roles

Re: David Oliver: Is abuse towards doctors in government roles unfair?




roles

Mother’s Day 2020: Here’s how brands are celebrating the different roles of a mother

From Shoppers Stop to Fujifilm and Nivea, brands take to social media to celebrate Mother’s Day




roles

Survey Highlights Growth In IT Security Roles




roles

TV actors share their dream roles!




roles

Coronavirus: BHP offers 1,500 roles at mines around the country

The roles include machinery and production operators, truck drivers, mechanics, electricians, boilermakers, cleaners and warehouse roles.




roles

HECT E3 ubiquitin ligases - emerging insights into their biological roles and disease relevance

Yaya Wang
Apr 7, 2020; 133:jcs228072-jcs228072
REVIEW




roles

The Next Decade of Nursing - NAM Town Halls Explore How New Roles, New Tech, and Social Needs Are Transforming the Field

You can find a nurse navigating city streets, on her way to a home visit. Or, maybe he is recording educational videos on preventing ear infections. She might even be running for city council.




roles

Why space roles are so good for women

It’s as if Hollywood writers and directors have decided that by the time we are fighting space wars, misogyny will be a thing of the past.



  • Arts & Culture

roles

7 overnight breakfast casseroles for an easy Christmas morning

Assemble these casseroles the night before. Throw them in the oven Christmas morning and breakfast is ready in about an hour.




roles

7 tasty casseroles to try for Lent

You don't have to give up comfort food when you go meat-free for Lent (or any time of year.)




roles

Find Your Perfect Fit: A Quick Guide for Job Roles in the Data World

Data related positions are considered the hottest in the job market during the last couple of years. While everyone wants to join the party and enter this fascinating field, it is essential to first get an understanding. In this quick guide, I’ll do my best to dispel the confusion by crystalizing the essence of the different positions.




roles

Titanocenes, the use thereof, and N-substituted pyrroles

Titanocenes containing two 5-membered cyclodienyl groups, for example cyclopentadienyl, and one or two 6-membered carbocyclic or 5- or 6-membered heterocyclic aromatic rings which are substituted by a fluorine atom in at least one of the two ortho-positions to the titanium-carbon bond and contain, as a further substituent, unsubstituted or substituted 1-pyrryl, are suitable as photoinitiators for radiation-induced polymerization of ethylenically unsaturated compounds.




roles

Heteroleptic (allyl)(pyrroles-2-aldiminate) metal-containing precursors, their synthesis and vapor deposition thereof to deposit metal-containing films

Disclosed are metal-containing precursors having the formula Compound (I) wherein: —M is a metal selected from Ni, Co, Mn, Pd; and —each of R-1, R2, R3, R4, R5, R6, R7, R8, R9, and R10 are independently selected from H; a C1-C4 linear, branched, or cyclic alkyl group; a C1-C4 linear, branched, or cyclic alkylsilyl group (mono, bis, or tris alkyl); a C1-C4 linear, branched, or cyclic alkylamino group; or a C1-C4 linear, branched, or cyclic fluoroalkyl group. Also disclosed are methods of synthesizing and using the disclosed metal-containing precursors to deposit metal-containing films on a substrate via a vapor deposition process.




roles

Chris Pratt Offers Roles in New 'Jurassic' Movie for Coronavirus Charity

Fans are given the chance to be eaten by a dinosaur in the upcoming 'Jurassic World' movie in exchange for donations to Covid-19 relief efforts amid the ongoing pandemic.




roles

WNIJ Presents "Context - Safe Neighborhoods, Safe City: Changing Roles of Police and Community"

There’s been a lot of news about strained relationships between police officers and the citizens they serve. Police officials say they’re making changes to improve relations and build trust within the community but critics claim not enough is being done. WNIJ's public forum, “Context - Safe Neighborhoods, Safe City: Changing Roles of Police and Community,” was held Thursday, August 27, 2015, at the Kresge Hall in the Riverfront Museum Park, in Rockford. WNIJ Reporter Sue Stephens moderated the Context panel. Guests were: Rockford Mayor Lawrence J. Morrissey Rockford Police Chief Chet Epperson State Representative Litesa Wallace United Way Community Impact Manager Matthew Simpson For more information about WNIJ's Context series, please contact Maria Boynton, Director of Community Engagement, at mboynton@niu.edu or at (815) 753-9000.




roles

From the Naxos Blog: Swiss roles (Feb 07, 2020)

Naxos has travelled far since its founding in 1987 as a budget label with a compelling business model, a chairman of great foresight and a DNA oozing innovation. It has developed into a web of avenues that link art music with music lovers. The Naxos label is now just one of the constituents of the Naxos Music Group; a host of other independent labels have joined the group over the years, benefitting from the Naxos global infrastructure, but each retaining its i ...more




roles

IBM Australia to roll out neurodiversity program, hiring people with autism to fill variety of IT roles

IBM is hiring 10 employees with autism at its Client Innovation Centre in Ballarat, joining the growing trend of neurodiversity programs in the workplace.




roles

Impacts on Practice: Defining Leadership Roles at the Athens-Ben Epps Airport

TRB's Airport Cooperative Research Program (ACRP) latest Impacts on Practice explores the impact ACRP Research Report 58 : Airport Industry Familiarization and Training for Part-Time Airport Policy Makers has helped airport policy leaders, stakeholders, and policy-related decision makers understand airport administrative and operational requirements in order to assist them in making more informed policy decisions. According to an Airport Authority Board Member and Chair of the Air Service Development Com...



  • http://www.trb.org/Resource.ashx?sn=Coveracrp_iop_058

roles

GPR160 de-orphanization reveals critical roles in neuropathic pain in rodents

Treating neuropathic pain is challenging and novel non–opioid-based medicines are needed. Using unbiased receptomics, transcriptomic analyses, immunofluorescence, and in situ hybridization, we found that the expression of the orphan GPCR Gpr160 and GPR160 increased in the rodent dorsal horn of the spinal cord following traumatic nerve injury. Genetic and immunopharmacological approaches demonstrated that GPR160 inhibition in the spinal cord prevented and reversed neuropathic pain in male and female rodents without altering normal pain response. GPR160 inhibition in the spinal cord attenuated sensory processing in the thalamus, a key relay in the sensory discriminative pathways of pain. We also identified cocaine- and amphetamine-regulated transcript peptide (CARTp) as a GPR160 ligand. Inhibiting endogenous CARTp signaling in spinal cord attenuated neuropathic pain, whereas exogenous intrathecal CARTp evoked painful hypersensitivity through GPR160-dependent ERK and cAMP response element–binding protein (CREB). Our findings de-orphanize GPR160, identify it as a determinant of neuropathic pain and potential therapeutic target, and provide insights into its signaling pathways. CARTp is involved in many diseases including depression and reward and addiction; de-orphanization of GPR160 is a major step forward understanding the role of CARTp signaling in health and disease.




roles

Peer support roles in mental health services

We've published Insight 31 - Peer support roles in mental health services - which was written by Louise Christie, Network Manager (Policy and Development) at Scottish Recovery Network. 

The print version has been newly designed to reflect our new brand and colours. I think you'll agree that it looks rather lovely. Print copies are available on request

read more




roles

Despite relatively small numbers, more women are assuming leadership roles in the US fire service

It will come as no surprise to women in the fire service but the number of female firefighters in the U.S. remains relatively low, according to the most recent U.S. Fire Department Profile from NFPA. The newest data was released today on the heels of a




roles

Joe Maddon is optimistic young Angels starting pitchers can increase roles

The Angels failed to land a standout starter, or even Ross Stripling, during the offseason, but manager Joe Maddon expressed confidence in second-year starters.




roles

New children’s book is #firefightingsexism by challenging gender roles

London Fire Brigade has worked with Butterfly Books to produce a new children’s picture book that aims to tackle misconceptions about women’s roles in the emergency services




roles

Brain manganese and the balance between essential roles and neurotoxicity [Molecular Bases of Disease]

Manganese (Mn) is an essential micronutrient required for the normal development of many organs, including the brain. Although its roles as a cofactor in several enzymes and in maintaining optimal physiology are well-known, the overall biological functions of Mn are rather poorly understood. Alterations in body Mn status are associated with altered neuronal physiology and cognition in humans, and either overexposure or (more rarely) insufficiency can cause neurological dysfunction. The resultant balancing act can be viewed as a hormetic U-shaped relationship for biological Mn status and optimal brain health, with changes in the brain leading to physiological effects throughout the body and vice versa. This review discusses Mn homeostasis, biomarkers, molecular mechanisms of cellular transport, and neuropathological changes associated with disruptions of Mn homeostasis, especially in its excess, and identifies gaps in our understanding of the molecular and biochemical mechanisms underlying Mn homeostasis and neurotoxicity.




roles

A Proteome-wide, Quantitative Survey of In Vivo Ubiquitylation Sites Reveals Widespread Regulatory Roles

Sebastian A. Wagner
Oct 1, 2011; 10:M111.013284-M111.013284
Research




roles

Roles of active-site residues in catalysis, substrate binding, cooperativity, and the reaction mechanism of the quinoprotein glycine oxidase [Enzymology]

The quinoprotein glycine oxidase from the marine bacterium Pseudoalteromonas luteoviolacea (PlGoxA) uses a protein-derived cysteine tryptophylquinone (CTQ) cofactor to catalyze conversion of glycine to glyoxylate and ammonia. This homotetrameric enzyme exhibits strong cooperativity toward glycine binding. It is a good model for studying enzyme kinetics and cooperativity, specifically for being able to separate those aspects of protein function through directed mutagenesis. Variant proteins were generated with mutations in four active-site residues, Phe-316, His-583, Tyr-766, and His-767. Structures for glycine-soaked crystals were obtained for each. Different mutations had differential effects on kcat and K0.5 for catalysis, K0.5 for substrate binding, and the Hill coefficients describing the steady-state kinetics or substrate binding. Phe-316 and Tyr-766 variants retained catalytic activity, albeit with altered kinetics and cooperativity. Substitutions of His-583 revealed that it is essential for glycine binding, and the structure of H583C PlGoxA had no active-site glycine present in glycine-soaked crystals. The structure of H767A PlGoxA revealed a previously undetected reaction intermediate, a carbinolamine product-reduced CTQ adduct, and exhibited only negligible activity. The results of these experiments, as well as those with the native enzyme and previous variants, enabled construction of a detailed mechanism for the reductive half-reaction of glycine oxidation. This proposed mechanism includes three discrete reaction intermediates that are covalently bound to CTQ during the reaction, two of which have now been structurally characterized by X-ray crystallography.




roles

Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis

IJ Goldberg
Apr 1, 1996; 37:693-707
Reviews




roles

Roles of the DOCK-D family proteins in a mouse model of neuroinflammation [Neurobiology]

The DOCK-D (dedicator of cytokinesis D) family proteins are atypical guanine nucleotide exchange factors that regulate Rho GTPase activity. The family consists of Zizimin1 (DOCK9), Zizimin2 (DOCK11), and Zizimin3 (DOCK10). Functions of the DOCK-D family proteins are presently not well-explored, and the role of the DOCK-D family in neuroinflammation is unknown. In this study, we generated three mouse lines in which DOCK9 (DOCK9−/−), DOCK10 (DOCK10−/−), or DOCK11 (DOCK11−/−) had been deleted and examined the phenotypic effects of these gene deletions in MOG35–55 peptide-induced experimental autoimmune encephalomyelitis, an animal model of the neuroinflammatory disorder multiple sclerosis. We found that all the gene knockout lines were healthy and viable. The only phenotype observed under normal conditions was a slightly smaller proportion of B cells in splenocytes in DOCK10−/− mice than in the other mouse lines. We also found that the migration ability of macrophages is impaired in DOCK10−/− and DOCK11−/− mice and that the severity of experimental autoimmune encephalomyelitis was ameliorated only in DOCK10−/− mice. No apparent phenotype was observed for DOCK9−/− mice. Further investigations indicated that lipopolysaccharide stimulation up-regulates DOCK10 expression in microglia and that microglial migration is decreased in DOCK10−/− mice. Up-regulation of C–C motif chemokine ligand 2 (CCL2) expression induced by activation of Toll-like receptor 4 or 9 signaling was reduced in DOCK10−/− astrocytes compared with WT astrocytes. Taken together, our findings suggest that DOCK10 plays a role in innate immunity and neuroinflammation and might represent a potential therapeutic target for managing multiple sclerosis.




roles

Brain manganese and the balance between essential roles and neurotoxicity [Molecular Bases of Disease]

Manganese (Mn) is an essential micronutrient required for the normal development of many organs, including the brain. Although its roles as a cofactor in several enzymes and in maintaining optimal physiology are well-known, the overall biological functions of Mn are rather poorly understood. Alterations in body Mn status are associated with altered neuronal physiology and cognition in humans, and either overexposure or (more rarely) insufficiency can cause neurological dysfunction. The resultant balancing act can be viewed as a hormetic U-shaped relationship for biological Mn status and optimal brain health, with changes in the brain leading to physiological effects throughout the body and vice versa. This review discusses Mn homeostasis, biomarkers, molecular mechanisms of cellular transport, and neuropathological changes associated with disruptions of Mn homeostasis, especially in its excess, and identifies gaps in our understanding of the molecular and biochemical mechanisms underlying Mn homeostasis and neurotoxicity.




roles

Securing Peace in the 21st Century: The Roles of Diplomacy and Statesmanship




roles

Lipid rafts and neurodegeneration: structural and functional roles in physiologic aging and neurodegenerative diseases [Thematic Reviews]

Lipid rafts are small, dynamic membrane areas characterized by the clustering of selected membrane lipids as the result of the spontaneous separation of glycolipids, sphingolipids, and cholesterol in a liquid-ordered phase. The exact dynamics underlying phase separation of membrane lipids in the complex biological membranes are still not fully understood. Nevertheless, alterations in the membrane lipid composition affect the lateral organization of molecules belonging to lipid rafts. Neural lipid rafts are found in brain cells, including neurons, astrocytes, and microglia, and are characterized by a high enrichment of specific lipids depending on the cell type. These lipid rafts seem to organize and determine the function of multiprotein complexes involved in several aspects of signal transduction, thus regulating the homeostasis of the brain. The progressive decline of brain performance along with physiological aging is at least in part associated with alterations in the composition and structure of neural lipid rafts. In addition, neurodegenerative conditions, such as lysosomal storage disorders, multiple sclerosis, and Parkinson’s, Huntington’s, and Alzheimer’s diseases, are frequently characterized by dysregulated lipid metabolism, which in turn affects the structure of lipid rafts. Several events underlying the pathogenesis of these diseases appear to depend on the altered composition of lipid rafts. Thus, the structure and function of lipid rafts play a central role in the pathogenesis of many common neurodegenerative diseases.




roles

Emerging Roles for the Nucleolus 2019 [Meeting Report]

IntroductionThe nucleolus is the central organelle within eukaryotic cells whose primary function is to generate ribosomes, the major protein producing machines within all cells. New roles for the nucleolus are continuously emerging as we explore its molecular intricacies. Despite the central and fundamental role of the nucleolus in cell biology, there has previously been no single official meeting that enables the gathering of scientists whose research converges on the nucleolus. As a result, the community of researchers who study this organelle risks fragmentation across disciplines. The Emerging Roles for the Nucleolus Symposium, which has now taken place twice on a biennial basis, first in 2017 (1) and again in 2019, therefore, represents the first of its kind. The overarching goals of this symposium are (a) to convene researchers who study the nucleolus across model systems (yeast, nematodes, fruit flies, mouse, human cell lines) and biological perspectives (structural, biophysical, molecular, cellular, pathophysiology), (b) to share and disseminate the latest research breakthroughs in nucleolar biology, (c) to promote interaction, engagement, and collaboration centered on the nucleolus across disciplines, and (d) to provide trainees and early career investigators with an organelle-specific scientific community of support.The second Emerging Roles for the Nucleolus meeting was sponsored by the American Society for Biochemistry and Molecular Biology and was held at the Stowers Institute for Medical Research in Kansas City, MO, from October 24 to October 27, 2019. It was organized by Jennifer Gerton (Stowers Institute), Francesca Duncan (Northwestern University Feinberg School of Medicine), and Craig Pikaard...




roles

Withdrawal: Distinct roles of Ape1 protein, an enzyme involved in DNA repair, in high or low linear energy transfer ionizing radiation-induced cell killing. [Withdrawals/Retractions]

VOLUME 289 (2014) PAGES 30635–30644This article has been withdrawn by Guangnan Chen, Dongkyoo Park, Francis A. Cucinotta, David S. Yu, Xingming Deng, William S. Dynan, Paul W. Doetsch, and Ya Wang. Hongyan Wang, Xiang Wang, Xiangming Zhang, and Xiaobing Tang could not be reached. The last two lanes of the actin immunoblot in Fig. 1A were reused in the last two lanes of the actin immunoblot in Fig. 1C. In Fig. 2A, the γ-H2AX and the merge with DAPI images for no IR treatment do not match. In Fig. 3A, lanes 3 and 4 of the γ-H2AX immunoblot were reused in lanes 7 and 8, and lanes 5 and 6 of the H2A immunoblot were reused in lanes 7 and 8. In Fig. 3B, lanes 5 and 6 of the H2A immunoblot were reused in lanes 7 and 8. In Fig. 3C, lanes 5 and 6 of the γ-H2AX immunoblot were reused in lanes 7 and 8. Additionally, lanes 1 and 2 of the H2A immunoblot were reused in lanes 3 and 4. In Fig. 3D, lanes 1 and 2 of the Mre11 immunoblot from lysates were reused in lanes 4 and 5. In the γ-H2AX immunoblot, lane 3 was reused in lane 7, and lane 4 was reused in lanes 6 and 8. Also in the H2A immunoblot, lanes 1 and 2 were reused in lanes 3 and 4. In Fig. 4B, lanes 2 and 6 of the Mre11 immunoblot from Ogg1−/− cells are the same. In the Ape1...




roles

Roles of endogenous ether lipids and associated PUFA in the regulation of ion channels and their relevance for disease

Delphine Fontaine
Apr 7, 2020; 0:jlr.RA120000634v1-jlr.RA120000634
Research Articles




roles

Roles of endogenous ether lipids and associated PUFA in the regulation of ion channels and their relevance for disease [Research Articles]

Ether lipids (ELs) are lipids characterized by the presence of either an ether linkage (alkyl lipids) or a vinyl ether linkage (i.e. plasmalogens [Pls]) at the sn1 position of the glycerol backbone and they are enriched in PUFAs at the sn2 position. In this review, we highlight that ELs have various biological functions, act as a reservoir for second messengers (such as PUFAs), and have roles in many diseases. Some of the biological effects of ELs may be associated with their ability to regulate ion channels that control excitation-contraction/secretion/mobility coupling and therefore cell physiology. These channels are embedded in lipid membranes, and lipids can regulate their activities directly or indirectly as second messengers or by incorporating into membranes. Interestingly, ELs and EL-derived PUFAs have been reported to play a key role in several pathologies, including neurological disorders, cardiovascular diseases, and cancers. Investigations leading to a better understanding of their mechanisms of action in pathologies have opened a new field in cancer research. In summary, newly identified lipid regulators of ion channels, such as ELs and PUFAs, may represent valuable targets to improve disease diagnosis and advance the development of new therapeutic strategies for managing a range of diseases and conditions.




roles

Lipid rafts and neurodegeneration: structural and functional roles in physiologic aging and neurodegenerative diseases [Thematic Reviews]

Lipid rafts are small, dynamic membrane areas characterized by the clustering of selected membrane lipids as the result of the spontaneous separation of glycolipids, sphingolipids, and cholesterol in a liquid-ordered phase. The exact dynamics underlying phase separation of membrane lipids in the complex biological membranes are still not fully understood. Nevertheless, alterations in the membrane lipid composition affect the lateral organization of molecules belonging to lipid rafts. Neural lipid rafts are found in brain cells, including neurons, astrocytes, and microglia, and are characterized by a high enrichment of specific lipids depending on the cell type. These lipid rafts seem to organize and determine the function of multiprotein complexes involved in several aspects of signal transduction, thus regulating the homeostasis of the brain. The progressive decline of brain performance along with physiological aging is at least in part associated with alterations in the composition and structure of neural lipid rafts. In addition, neurodegenerative conditions, such as lysosomal storage disorders, multiple sclerosis, and Parkinson’s, Huntington’s, and Alzheimer’s diseases, are frequently characterized by dysregulated lipid metabolism, which in turn affects the structure of lipid rafts. Several events underlying the pathogenesis of these diseases appear to depend on the altered composition of lipid rafts. Thus, the structure and function of lipid rafts play a central role in the pathogenesis of many common neurodegenerative diseases.




roles

Intense Exercise Has Unique Effects on Both Insulin Release and Its Roles in Glucoregulation: Implications for Diabetes

Errol B. Marliss
Feb 1, 2002; 51:S271-S283
Section 6: Pusatile and Phasic Insulin Release in Normal and Diabetic Men




roles

David Oliver: Is abuse towards doctors in government roles unfair?




roles

As Trump Weighs Fate of Immigrant Students, Schools Ponder Their Roles

While President Donald Trump signed executive orders this week that could have widespread impact on immigrant communities, many in K-12 education await word on his decision on Deferred Action for Childhood Arrivals.




roles

New job roles: The Future of cybersecurity jobs in India

The rate at which developments are happening means a cybersecurity experts need to constantly update with not only the latest tools and gadgets to hit the market, but also with the latest trends and happenings in the domain.



  • Jobs and Education


roles

EWC’s USSP and USTL Alumni Play Vital Roles in their Countries’ Development

USTL and USSP student fellows meet with Julia Findlay in the U.S. State Department’s Office of Academic Exchanges.




roles

John MacArthur on Men's and Women's Roles

Why should the modern church subscribe to the outdated roles for men and women prescribed in Scripture? Shouldn’t the culture of the church closely mirror the culture of the world? Won’t excluding women from leadership turn off men and women who need to be reached with the gospel?

READ MORE




roles

More Starring Roles for Booze in Kids' Movies, Study Finds

Title: More Starring Roles for Booze in Kids' Movies, Study Finds
Category: Health News
Created: 5/4/2017 12:00:00 AM
Last Editorial Review: 5/4/2017 12:00:00 AM




roles

Lipid rafts and neurodegeneration: structural and functional roles in physiologic aging and neurodegenerative diseases [Thematic Reviews]

Lipid rafts are small, dynamic membrane areas characterized by the clustering of selected membrane lipids as the result of the spontaneous separation of glycolipids, sphingolipids, and cholesterol in a liquid-ordered phase. The exact dynamics underlying phase separation of membrane lipids in the complex biological membranes are still not fully understood. Nevertheless, alterations in the membrane lipid composition affect the lateral organization of molecules belonging to lipid rafts. Neural lipid rafts are found in brain cells, including neurons, astrocytes, and microglia, and are characterized by a high enrichment of specific lipids depending on the cell type. These lipid rafts seem to organize and determine the function of multiprotein complexes involved in several aspects of signal transduction, thus regulating the homeostasis of the brain. The progressive decline of brain performance along with physiological aging is at least in part associated with alterations in the composition and structure of neural lipid rafts. In addition, neurodegenerative conditions, such as lysosomal storage disorders, multiple sclerosis, and Parkinson’s, Huntington’s, and Alzheimer’s diseases, are frequently characterized by dysregulated lipid metabolism, which in turn affects the structure of lipid rafts. Several events underlying the pathogenesis of these diseases appear to depend on the altered composition of lipid rafts. Thus, the structure and function of lipid rafts play a central role in the pathogenesis of many common neurodegenerative diseases.




roles

The Four Arabidopsis Choline/Ethanolamine Kinase Isozymes Play Distinct Roles in Metabolism and Development

Phosphatidylcholine and phosphatidylethanolamine are two major phospholipid classes in eukaryotes. Each biosynthesis pathway starts with the phosphorylation of choline (Cho) or ethanolamine (Etn) catalyzed by either choline or ethanolamine kinase (CEK). Arabidopsis contains four CEK isoforms, but their isozyme-specific roles in metabolism and development are poorly described. Here, we showed that these four CEKs have distinct substrate specificities in vitro. While CEK1 and CEK2 showed substrate preference for Cho over Etn, CEK3 and CEK4 had clear substrate specificity for Cho and Etn, respectively. In vivo, CEK1, CEK2, and CEK3 exhibited kinase activity for Cho but not Etn, although the latter two isoforms showed rather minor contributions to total Cho kinase activity in both shoots and roots. The knockout mutants of CEK2 and CEK3 both affected root growth, and these isoforms had nonoverlapping cell-type-specific expression patterns in the root meristematic zone. In-depth phenotype analysis, as well as chemical and genetic complementation, revealed that CEK3, a Cho-specific kinase, is involved in cell elongation during root development. Phylogenetic analysis of CEK orthologs in Brassicaceae species showed evolutionary divergence between Etn kinases and Cho kinases. Collectively, our results demonstrate the distinct roles of the four CEK isoforms in Cho/Etn metabolism and plant development.




roles

What Are the Roles for Dehydroascorbate Reductases and Glutathione in Sustaining Ascorbate Accumulation?




roles

Novel Insights into the Roles of Bcl-2 Homolog Nr-13 (vNr-13) Encoded by Herpesvirus of Turkeys in the Virus Replication Cycle, Mitochondrial Networks, and Apoptosis Inhibition [Virus-Cell Interactions]

The Bcl-2 (B cell lymphoma 2)-related protein Nr-13 plays a major role in the regulation of cell death in developing avian B cells. With over 65% sequence similarity to the chicken Nr-13, herpesvirus of turkeys (HVT) vNr-13, encoded by the HVT079 and HVT096 genes, is the first known alphaherpesvirus-encoded Bcl-2 homolog. HVT-infected cells were reported to be relatively more resistant to serum starvation, suggested that vNr-13 could be involved in protecting the cells. Here, we describe CRISPR/Cas9-based editing of exon 1 of the HVT079 and HVT096 genes from the HVT genome to generate the mutant HVT-vNr-13 to gain insights into its functional roles. Overall, wild-type HVT and HVT-vNr-13 showed similar growth kinetics; however, at early time points, HVT-vNr-13 showed 1.3- to 1.7-fold-lower growth of cell-associated virus and 3- to 6.2-fold-lower growth of cell-free virus. In transfected cells, HVT vNr-13 showed a mainly diffuse cytoplasmic distribution with faint nuclear staining. Further, vNr-13 localized to the mitochondria and endoplasmic reticulum (ER) and disrupted mitochondrial network morphology in the transfected cells. In the wild-type HVT-infected cells, vNr-13 expression appeared to be directly involved in the disruption of the mitochondrial network, as the mitochondrial network morphology was substantially restored in the HVT-vNr-13-infected cells. IncuCyte S3 real-time apoptosis monitoring demonstrated that vNr-13 is unequivocally involved in the apoptosis inhibition, and it is associated with an increase of PFU, especially under serum-free conditions in the later stages of the viral replication cycle. Furthermore, HVT blocks apoptosis in infected cells but activates apoptosis in noninfected bystander cells.

IMPORTANCE B cell lymphoma 2 (Bcl-2) family proteins play important roles in regulating apoptosis during homeostasis, tissue development, and infectious diseases. Several viruses encode homologs of cellular Bcl-2-proteins (vBcl-2) to inhibit apoptosis, which enable them to replicate and persist in the infected cells and to evade/modulate the immune response of the host. Herpesvirus of turkeys (HVT) is a nonpathogenic alphaherpesvirus of turkeys and chickens that is widely used as a live vaccine against Marek’s disease and as recombinant vaccine viral vectors for protecting against multiple avian diseases. Identical copies of the HVT genes HVT079 and HVT096 encode the Bcl-2 homolog vNr-13. While previous studies have identified the potential ability of vNr-13 in inhibiting apoptosis induced by serum deprivation, there have been no detailed investigations on the functions of vNr-13. Using CRISPR/Cas9-based ablation of the vNr-13 gene, we demonstrated the roles of HVT vNr-13 in early stages of the viral replication cycle, mitochondrial morphology disruption, and apoptosis inhibition in later stages of viral replication.




roles

Roles of the DOCK-D family proteins in a mouse model of neuroinflammation [Neurobiology]

The DOCK-D (dedicator of cytokinesis D) family proteins are atypical guanine nucleotide exchange factors that regulate Rho GTPase activity. The family consists of Zizimin1 (DOCK9), Zizimin2 (DOCK11), and Zizimin3 (DOCK10). Functions of the DOCK-D family proteins are presently not well-explored, and the role of the DOCK-D family in neuroinflammation is unknown. In this study, we generated three mouse lines in which DOCK9 (DOCK9−/−), DOCK10 (DOCK10−/−), or DOCK11 (DOCK11−/−) had been deleted and examined the phenotypic effects of these gene deletions in MOG35–55 peptide-induced experimental autoimmune encephalomyelitis, an animal model of the neuroinflammatory disorder multiple sclerosis. We found that all the gene knockout lines were healthy and viable. The only phenotype observed under normal conditions was a slightly smaller proportion of B cells in splenocytes in DOCK10−/− mice than in the other mouse lines. We also found that the migration ability of macrophages is impaired in DOCK10−/− and DOCK11−/− mice and that the severity of experimental autoimmune encephalomyelitis was ameliorated only in DOCK10−/− mice. No apparent phenotype was observed for DOCK9−/− mice. Further investigations indicated that lipopolysaccharide stimulation up-regulates DOCK10 expression in microglia and that microglial migration is decreased in DOCK10−/− mice. Up-regulation of C–C motif chemokine ligand 2 (CCL2) expression induced by activation of Toll-like receptor 4 or 9 signaling was reduced in DOCK10−/− astrocytes compared with WT astrocytes. Taken together, our findings suggest that DOCK10 plays a role in innate immunity and neuroinflammation and might represent a potential therapeutic target for managing multiple sclerosis.




roles

Roles of active-site residues in catalysis, substrate binding, cooperativity, and the reaction mechanism of the quinoprotein glycine oxidase [Enzymology]

The quinoprotein glycine oxidase from the marine bacterium Pseudoalteromonas luteoviolacea (PlGoxA) uses a protein-derived cysteine tryptophylquinone (CTQ) cofactor to catalyze conversion of glycine to glyoxylate and ammonia. This homotetrameric enzyme exhibits strong cooperativity toward glycine binding. It is a good model for studying enzyme kinetics and cooperativity, specifically for being able to separate those aspects of protein function through directed mutagenesis. Variant proteins were generated with mutations in four active-site residues, Phe-316, His-583, Tyr-766, and His-767. Structures for glycine-soaked crystals were obtained for each. Different mutations had differential effects on kcat and K0.5 for catalysis, K0.5 for substrate binding, and the Hill coefficients describing the steady-state kinetics or substrate binding. Phe-316 and Tyr-766 variants retained catalytic activity, albeit with altered kinetics and cooperativity. Substitutions of His-583 revealed that it is essential for glycine binding, and the structure of H583C PlGoxA had no active-site glycine present in glycine-soaked crystals. The structure of H767A PlGoxA revealed a previously undetected reaction intermediate, a carbinolamine product-reduced CTQ adduct, and exhibited only negligible activity. The results of these experiments, as well as those with the native enzyme and previous variants, enabled construction of a detailed mechanism for the reductive half-reaction of glycine oxidation. This proposed mechanism includes three discrete reaction intermediates that are covalently bound to CTQ during the reaction, two of which have now been structurally characterized by X-ray crystallography.