n pairs of first and second internal data signals complementary to each other from 2n input signal lines and outputs a pair of third and fourth internal data signals complementary to each other to first and second output signal lines, where n is a natural number more than one. The first and second buffer circuits are controlled based on the third and fourth internal data signals such that one of the first and second buffer circuits turns on and the other of the first and second buffer circuits turns off.




semiconductor

Semiconductor device and power supply control method of the semiconductor device

A semiconductor device includes an internal circuit, a power supply control circuit which controls supply of a power supply to the internal circuit upon receipt of a first control signal, and a control signal generation circuit which outputs the first control signal upon receipt of a second control signal. The control signal generation circuit does not deactivate the first control signal when an inactive period of the second control signal is equal to or less than a first period and deactivates the first control signal when the inactive period of the second control signal is more than the first period.




semiconductor

Massively parallel interconnect fabric for complex semiconductor devices

An embodiment of this invention uses a massive parallel interconnect fabric (MPIF) at the flipped interface of a core die substrate (having the core logic blocks) and a context die (used for in circuit programming/context/customization of the core die substrate), to produce ASIC-like density and FPGA-like flexibility/programmability, while reducing the time and cost for development and going from prototyping to production, reducing cost per die, reducing or eliminating NRE, and increasing performance. Other embodiments of this invention enable debugging complex SoC through large contact points provided through the MPIF, provide for multi-platform functionality, and enable incorporating FGPA core in ASIC platform through the MPIF. Various examples are also given for different implementations.




semiconductor

Semiconductor integrated circuit having a switch, an electrically-conductive electrode line and an electrically-conductive virtual line

A semiconductor integrated circuit including: a circuit block having an internal voltage line; an annular rail line forming a closed annular line around the circuit block and supplied with one of a power supply voltage and a reference voltage; and a plurality of switch blocks arranged around the circuit block along the annular rail line, the plurality of switch blocks each including a voltage line segment forming a part of the annular rail line and a switch for controlling connection and disconnection between the voltage line segment and the internal voltage line.




semiconductor

Integrated epitaxial structure for compound semiconductor devices

An integrated structure of compound semiconductor devices is disclosed. The integrated structure comprises from bottom to top a substrate, a first epitaxial layer, an etching-stop layer, a second epitaxial layer, a sub-collector layer, a collector layer, a base layer, and an emitter layer, in which the first epitaxial layer is a p-type doped layer, the second epitaxial layer is an n-type graded doping layer with a gradually increased or decreased doping concentration, and the sub-collector layer is an n-type doped layer. The integrated structure can be used to form an HBT, a varactor, or an MESFET.




semiconductor

Current output control device, current output control method, digitally controlled oscillator, digital PLL, frequency synthesizer, digital FLL, and semiconductor device

A current output control device is provided that includes: a current cell array section including plural current cell circuits that are each connected in parallel between a first terminal (power source) and a second terminal (ground) that connect between the first terminal and the second terminal in by operation ON so as to increase control current flowing between the first terminal and the second terminal; and a code conversion section (decoder) that generates signals (row codes, column codes) to ON/OFF control current cells so as to change the number of current cells that connect the first terminal and the second terminal according to change in an externally input code and that inputs the generated signals to the current cell array section.




semiconductor

Semiconductor device for restraining creep-age phenomenon and fabricating method thereof

The present invention relates generally to a semiconductor device and, more specifically, to optimizing the creep-age distance of the power semiconductor device and a preparation method thereof. The power semiconductor device includes a chip mounting unit with a die paddle and a plurality of leads arranged side by side located close to one side edge of the die paddle in a non-equidistant manner, a semiconductor chip attached on the die paddle, and a plastic packaging body covering the die paddle, the semiconductor chip, where the plastic packing body includes a plastic extension portion covering at least a part of a lead shoulder of a lead to obtain better electrical safety distance between the terminals of the semiconductor device, thus voltage creep-age distance of the device is increased.




semiconductor

Hybrid semiconductor module structure

Some implementations provide a structure that includes a first package substrate, a first component, a second package substrate, a second component, and a third component. The first package substrate has a first area. The first component has a first height and is positioned on the first area. The second package substrate is coupled to the first package substrate. The second package substrate has second and third areas. The second area of the second package substrate vertically overlaps with the first area of the first package substrate The third area of the second package substrate is non-overlapping with the first area of the first package substrate. The second component has a second height and is positioned on the second area. The third component is positioned on the third area. The third component has a third height that is greater than each of the first and second heights.




semiconductor

Semiconductor package and method of manufacturing the semiconductor package

The stack package includes a first semiconductor package and a second semiconductor package. The first semiconductor package includes a first substrate having a first modulus and at least one semiconductor chip mounted on the first substrate. The second semiconductor package stacked on the first semiconductor package and includes a second substrate having a second modulus and at least one semiconductor chip mounted on the second substrate. The second modulus is less than the first modulus. Even in the event that the first semiconductor package is under severe warpage due to a temperature change, the flexible second substrate, which includes e.g., polyimide or poly ethylene terephthalate, of the second semiconductor package may be less sensitive to the temperature change, thereby improving reliability of the stack package.




semiconductor

Merged fiducial for semiconductor chip packages

Systems, manufactures, methods and/or techniques for a merged fiducial for chip packages are described. According to some embodiments, an integrated circuit package may include a package substrate having a first side and a second side, a plurality of conductive traces coupled to the first side and a plurality of balls disposed on the second side. The balls may be adapted to electrically connect the laminate package to a circuit board. The integrated circuit package may include a plurality of ball pads disposed on the second side, the ball pads being adapted to electrically connect the plurality of balls to the plurality of conductive traces. One or more of the ball pads may be uniquely shaped when compared to the rest of the plurality of ball pads, optionally, to serve as a fiducial to designate an A1 pin or ball of the laminate package.




semiconductor

Nitride semiconductor and nitride semiconductor crystal growth method

A base at least one principal plane of which is a nitride is prepared for use in epitaxial growth. The base is placed on a susceptor in an epitaxial growth reactor and heated to a predetermined temperature (step A). The heating is started with inactive, nitrogen gas being supplied into the reactor. Then, active, NH3 gas is supplied. Then, a growth step (step B) of a first nitride semiconductor layer is started without an intervening step of thermally cleaning the principal nitride plane of the base. In step B, the first nitride semiconductor layer is epitaxially grown on a principal nitride plane of a base without supply of an Si source material. Then, a relatively thick, second nitride semiconductor layer is epitaxially grown on the first nitride semiconductor layer by supplying an n-type dopant source material (step C).




semiconductor

Semiconductor integrated circuit device and method of manufacturing same

In manufacturing an LSI, or semiconductor integrated circuit device, the step of assembling device (such as resin sealing step) is normally followed by a voltage-application test in an environment of high temperature (e.g., from 85 to 130° C.) and high humidity (e.g., about 80% RH). It has been found that separation of a titanium nitride anti-reflection film from an upper film and generation of cracks in the titanium nitride film at an upper surface edge part of the aluminum-based bonding pad applied with a positive voltage in the test is caused by an electrochemical reaction due to moisture incoming through the sealing resin and the like to generate oxidation and bulging of the titanium nitride film. These problems are addressed by removing the titanium nitride film over the pad in a ring or slit shape at peripheral area of the aluminum-based bonding pad.




semiconductor

Method for manufacturing semiconductor device

A larger substrate can be used, and a transistor having a desirably high field-effect mobility can be manufactured through formation of an oxide semiconductor layer having a high degree of crystallinity, whereby a large-sized display device, a high-performance semiconductor device, or the like can be put into practical use. A first multi-component oxide semiconductor layer is formed over a substrate and a single-component oxide semiconductor layer is formed thereover; then, crystal growth is carried out from a surface to an inside by performing heat treatment at 500° C. to 1000° C. inclusive, preferably 550° C. to 750° C. inclusive so that a first multi-component oxide semiconductor layer including single crystal regions and a single-component oxide semiconductor layer including single crystal regions are formed; and a second multi-component oxide semiconductor layer including single crystal regions is stacked over the single-component oxide semiconductor layer including single crystal regions.




semiconductor

Method of manufacturing silicon carbide semiconductor device

A first impurity region is formed by ion implantation through a first opening formed in a mask layer. By depositing a spacer layer on an etching stop layer on which the mask layer has been provided, a mask portion having the mask layer and the spacer layer is formed. By anisotropically etching the spacer layer, a second opening surrounded by a second sidewall is formed in the mask portion. A second impurity region is formed by ion implantation through the second opening. An angle of the second sidewall with respect to a surface is 90°±10° across a height as great as a second depth. Thus, accuracy in extension of an impurity region can be enhanced.




semiconductor

Semiconductor device and method of forming protection and support structure for conductive interconnect structure

A semiconductor device has a semiconductor wafer with a plurality of contact pads. A first insulating layer is formed over the semiconductor wafer and contact pads. A portion of the first insulating layer is removed, exposing a first portion of the contact pads, while leaving a second portion of the contact pads covered. An under bump metallization layer and a plurality of bumps is formed over the contact pads and the first insulating layer. A second insulating layer is formed over the first insulating layer, a sidewall of the under bump metallization layer, sidewall of the bumps, and upper surface of the bumps. A portion of the second insulating layer covering the upper surface of the bumps is removed, but the second insulating layer is maintained over the sidewall of the bumps and the sidewall of the under bump metallization layer.




semiconductor

Semiconductor device and method for manufacturing the same

It is an object to provide a semiconductor device including a thin film transistor with favorable electric properties and high reliability, and a method for manufacturing the semiconductor device with high productivity. In an inverted staggered (bottom gate) thin film transistor, an oxide semiconductor film containing In, Ga, and Zn is used as a semiconductor layer, and a buffer layer formed using a metal oxide layer is provided between the semiconductor layer and a source and drain electrode layers. The metal oxide layer is intentionally provided as the buffer layer between the semiconductor layer and the source and drain electrode layers, whereby ohmic contact is obtained.




semiconductor

Process for preparing a semiconductor structure for mounting

A process for preparing a semiconductor structure for mounting to a carrier is disclosed. The process involves causing a support material to substantially fill a void defined by surfaces formed in the semiconductor structure and causing the support material to solidify sufficiently to support the semiconductor structure when mounted to the carrier.




semiconductor

Semiconductor devices with field plates

A III-N device is described with a III-N material layer, an insulator layer on a surface of the III-N material layer, an etch stop layer on an opposite side of the insulator layer from the III-N material layer, and an electrode defining layer on an opposite side of the etch stop layer from the insulator layer. A recess is formed in the electrode defining layer. An electrode is formed in the recess. The insulator can have a precisely controlled thickness, particularly between the electrode and III-N material layer.




semiconductor

Method for fabricating a semiconductor device by bonding a layer to a support with curvature

The object of the invention is to provide a method for fabricating a semiconductor device having a peeled layer bonded to a base material with curvature. Particularly, the object is to provide a method for fabricating a display with curvature, more specifically, a light emitting device having an OLED bonded to a base material with curvature. An external force is applied to a support originally having curvature and elasticity, and the support is bonded to a peeled layer formed over a substrate. Then, when the substrate is peeled, the support returns into the original shape by the restoring force, and the peeled layer as well is curved along the shape of the support. Finally, a transfer object originally having curvature is bonded to the peeled layer, and then a device with a desired curvature is completed.




semiconductor

Semiconductor device and manufacturing method thereof

Disclosed is a semiconductor device including an oxide semiconductor film. A first oxide semiconductor film with a thickness of greater than or equal to 2 nm and less than or equal to 15 nm is formed over a gate insulating layer. First heat treatment is performed so that crystal growth from a surface of the first oxide semiconductor film to the inside thereof is caused, whereby a first crystal layer is formed. A second oxide semiconductor film with a thickness greater than that of the first oxide semiconductor film is formed over the first crystal layer. Second heat treatment is performed so that crystal growth from the first crystal layer to a surface of the second oxide semiconductor film is caused, whereby a second crystal layer is formed. Further, oxygen doping treatment is performed on the second crystal layer.




semiconductor

Method for manufacturing semiconductor device

To provide a method by which a semiconductor device including a thin film transistor with excellent electric characteristics and high reliability is manufactured with a small number of steps. After a channel protective layer is formed over an oxide semiconductor film containing In, Ga, and Zn, a film having n-type conductivity and a conductive film are formed, and a resist mask is formed over the conductive film. The conductive film, the film having n-type conductivity, and the oxide semiconductor film containing In, Ga, and Zn are etched using the channel protective layer and gate insulating films as etching stoppers with the resist mask, so that source and drain electrode layers, a buffer layer, and a semiconductor layer are formed.




semiconductor

Semiconductor element and method for manufacturing the same

An object is to provide a thin film transistor and a method for manufacturing the thin film transistor including an oxide semiconductor with a controlled threshold voltage, high operation speed, a relatively easy manufacturing process, and sufficient reliability. An impurity having influence on carrier concentration in the oxide semiconductor layer, such as a hydrogen atom or a compound containing a hydrogen atom such as H2O, may be eliminated. An oxide insulating layer containing a large number of defects such as dangling bonds may be formed in contact with the oxide semiconductor layer, such that the impurity diffuses into the oxide insulating layer and the impurity concentration in the oxide semiconductor layer is reduced. The oxide semiconductor layer or the oxide insulating layer in contact with the oxide semiconductor layer may be formed in a deposition chamber which is evacuated with use of a cryopump whereby the impurity concentration is reduced.




semiconductor

Method for producing Ga-containing group III nitride semiconductor

A method for producing a Ga-containing group III nitride semiconductor having reduced threading dislocation is disclosed. A buffer layer in a polycrystal, amorphous or polycrystal/amorphous mixed state, comprising AlGaN is formed on a substrate. The substrate having the buffer layer formed thereon is heat-treated at a temperature higher than a temperature at which a single crystal of a Ga-containing group III nitride semiconductor grows on the buffer layer and at a temperature that the Ga-containing group III nitride semiconductor does not grow, to reduce crystal nucleus density of the buffer layer as compared with the density before the heat treatment. After the heat treatment, the temperature of the substrate is decreased to a temperature that the Ga-containing group III nitride semiconductor grows, the temperature is maintained, and the Ga-containing group III nitride semiconductor is grown on the buffer layer.




semiconductor

Semiconductor device and method of forming interconnect structure for encapsulated die having pre-applied protective layer

A semiconductor device has a protective layer formed over an active surface of a semiconductor wafer. The semiconductor die with pre-applied protective layer are moved from the semiconductor wafer and mounted on a carrier. The semiconductor die and contact pads on the carrier are encapsulated. The carrier is removed. A first insulating layer is formed over the pre-applied protective layer and contact pads. Vias are formed in the first insulating layer and pre-applied protective layer to expose interconnect sites on the semiconductor die. An interconnect structure is formed over the first insulating layer in electrical contact with the interconnect sites on the semiconductor die and contact pads. The interconnect structure has a redistribution layer formed on the first insulating layer, a second insulating layer formed on the redistribution layer, and an under bump metallization layer formed over the second dielectric in electrical contact with the redistribution layer.




semiconductor

Semiconductor device and manufacturing method thereof

A semiconductor device having favorable electric characteristics and a manufacturing method thereof are provided. A transistor includes an oxide semiconductor layer formed over an insulating layer, a source electrode layer and a drain electrode layer which overlap with part of the oxide semiconductor layer, a gate insulating layer in contact with part of the oxide semiconductor layer, and a gate electrode layer over the gate insulating layer. In the transistor, a buffer layer having n-type conductivity is formed between the source electrode layer and the oxide semiconductor layer and between the drain electrode layer and the oxide semiconductor layer. Thus, parasitic resistance is reduced, resulting in improvement of on-state characteristics of the transistor.




semiconductor

Enhanced patterning uniformity of gate electrodes of a semiconductor device by late gate doping

When forming sophisticated semiconductor-based gate electrode structures of transistors, the pre-doping of one type of gate electrode structure may be accomplished after the actual patterning of the electrode material by using an appropriate mask or fill material for covering the active regions and using a lithography mask. In this manner, a high degree of flexibility is provided with respect to selecting an appropriate patterning regime, while at the same time a uniform and superior cross-sectional shape for any type of gate electrode structure is obtained.




semiconductor

Semiconductor device and method for manufacturing semiconductor device

A highly reliable semiconductor device is manufactured by giving stable electric characteristics to a transistor in which an oxide semiconductor film is used for a channel. An oxide semiconductor film which can have a first crystal structure by heat treatment and an oxide semiconductor film which can have a second crystal structure by heat treatment are formed so as to be stacked, and then heat treatment is performed; accordingly, crystal growth occurs with the use of an oxide semiconductor film having the second crystal structure as a seed, so that an oxide semiconductor film having the first crystal structure is formed. An oxide semiconductor film formed in this manner is used for an active layer of the transistor.




semiconductor

Manufacturing method of semiconductor film, manufacturing method of semiconductor device, and manufacturing method of photoelectric conversion device

A method for forming an amorphous semiconductor which contains an impurity element and has low resistivity and a method for manufacturing a semiconductor device with excellent electrical characteristics with high yield are provided. In the method for forming an amorphous semiconductor containing an impurity element, which utilizes a plasma CVD method, pulse-modulated discharge inception voltage is applied to electrodes under the pressure and electrode distance with which the minimum discharge inception voltage according to Paschen's Law can be obtained, whereby the amorphous semiconductor which contains an impurity element and has low resistivity is formed.




semiconductor

Semiconductor device including a current mirror circuit

In a semiconductor device, where, with respect to a parasitic resistor in a current mirror circuit, a compensation resistor for compensating the parasitic resistor is provided in the current mirror circuit, the current mirror circuit includes at least two thin film transistors. The thin film transistors each have an island-shaped semiconductor film having a channel formation region and source or drain regions, a gate insulating film, a gate electrode, and source or drain electrodes, and the compensation resistor compensates the parasitic resistor of any one of the gate electrode, the source electrode, and the drain electrode. In addition, each compensation resistor has a conductive layer containing the same material as the gate electrode, the source or drain electrodes, or the source or drain regions.




semiconductor

Semiconductor device and method of manufacturing the semiconductor device

In a semiconductor device, a first interlayer insulating layer made of an inorganic material and formed on inverse stagger type TFTs, a second interlayer insulating layer made of an organic material and formed on the first interlayer insulating layer, and a pixel electrode formed in contact with the second interlayer insulating layer are disposed on a substrate, and an input terminal portion that is electrically connected to a wiring of another substrate is provided on an end portion of the substrate. The input terminal portion includes a first layer made of the same material as that of the gate electrode and a second layer made of the same material as that of the pixel electrode. With this structure, the number of photomasks used in the photolithography method can be reduced to 5.




semiconductor

Liquid crystal display device, semiconductor device, and electronic appliance

The liquid crystal display device includes an island-shaped first semiconductor film 102 which is formed over a base insulating film 101 and in which a source 102d, a channel forming region 102a, and a drain 102b are formed; a first electrode 102c which is formed of a material same as the first semiconductor film 102 to be the source 102d or the drain 102b and formed over the base insulating film 101; a second electrode 108 which is formed over the first electrode 102c and includes a first opening pattern 112; and a liquid crystal 110 which is provided over the second electrode 108.




semiconductor

Liquid crystal display device, semiconductor device, and electronic appliance

The liquid crystal display device includes an island-shaped first semiconductor film 102 which is formed over a base insulating film 101 and in which a source 102d, a channel forming region 102a, and a drain 102b are formed; a first electrode 102c which is formed of a material same as the first semiconductor film 102 to be the source 102d or the drain 102b and formed over the base insulating film 101; a second electrode 108 which is formed over the first electrode 102c and includes a first opening pattern 112; and a liquid crystal 110 which is provided over the second electrode 108.




semiconductor

Semiconductor device, light-emitting device, and electronic device

An object is to prevent an operation defect and to reduce an influence of fluctuation in threshold voltage of a field-effect transistor. A field-effect transistor, a switch, and a capacitor are provided. The field-effect transistor includes a first gate and a second gate which overlap with each other with a channel formation region therebetween, and the threshold voltage of the field-effect transistor varies depending on the potential of the second gate. The switch has a function of determining whether electrical connection between one of a source and a drain of the field-effect transistor and the second gate of the field-effect transistor is established. The capacitor has a function of holding a voltage between the second gate of the field-effect transistor and the other of the source and the drain of the field-effect transistor.




semiconductor

Semiconductor reference voltage generating device

A reference voltage generating circuit has more than two first wells each having a first impurity concentration and more than two second wells each having a second impurity concentration different from the first impurity concentration. A first group of MOS transistors has more than two MOS transistors formed in respective ones of the first wells. A second group of MOS transistors has More than two MOS transistors formed in respective ones of the second wells.




semiconductor

Control device and method for actuating a semiconductor switch

A control device for influencing a flow of energy in a load circuit between an electrical voltage source and an electrical load, having a semiconductor switch including a conductive section which is formed between an input connection and an output connection, can be looped into the load circuit, and has an electrical resistance adjustable by means of an electrical potential which can be applied to a control connection associated with the semiconductor switch, and having a control circuit which is coupled to the control connection and includes a freewheeling means connected in parallel to the load. The control circuit is designed to supply a control current at the control connection which is proportional to a voltage via the freewheeling means.




semiconductor

Semiconductor device having pull-up circuit and pull-down circuit

To reduce power supply noises occurring in a control circuit unit for controlling an output buffer. A semiconductor device includes unit buffers for driving a data output terminal, impedance control circuits for controlling the unit buffers, and a control circuit unit for controlling the impedance control circuits. The impedance control circuits and the control circuit unit operate by mutually-different power supplies, the control circuit unit supplies pull-up data and pull-down data in mutually reverse phase to the impedance control circuits, and the impedance control circuits convert the pull-up data and the pull-down data from reverse phase to in-phase and supply the same to the unit buffers. Thereby, a noise is difficult to occur in a power supply VDD used for the control circuit unit.




semiconductor

Semiconductor device and method for driving the same

A semiconductor device including an integrator circuit, in which electric discharge from a capacitor can be reduced to shorten time required for charging the capacitor in the case where supply of power supply voltage is stopped and restarted, and a method for driving the semiconductor device are provided. One embodiment has a structure in which a transistor with small off-state current is electrically connected in series to a capacitor in an integrator circuit. Further, in one embodiment of the present invention, a transistor with small off-state current is electrically connected in series to a capacitor in an integrator circuit; the transistor is on in a period during which power supply voltage is supplied; and the transistor is off in a period during which supply of the power supply voltage is stopped.




semiconductor

Semiconductor storage device

A semiconductor storage device which stops and resumes the supply of power supply voltage without the necessity of saving and returning a data signal between a volatile storage device and a nonvolatile storage device is provided. In the nonvolatile semiconductor storage device, the volatile storage device and the nonvolatile storage device are provided without separation. Specifically, in the semiconductor storage device, data is held in a data holding portion connected to a transistor including a semiconductor layer containing an oxide semiconductor and a capacitor. The potential of the data held in the data holding portion is controlled by a data potential holding circuit and a data potential control circuit. The data potential holding circuit can output data without leaking electric charge, and the data potential control circuit can control the potential of the data held in the data holding portion without leaking electric charge by capacitive coupling through the capacitor.




semiconductor

Pulse generation circuit and semiconductor device

Two gate drivers each comprising a shift register and a demultiplexer including single conductivity type transistors are provided on left and right sides of a pixel portion. Gate lines are alternately connected to the left-side and right-side gate drivers in every M rows. The shift register includes k first unit circuits connected in cascade. The demultiplexer includes k second unit circuits to each of which a signal is input from the first unit circuit and to each of which M gate lines are connected. The second unit circuit selects one or more wirings which output an input signal from the first unit circuit among M gate lines, and outputs the signal from the first unit circuit to the selected wiring(s). Since gate signals can be output from an output of a one-stage shift register to the M gate lines, the width of the shift register can be narrowed.




semiconductor

Semiconductor device and communication interface circuit

A semiconductor device prevents recognition failure in mutual recognition between a host and a device compliant with USB Specifications. The semiconductor device includes: an interterminal opening/closing section having a plurality of first conductivity type MOS transistors, the respective sources or drains of which are cascaded, in which the source or drain of a first-stage MOS transistor among the cascaded MOS transistors is used as a first terminal, the source or drain of a final-stage MOS transistor among the cascaded MOS transistors is used as a second terminal, and the respective gates of the cascaded MOS transistors receive a control signal for controlling the opening or short-circuiting between the first and second terminals; and a current bypass section that reduces a current flowing into either one connection node coupling the respective sources or drains of the cascaded MOS transistors.




semiconductor

Power semiconductor device

A transistor being one of an IGBT and a MOSFET and arranged near a gate control circuit applies a gate control signal from the gate control circuit to the gate of a transistor arranged far from the gate control circuit. A gate control signal is applied via a resistive element to the transistor arranged near the gate control circuit.




semiconductor

Method and semiconductor apparatus for reducing power when transmitting data between devices in the semiconductor apparatus

A semiconductor apparatus is provided herein for reducing power when transmitting data between a first device and a second device in the semiconductor apparatus. Additional circuitry is added to the semiconductor apparatus to create a communication system that decreases a number of state changes for each signal line of a data bus between the first device and the second device for all communications. The additional circuitry includes a decoder coupled to receive and convert a value from the first device for transmission over the data bus to an encoder that provides a recovered (i.e., re-encoded) version of the value to the second device. One or more multiplexers may also be included in the additional circuitry to support any number of devices.




semiconductor

Thin film semiconductor device and organic light-emitting display apparatus

An apparatus and a method of manufacturing a thin film semiconductor device having a thin film transistor with improved electrical properties in organic light-emitting display apparatus are described.




semiconductor

Shift register, semiconductor device, display device, and electronic device

The invention provides a semiconductor device and a shift register, in which low noise is caused in a non-selection period and a transistor is not always on. First to fourth transistors are provided. One of a source and a drain of the first transistor is connected to a first wire, the other of the source and the drain thereof is connected to a gate electrode of the second transistor, and a gate electrode thereof is connected to a fifth wire. One of a source and a drain of the second transistor is connected to a third wire and the other of the source and the drain thereof is connected to a sixth wire. One of a source and a drain of the third transistor is connected to a second wire, the other of the source and the drain thereof is connected to the gate electrode of the second transistor, and a gate electrode thereof is connected to a fourth wire. One of a source and a drain of the fourth transistor is connected to the second wire, the other of the source and the drain thereof is connected to the sixth wire, and a gate electrode thereof is connected to the fourth wire.




semiconductor

Semiconductor device for battery control and battery pack

A semiconductor device for battery control includes a CPU, a first bus coupled to the CPU, a second bus not coupled to the CPU, and a protective function circuit for protecting a battery from stress applied thereto. The semiconductor device also includes a non-volatile memory storing trimming data, a trimming circuit to perform trimming required to allow the protective function circuit to exert a protective function, and a bus control circuit capable of selectively coupling the first bus and the second bus to the non-volatile memory. The semiconductor device further includes a transfer logic circuit which causes, by making the bus control circuit select the second bus, a trimming data transfer path leading from the non-volatile memory to the trimming circuit to be formed and the trimming data stored in the non-volatile memory to be transferred to the trimming circuit without involving the CPU.




semiconductor

Semiconductor device

An object is to provide a semiconductor device using an oxide semiconductor having stable electric characteristics and high reliability. A transistor including the oxide semiconductor film in which a top surface portion of the oxide semiconductor film is provided with a metal oxide film containing a constituent similar to that of the oxide semiconductor film and functioning as a channel protective film is provided. In addition, the oxide semiconductor film used for an active layer of the transistor is an oxide semiconductor film highly purified to be electrically i-type (intrinsic) by heat treatment in which impurities such as hydrogen, moisture, a hydroxyl group, or a hydride are removed from the oxide semiconductor and oxygen which is a major constituent of the oxide semiconductor and is reduced concurrently with a step of removing impurities is supplied.




semiconductor

Semiconductor light-emitting device

A semiconductor light-emitting device includes a lamination of semiconductor layers including a first layer of a first conductivity type, an active layer, and a second layer of a second conductivity type; a transparent conductive film formed on a principal surface of the lamination and having an opening; a pad electrode formed on part the opening; and a wiring electrode connected with the pad electrode, formed on another part of the opening while partially overlapping the transparent conductive film; wherein contact resistance between the transparent conductive film and the lamination is larger than contact resistance between the wiring electrode and the lamination. Field concentration at the wiring electrode upon application of high voltage is mitigated by the overlapping transparent conductive film.