re

Predicting paleoclimate from compositional data using multivariate Gaussian process inverse prediction

John R. Tipton, Mevin B. Hooten, Connor Nolan, Robert K. Booth, Jason McLachlan.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2363--2388.

Abstract:
Multivariate compositional count data arise in many applications including ecology, microbiology, genetics and paleoclimate. A frequent question in the analysis of multivariate compositional count data is what underlying values of a covariate(s) give rise to the observed composition. Learning the relationship between covariates and the compositional count allows for inverse prediction of unobserved covariates given compositional count observations. Gaussian processes provide a flexible framework for modeling functional responses with respect to a covariate without assuming a functional form. Many scientific disciplines use Gaussian process approximations to improve prediction and make inference on latent processes and parameters. When prediction is desired on unobserved covariates given realizations of the response variable, this is called inverse prediction. Because inverse prediction is often mathematically and computationally challenging, predicting unobserved covariates often requires fitting models that are different from the hypothesized generative model. We present a novel computational framework that allows for efficient inverse prediction using a Gaussian process approximation to generative models. Our framework enables scientific learning about how the latent processes co-vary with respect to covariates while simultaneously providing predictions of missing covariates. The proposed framework is capable of efficiently exploring the high dimensional, multi-modal latent spaces that arise in the inverse problem. To demonstrate flexibility, we apply our method in a generalized linear model framework to predict latent climate states given multivariate count data. Based on cross-validation, our model has predictive skill competitive with current methods while simultaneously providing formal, statistical inference on the underlying community dynamics of the biological system previously not available.




re

A latent discrete Markov random field approach to identifying and classifying historical forest communities based on spatial multivariate tree species counts

Stephen Berg, Jun Zhu, Murray K. Clayton, Monika E. Shea, David J. Mladenoff.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2312--2340.

Abstract:
The Wisconsin Public Land Survey database describes historical forest composition at high spatial resolution and is of interest in ecological studies of forest composition in Wisconsin just prior to significant Euro-American settlement. For such studies it is useful to identify recurring subpopulations of tree species known as communities, but standard clustering approaches for subpopulation identification do not account for dependence between spatially nearby observations. Here, we develop and fit a latent discrete Markov random field model for the purpose of identifying and classifying historical forest communities based on spatially referenced multivariate tree species counts across Wisconsin. We show empirically for the actual dataset and through simulation that our latent Markov random field modeling approach improves prediction and parameter estimation performance. For model fitting we introduce a new stochastic approximation algorithm which enables computationally efficient estimation and classification of large amounts of spatial multivariate count data.




re

Fitting a deeply nested hierarchical model to a large book review dataset using a moment-based estimator

Ningshan Zhang, Kyle Schmaus, Patrick O. Perry.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2260--2288.

Abstract:
We consider a particular instance of a common problem in recommender systems, using a database of book reviews to inform user-targeted recommendations. In our dataset, books are categorized into genres and subgenres. To exploit this nested taxonomy, we use a hierarchical model that enables information pooling across across similar items at many levels within the genre hierarchy. The main challenge in deploying this model is computational. The data sizes are large and fitting the model at scale using off-the-shelf maximum likelihood procedures is prohibitive. To get around this computational bottleneck, we extend a moment-based fitting procedure proposed for fitting single-level hierarchical models to the general case of arbitrarily deep hierarchies. This extension is an order of magnitude faster than standard maximum likelihood procedures. The fitting method can be deployed beyond recommender systems to general contexts with deeply nested hierarchical generalized linear mixed models.




re

Spatial modeling of trends in crime over time in Philadelphia

Cecilia Balocchi, Shane T. Jensen.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2235--2259.

Abstract:
Understanding the relationship between change in crime over time and the geography of urban areas is an important problem for urban planning. Accurate estimation of changing crime rates throughout a city would aid law enforcement as well as enable studies of the association between crime and the built environment. Bayesian modeling is a promising direction since areal data require principled sharing of information to address spatial autocorrelation between proximal neighborhoods. We develop several Bayesian approaches to spatial sharing of information between neighborhoods while modeling trends in crime counts over time. We apply our methodology to estimate changes in crime throughout Philadelphia over the 2006-15 period while also incorporating spatially-varying economic and demographic predictors. We find that the local shrinkage imposed by a conditional autoregressive model has substantial benefits in terms of out-of-sample predictive accuracy of crime. We also explore the possibility of spatial discontinuities between neighborhoods that could represent natural barriers or aspects of the built environment.




re

Microsimulation model calibration using incremental mixture approximate Bayesian computation

Carolyn M. Rutter, Jonathan Ozik, Maria DeYoreo, Nicholson Collier.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2189--2212.

Abstract:
Microsimulation models (MSMs) are used to inform policy by predicting population-level outcomes under different scenarios. MSMs simulate individual-level event histories that mark the disease process (such as the development of cancer) and the effect of policy actions (such as screening) on these events. MSMs often have many unknown parameters; calibration is the process of searching the parameter space to select parameters that result in accurate MSM prediction of a wide range of targets. We develop Incremental Mixture Approximate Bayesian Computation (IMABC) for MSM calibration which results in a simulated sample from the posterior distribution of model parameters given calibration targets. IMABC begins with a rejection-based ABC step, drawing a sample of points from the prior distribution of model parameters and accepting points that result in simulated targets that are near observed targets. Next, the sample is iteratively updated by drawing additional points from a mixture of multivariate normal distributions and accepting points that result in accurate predictions. Posterior estimates are obtained by weighting the final set of accepted points to account for the adaptive sampling scheme. We demonstrate IMABC by calibrating CRC-SPIN 2.0, an updated version of a MSM for colorectal cancer (CRC) that has been used to inform national CRC screening guidelines.




re

Prediction of small area quantiles for the conservation effects assessment project using a mixed effects quantile regression model

Emily Berg, Danhyang Lee.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2158--2188.

Abstract:
Quantiles of the distributions of several measures of erosion are important parameters in the Conservation Effects Assessment Project, a survey intended to quantify soil and nutrient loss on crop fields. Because sample sizes for domains of interest are too small to support reliable direct estimators, model based methods are needed. Quantile regression is appealing for CEAP because finding a single family of parametric models that adequately describes the distributions of all variables is difficult and small area quantiles are parameters of interest. We construct empirical Bayes predictors and bootstrap mean squared error estimators based on the linearly interpolated generalized Pareto distribution (LIGPD). We apply the procedures to predict county-level quantiles for four types of erosion in Wisconsin and validate the procedures through simulation.




re

Joint model of accelerated failure time and mechanistic nonlinear model for censored covariates, with application in HIV/AIDS

Hongbin Zhang, Lang Wu.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2140--2157.

Abstract:
For a time-to-event outcome with censored time-varying covariates, a joint Cox model with a linear mixed effects model is the standard modeling approach. In some applications such as AIDS studies, mechanistic nonlinear models are available for some covariate process such as viral load during anti-HIV treatments, derived from the underlying data-generation mechanisms and disease progression. Such a mechanistic nonlinear covariate model may provide better-predicted values when the covariates are left censored or mismeasured. When the focus is on the impact of the time-varying covariate process on the survival outcome, an accelerated failure time (AFT) model provides an excellent alternative to the Cox proportional hazard model since an AFT model is formulated to allow the influence of the outcome by the entire covariate process. In this article, we consider a nonlinear mixed effects model for the censored covariates in an AFT model, implemented using a Monte Carlo EM algorithm, under the framework of a joint model for simultaneous inference. We apply the joint model to an HIV/AIDS data to gain insights for assessing the association between viral load and immunological restoration during antiretroviral therapy. Simulation is conducted to compare model performance when the covariate model and the survival model are misspecified.




re

Fire seasonality identification with multimodality tests

Jose Ameijeiras-Alonso, Akli Benali, Rosa M. Crujeiras, Alberto Rodríguez-Casal, José M. C. Pereira.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2120--2139.

Abstract:
Understanding the role of vegetation fires in the Earth system is an important environmental problem. Although fire occurrence is influenced by natural factors, human activity related to land use and management has altered the temporal patterns of fire in several regions of the world. Hence, for a better insight into fires regimes it is of special interest to analyze where human activity has altered fire seasonality. For doing so, multimodality tests are a useful tool for determining the number of annual fire peaks. The periodicity of fires and their complex distributional features motivate the use of nonparametric circular statistics. The unsatisfactory performance of previous circular nonparametric proposals for testing multimodality justifies the introduction of a new approach, considering an adapted version of the excess mass statistic, jointly with a bootstrap calibration algorithm. A systematic application of the test on the Russia–Kazakhstan area is presented in order to determine how many fire peaks can be identified in this region. A False Discovery Rate correction, accounting for the spatial dependence of the data, is also required.




re

Statistical inference for partially observed branching processes with application to cell lineage tracking of in vivo hematopoiesis

Jason Xu, Samson Koelle, Peter Guttorp, Chuanfeng Wu, Cynthia Dunbar, Janis L. Abkowitz, Vladimir N. Minin.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2091--2119.

Abstract:
Single-cell lineage tracking strategies enabled by recent experimental technologies have produced significant insights into cell fate decisions, but lack the quantitative framework necessary for rigorous statistical analysis of mechanistic models describing cell division and differentiation. In this paper, we develop such a framework with corresponding moment-based parameter estimation techniques for continuous-time, multi-type branching processes. Such processes provide a probabilistic model of how cells divide and differentiate, and we apply our method to study hematopoiesis , the mechanism of blood cell production. We derive closed-form expressions for higher moments in a general class of such models. These analytical results allow us to efficiently estimate parameters of much richer statistical models of hematopoiesis than those used in previous statistical studies. To our knowledge, the method provides the first rate inference procedure for fitting such models to time series data generated from cellular barcoding experiments. After validating the methodology in simulation studies, we apply our estimator to hematopoietic lineage tracking data from rhesus macaques. Our analysis provides a more complete understanding of cell fate decisions during hematopoiesis in nonhuman primates, which may be more relevant to human biology and clinical strategies than previous findings from murine studies. For example, in addition to previously estimated hematopoietic stem cell self-renewal rate, we are able to estimate fate decision probabilities and to compare structurally distinct models of hematopoiesis using cross validation. These estimates of fate decision probabilities and our model selection results should help biologists compare competing hypotheses about how progenitor cells differentiate. The methodology is transferrable to a large class of stochastic compartmental and multi-type branching models, commonly used in studies of cancer progression, epidemiology and many other fields.




re

Estimating abundance from multiple sampling capture-recapture data via a multi-state multi-period stopover model

Hannah Worthington, Rachel McCrea, Ruth King, Richard Griffiths.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2043--2064.

Abstract:
Capture-recapture studies often involve collecting data on numerous capture occasions over a relatively short period of time. For many study species this process is repeated, for example, annually, resulting in capture information spanning multiple sampling periods. To account for the different temporal scales, the robust design class of models have traditionally been applied providing a framework in which to analyse all of the available capture data in a single likelihood expression. However, these models typically require strong constraints, either the assumption of closure within a sampling period (the closed robust design) or conditioning on the number of individuals captured within a sampling period (the open robust design). For real datasets these assumptions may not be appropriate. We develop a general modelling structure that requires neither assumption by explicitly modelling the movement of individuals into the population both within and between the sampling periods, which in turn permits the estimation of abundance within a single consistent framework. The flexibility of the novel model structure is further demonstrated by including the computationally challenging case of multi-state data where there is individual time-varying discrete covariate information. We derive an efficient likelihood expression for the new multi-state multi-period stopover model using the hidden Markov model framework. We demonstrate the significant improvement in parameter estimation using our new modelling approach in terms of both the multi-period and multi-state components through both a simulation study and a real dataset relating to the protected species of great crested newts, Triturus cristatus .




re

A semiparametric modeling approach using Bayesian Additive Regression Trees with an application to evaluate heterogeneous treatment effects

Bret Zeldow, Vincent Lo Re III, Jason Roy.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1989--2010.

Abstract:
Bayesian Additive Regression Trees (BART) is a flexible machine learning algorithm capable of capturing nonlinearities between an outcome and covariates and interactions among covariates. We extend BART to a semiparametric regression framework in which the conditional expectation of an outcome is a function of treatment, its effect modifiers, and confounders. The confounders are allowed to have unspecified functional form, while treatment and effect modifiers that are directly related to the research question are given a linear form. The result is a Bayesian semiparametric linear regression model where the posterior distribution of the parameters of the linear part can be interpreted as in parametric Bayesian regression. This is useful in situations where a subset of the variables are of substantive interest and the others are nuisance variables that we would like to control for. An example of this occurs in causal modeling with the structural mean model (SMM). Under certain causal assumptions, our method can be used as a Bayesian SMM. Our methods are demonstrated with simulation studies and an application to dataset involving adults with HIV/Hepatitis C coinfection who newly initiate antiretroviral therapy. The methods are available in an R package called semibart.




re

Bayesian methods for multiple mediators: Relating principal stratification and causal mediation in the analysis of power plant emission controls

Chanmin Kim, Michael J. Daniels, Joseph W. Hogan, Christine Choirat, Corwin M. Zigler.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1927--1956.

Abstract:
Emission control technologies installed on power plants are a key feature of many air pollution regulations in the US. While such regulations are predicated on the presumed relationships between emissions, ambient air pollution and human health, many of these relationships have never been empirically verified. The goal of this paper is to develop new statistical methods to quantify these relationships. We frame this problem as one of mediation analysis to evaluate the extent to which the effect of a particular control technology on ambient pollution is mediated through causal effects on power plant emissions. Since power plants emit various compounds that contribute to ambient pollution, we develop new methods for multiple intermediate variables that are measured contemporaneously, may interact with one another, and may exhibit joint mediating effects. Specifically, we propose new methods leveraging two related frameworks for causal inference in the presence of mediating variables: principal stratification and causal mediation analysis. We define principal effects based on multiple mediators, and also introduce a new decomposition of the total effect of an intervention on ambient pollution into the natural direct effect and natural indirect effects for all combinations of mediators. Both approaches are anchored to the same observed-data models, which we specify with Bayesian nonparametric techniques. We provide assumptions for estimating principal causal effects, then augment these with an additional assumption required for causal mediation analysis. The two analyses, interpreted in tandem, provide the first empirical investigation of the presumed causal pathways that motivate important air quality regulatory policies.




re

Approximate inference for constructing astronomical catalogs from images

Jeffrey Regier, Andrew C. Miller, David Schlegel, Ryan P. Adams, Jon D. McAuliffe, Prabhat.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1884--1926.

Abstract:
We present a new, fully generative model for constructing astronomical catalogs from optical telescope image sets. Each pixel intensity is treated as a random variable with parameters that depend on the latent properties of stars and galaxies. These latent properties are themselves modeled as random. We compare two procedures for posterior inference. One procedure is based on Markov chain Monte Carlo (MCMC) while the other is based on variational inference (VI). The MCMC procedure excels at quantifying uncertainty, while the VI procedure is 1000 times faster. On a supercomputer, the VI procedure efficiently uses 665,000 CPU cores to construct an astronomical catalog from 50 terabytes of images in 14.6 minutes, demonstrating the scaling characteristics necessary to construct catalogs for upcoming astronomical surveys.




re

Oblique random survival forests

Byron C. Jaeger, D. Leann Long, Dustin M. Long, Mario Sims, Jeff M. Szychowski, Yuan-I Min, Leslie A. Mcclure, George Howard, Noah Simon.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1847--1883.

Abstract:
We introduce and evaluate the oblique random survival forest (ORSF). The ORSF is an ensemble method for right-censored survival data that uses linear combinations of input variables to recursively partition a set of training data. Regularized Cox proportional hazard models are used to identify linear combinations of input variables in each recursive partitioning step. Benchmark results using simulated and real data indicate that the ORSF’s predicted risk function has high prognostic value in comparison to random survival forests, conditional inference forests, regression and boosting. In an application to data from the Jackson Heart Study, we demonstrate variable and partial dependence using the ORSF and highlight characteristics of its ten-year predicted risk function for atherosclerotic cardiovascular disease events (ASCVD; stroke, coronary heart disease). We present visualizations comparing variable and partial effect estimation according to the ORSF, the conditional inference forest, and the Pooled Cohort Risk equations. The obliqueRSF R package, which provides functions to fit the ORSF and create variable and partial dependence plots, is available on the comprehensive R archive network (CRAN).




re

Incorporating conditional dependence in latent class models for probabilistic record linkage: Does it matter?

Huiping Xu, Xiaochun Li, Changyu Shen, Siu L. Hui, Shaun Grannis.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1753--1790.

Abstract:
The conditional independence assumption of the Felligi and Sunter (FS) model in probabilistic record linkage is often violated when matching real-world data. Ignoring conditional dependence has been shown to seriously bias parameter estimates. However, in record linkage, the ultimate goal is to inform the match status of record pairs and therefore, record linkage algorithms should be evaluated in terms of matching accuracy. In the literature, more flexible models have been proposed to relax the conditional independence assumption, but few studies have assessed whether such accommodations improve matching accuracy. In this paper, we show that incorporating the conditional dependence appropriately yields comparable or improved matching accuracy than the FS model using three real-world data linkage examples. Through a simulation study, we further investigate when conditional dependence models provide improved matching accuracy. Our study shows that the FS model is generally robust to the conditional independence assumption and provides comparable matching accuracy as the more complex conditional dependence models. However, when the match prevalence approaches 0% or 100% and conditional dependence exists in the dominating class, it is necessary to address conditional dependence as the FS model produces suboptimal matching accuracy. The need to address conditional dependence becomes less important when highly discriminating fields are used. Our simulation study also shows that conditional dependence models with misspecified dependence structure could produce less accurate record matching than the FS model and therefore we caution against the blind use of conditional dependence models.




re

Sequential decision model for inference and prediction on nonuniform hypergraphs with application to knot matching from computational forestry

Seong-Hwan Jun, Samuel W. K. Wong, James V. Zidek, Alexandre Bouchard-Côté.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1678--1707.

Abstract:
In this paper, we consider the knot-matching problem arising in computational forestry. The knot-matching problem is an important problem that needs to be solved to advance the state of the art in automatic strength prediction of lumber. We show that this problem can be formulated as a quadripartite matching problem and develop a sequential decision model that admits efficient parameter estimation along with a sequential Monte Carlo sampler on graph matching that can be utilized for rapid sampling of graph matching. We demonstrate the effectiveness of our methods on 30 manually annotated boards and present findings from various simulation studies to provide further evidence supporting the efficacy of our methods.




re

RCRnorm: An integrated system of random-coefficient hierarchical regression models for normalizing NanoString nCounter data

Gaoxiang Jia, Xinlei Wang, Qiwei Li, Wei Lu, Ximing Tang, Ignacio Wistuba, Yang Xie.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1617--1647.

Abstract:
Formalin-fixed paraffin-embedded (FFPE) samples have great potential for biomarker discovery, retrospective studies and diagnosis or prognosis of diseases. Their application, however, is hindered by the unsatisfactory performance of traditional gene expression profiling techniques on damaged RNAs. NanoString nCounter platform is well suited for profiling of FFPE samples and measures gene expression with high sensitivity which may greatly facilitate realization of scientific and clinical values of FFPE samples. However, methodological development for normalization, a critical step when analyzing this type of data, is far behind. Existing methods designed for the platform use information from different types of internal controls separately and rely on an overly-simplified assumption that expression of housekeeping genes is constant across samples for global scaling. Thus, these methods are not optimized for the nCounter system, not mentioning that they were not developed for FFPE samples. We construct an integrated system of random-coefficient hierarchical regression models to capture main patterns and characteristics observed from NanoString data of FFPE samples and develop a Bayesian approach to estimate parameters and normalize gene expression across samples. Our method, labeled RCRnorm, incorporates information from all aspects of the experimental design and simultaneously removes biases from various sources. It eliminates the unrealistic assumption on housekeeping genes and offers great interpretability. Furthermore, it is applicable to freshly frozen or like samples that can be generally viewed as a reduced case of FFPE samples. Simulation and applications showed the superior performance of RCRnorm.




re

Modeling seasonality and serial dependence of electricity price curves with warping functional autoregressive dynamics

Ying Chen, J. S. Marron, Jiejie Zhang.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1590--1616.

Abstract:
Electricity prices are high dimensional, serially dependent and have seasonal variations. We propose a Warping Functional AutoRegressive (WFAR) model that simultaneously accounts for the cross time-dependence and seasonal variations of the large dimensional data. In particular, electricity price curves are obtained by smoothing over the $24$ discrete hourly prices on each day. In the functional domain, seasonal phase variations are separated from level amplitude changes in a warping process with the Fisher–Rao distance metric, and the aligned (season-adjusted) electricity price curves are modeled in the functional autoregression framework. In a real application, the WFAR model provides superior out-of-sample forecast accuracy in both a normal functioning market, Nord Pool, and an extreme situation, the California market. The forecast performance as well as the relative accuracy improvement are stable for different markets and different time periods.




re

Distributional regression forests for probabilistic precipitation forecasting in complex terrain

Lisa Schlosser, Torsten Hothorn, Reto Stauffer, Achim Zeileis.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1564--1589.

Abstract:
To obtain a probabilistic model for a dependent variable based on some set of explanatory variables, a distributional approach is often adopted where the parameters of the distribution are linked to regressors. In many classical models this only captures the location of the distribution but over the last decade there has been increasing interest in distributional regression approaches modeling all parameters including location, scale and shape. Notably, so-called nonhomogeneous Gaussian regression (NGR) models both mean and variance of a Gaussian response and is particularly popular in weather forecasting. Moreover, generalized additive models for location, scale and shape (GAMLSS) provide a framework where each distribution parameter is modeled separately capturing smooth linear or nonlinear effects. However, when variable selection is required and/or there are nonsmooth dependencies or interactions (especially unknown or of high-order), it is challenging to establish a good GAMLSS. A natural alternative in these situations would be the application of regression trees or random forests but, so far, no general distributional framework is available for these. Therefore, a framework for distributional regression trees and forests is proposed that blends regression trees and random forests with classical distributions from the GAMLSS framework as well as their censored or truncated counterparts. To illustrate these novel approaches in practice, they are employed to obtain probabilistic precipitation forecasts at numerous sites in a mountainous region (Tyrol, Austria) based on a large number of numerical weather prediction quantities. It is shown that the novel distributional regression forests automatically select variables and interactions, performing on par or often even better than GAMLSS specified either through prior meteorological knowledge or a computationally more demanding boosting approach.




re

Spatio-temporal short-term wind forecast: A calibrated regime-switching method

Ahmed Aziz Ezzat, Mikyoung Jun, Yu Ding.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1484--1510.

Abstract:
Accurate short-term forecasts are indispensable for the integration of wind energy in power grids. On a wind farm, local wind conditions exhibit sizeable variations at a fine temporal resolution. Existing statistical models may capture the in-sample variations in wind behavior, but are often shortsighted to those occurring in the near future, that is, in the forecast horizon. The calibrated regime-switching method proposed in this paper introduces an action of regime dependent calibration on the predictand (here the wind speed variable), which helps correct the bias resulting from out-of-sample variations in wind behavior. This is achieved by modeling the calibration as a function of two elements: the wind regime at the time of the forecast (and the calibration is therefore regime dependent), and the runlength, which is the time elapsed since the last observed regime change. In addition to regime-switching dynamics, the proposed model also accounts for other features of wind fields: spatio-temporal dependencies, transport effect of wind and nonstationarity. Using one year of turbine-specific wind data, we show that the calibrated regime-switching method can offer a wide margin of improvement over existing forecasting methods in terms of both wind speed and power.




re

Identifying multiple changes for a functional data sequence with application to freeway traffic segmentation

Jeng-Min Chiou, Yu-Ting Chen, Tailen Hsing.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1430--1463.

Abstract:
Motivated by the study of road segmentation partitioned by shifts in traffic conditions along a freeway, we introduce a two-stage procedure, Dynamic Segmentation and Backward Elimination (DSBE), for identifying multiple changes in the mean functions for a sequence of functional data. The Dynamic Segmentation procedure searches for all possible changepoints using the derived global optimality criterion coupled with the local strategy of at-most-one-changepoint by dividing the entire sequence into individual subsequences that are recursively adjusted until convergence. Then, the Backward Elimination procedure verifies these changepoints by iteratively testing the unlikely changes to ensure their significance until no more changepoints can be removed. By combining the local strategy with the global optimal changepoint criterion, the DSBE algorithm is conceptually simple and easy to implement and performs better than the binary segmentation-based approach at detecting small multiple changes. The consistency property of the changepoint estimators and the convergence of the algorithm are proved. We apply DSBE to detect changes in traffic streams through real freeway traffic data. The practical performance of DSBE is also investigated through intensive simulation studies for various scenarios.




re

A hidden Markov model approach to characterizing the photo-switching behavior of fluorophores

Lekha Patel, Nils Gustafsson, Yu Lin, Raimund Ober, Ricardo Henriques, Edward Cohen.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1397--1429.

Abstract:
Fluorescing molecules (fluorophores) that stochastically switch between photon-emitting and dark states underpin some of the most celebrated advancements in super-resolution microscopy. While this stochastic behavior has been heavily exploited, full characterization of the underlying models can potentially drive forward further imaging methodologies. Under the assumption that fluorophores move between fluorescing and dark states as continuous time Markov processes, the goal is to use a sequence of images to select a model and estimate the transition rates. We use a hidden Markov model to relate the observed discrete time signal to the hidden continuous time process. With imaging involving several repeat exposures of the fluorophore, we show the observed signal depends on both the current and past states of the hidden process, producing emission probabilities that depend on the transition rate parameters to be estimated. To tackle this unusual coupling of the transition and emission probabilities, we conceive transmission (transition-emission) matrices that capture all dependencies of the model. We provide a scheme of computing these matrices and adapt the forward-backward algorithm to compute a likelihood which is readily optimized to provide rate estimates. When confronted with several model proposals, combining this procedure with the Bayesian Information Criterion provides accurate model selection.




re

Imputation and post-selection inference in models with missing data: An application to colorectal cancer surveillance guidelines

Lin Liu, Yuqi Qiu, Loki Natarajan, Karen Messer.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1370--1396.

Abstract:
It is common to encounter missing data among the potential predictor variables in the setting of model selection. For example, in a recent study we attempted to improve the US guidelines for risk stratification after screening colonoscopy ( Cancer Causes Control 27 (2016) 1175–1185), with the aim to help reduce both overuse and underuse of follow-on surveillance colonoscopy. The goal was to incorporate selected additional informative variables into a neoplasia risk-prediction model, going beyond the three currently established risk factors, using a large dataset pooled from seven different prospective studies in North America. Unfortunately, not all candidate variables were collected in all studies, so that one or more important potential predictors were missing on over half of the subjects. Thus, while variable selection was a main focus of the study, it was necessary to address the substantial amount of missing data. Multiple imputation can effectively address missing data, and there are also good approaches to incorporate the variable selection process into model-based confidence intervals. However, there is not consensus on appropriate methods of inference which address both issues simultaneously. Our goal here is to study the properties of model-based confidence intervals in the setting of imputation for missing data followed by variable selection. We use both simulation and theory to compare three approaches to such post-imputation-selection inference: a multiple-imputation approach based on Rubin’s Rules for variance estimation ( Comput. Statist. Data Anal. 71 (2014) 758–770); a single imputation-selection followed by bootstrap percentile confidence intervals; and a new bootstrap model-averaging approach presented here, following Efron ( J. Amer. Statist. Assoc. 109 (2014) 991–1007). We investigate relative strengths and weaknesses of each method. The “Rubin’s Rules” multiple imputation estimator can have severe undercoverage, and is not recommended. The imputation-selection estimator with bootstrap percentile confidence intervals works well. The bootstrap-model-averaged estimator, with the “Efron’s Rules” estimated variance, may be preferred if the true effect sizes are moderate. We apply these results to the colorectal neoplasia risk-prediction problem which motivated the present work.




re

Stratonovich type integration with respect to fractional Brownian motion with Hurst parameter less than $1/2$

Jorge A. León.

Source: Bernoulli, Volume 26, Number 3, 2436--2462.

Abstract:
Let $B^{H}$ be a fractional Brownian motion with Hurst parameter $Hin (0,1/2)$ and $p:mathbb{R} ightarrow mathbb{R}$ a polynomial function. The main purpose of this paper is to introduce a Stratonovich type stochastic integral with respect to $B^{H}$, whose domain includes the process $p(B^{H})$. That is, an integral that allows us to integrate $p(B^{H})$ with respect to $B^{H}$, which does not happen with the symmetric integral given by Russo and Vallois ( Probab. Theory Related Fields 97 (1993) 403–421) in general. Towards this end, we combine the approaches utilized by León and Nualart ( Stochastic Process. Appl. 115 (2005) 481–492), and Russo and Vallois ( Probab. Theory Related Fields 97 (1993) 403–421), whose aims are to extend the domain of the divergence operator for Gaussian processes and to define some stochastic integrals, respectively. Then, we study the relation between this Stratonovich integral and the extension of the divergence operator (see León and Nualart ( Stochastic Process. Appl. 115 (2005) 481–492)), an Itô formula and the existence of a unique solution of some Stratonovich stochastic differential equations. These last results have been analyzed by Alòs, León and Nualart ( Taiwanese J. Math. 5 (2001) 609–632), where the Hurst paramert $H$ belongs to the interval $(1/4,1/2)$.




re

Frequency domain theory for functional time series: Variance decomposition and an invariance principle

Piotr Kokoszka, Neda Mohammadi Jouzdani.

Source: Bernoulli, Volume 26, Number 3, 2383--2399.

Abstract:
This paper is concerned with frequency domain theory for functional time series, which are temporally dependent sequences of functions in a Hilbert space. We consider a variance decomposition, which is more suitable for such a data structure than the variance decomposition based on the Karhunen–Loéve expansion. The decomposition we study uses eigenvalues of spectral density operators, which are functional analogs of the spectral density of a stationary scalar time series. We propose estimators of the variance components and derive convergence rates for their mean square error as well as their asymptotic normality. The latter is derived from a frequency domain invariance principle for the estimators of the spectral density operators. This principle is established for a broad class of linear time series models. It is a main contribution of the paper.




re

Bayesian linear regression for multivariate responses under group sparsity

Bo Ning, Seonghyun Jeong, Subhashis Ghosal.

Source: Bernoulli, Volume 26, Number 3, 2353--2382.

Abstract:
We study frequentist properties of a Bayesian high-dimensional multivariate linear regression model with correlated responses. The predictors are separated into many groups and the group structure is pre-determined. Two features of the model are unique: (i) group sparsity is imposed on the predictors; (ii) the covariance matrix is unknown and its dimensions can also be high. We choose a product of independent spike-and-slab priors on the regression coefficients and a new prior on the covariance matrix based on its eigendecomposition. Each spike-and-slab prior is a mixture of a point mass at zero and a multivariate density involving the $ell_{2,1}$-norm. We first obtain the posterior contraction rate, the bounds on the effective dimension of the model with high posterior probabilities. We then show that the multivariate regression coefficients can be recovered under certain compatibility conditions. Finally, we quantify the uncertainty for the regression coefficients with frequentist validity through a Bernstein–von Mises type theorem. The result leads to selection consistency for the Bayesian method. We derive the posterior contraction rate using the general theory by constructing a suitable test from the first principle using moment bounds for certain likelihood ratios. This leads to posterior concentration around the truth with respect to the average Rényi divergence of order $1/2$. This technique of obtaining the required tests for posterior contraction rate could be useful in many other problems.




re

A refined Cramér-type moderate deviation for sums of local statistics

Xiao Fang, Li Luo, Qi-Man Shao.

Source: Bernoulli, Volume 26, Number 3, 2319--2352.

Abstract:
We prove a refined Cramér-type moderate deviation result by taking into account of the skewness in normal approximation for sums of local statistics of independent random variables. We apply the main result to $k$-runs, U-statistics and subgraph counts in the Erdős–Rényi random graph. To prove our main result, we develop exponential concentration inequalities and higher-order tail probability expansions via Stein’s method.




re

On Sobolev tests of uniformity on the circle with an extension to the sphere

Sreenivasa Rao Jammalamadaka, Simos Meintanis, Thomas Verdebout.

Source: Bernoulli, Volume 26, Number 3, 2226--2252.

Abstract:
Circular and spherical data arise in many applications, especially in biology, Earth sciences and astronomy. In dealing with such data, one of the preliminary steps before any further inference, is to test if such data is isotropic, that is, uniformly distributed around the circle or the sphere. In view of its importance, there is a considerable literature on the topic. In the present work, we provide new tests of uniformity on the circle based on original asymptotic results. Our tests are motivated by the shape of locally and asymptotically maximin tests of uniformity against generalized von Mises distributions. We show that they are uniformly consistent. Empirical power comparisons with several competing procedures are presented via simulations. The new tests detect particularly well multimodal alternatives such as mixtures of von Mises distributions. A practically-oriented combination of the new tests with already existing Sobolev tests is proposed. An extension to testing uniformity on the sphere, along with some simulations, is included. The procedures are illustrated on a real dataset.




re

Exponential integrability and exit times of diffusions on sub-Riemannian and metric measure spaces

Anton Thalmaier, James Thompson.

Source: Bernoulli, Volume 26, Number 3, 2202--2225.

Abstract:
In this article, we derive moment estimates, exponential integrability, concentration inequalities and exit times estimates for canonical diffusions firstly on sub-Riemannian limits of Riemannian foliations and secondly in the nonsmooth setting of $operatorname{RCD}^{*}(K,N)$ spaces. In each case, the necessary ingredients are Itô’s formula and a comparison theorem for the Laplacian, for which we refer to the recent literature. As an application, we derive pointwise Carmona-type estimates on eigenfunctions of Schrödinger operators.




re

Scaling limits for super-replication with transient price impact

Peter Bank, Yan Dolinsky.

Source: Bernoulli, Volume 26, Number 3, 2176--2201.

Abstract:
We prove a scaling limit theorem for the super-replication cost of options in a Cox–Ross–Rubinstein binomial model with transient price impact. The correct scaling turns out to keep the market depth parameter constant while resilience over fixed periods of time grows in inverse proportion with the duration between trading times. For vanilla options, the scaling limit is found to coincide with the one obtained by PDE-methods in ( Math. Finance 22 (2012) 250–276) for models with purely temporary price impact. These models are a special case of our framework and so our probabilistic scaling limit argument allows one to expand the scope of the scaling limit result to path-dependent options.




re

Directional differentiability for supremum-type functionals: Statistical applications

Javier Cárcamo, Antonio Cuevas, Luis-Alberto Rodríguez.

Source: Bernoulli, Volume 26, Number 3, 2143--2175.

Abstract:
We show that various functionals related to the supremum of a real function defined on an arbitrary set or a measure space are Hadamard directionally differentiable. We specifically consider the supremum norm, the supremum, the infimum, and the amplitude of a function. The (usually non-linear) derivatives of these maps adopt simple expressions under suitable assumptions on the underlying space. As an application, we improve and extend to the multidimensional case the results in Raghavachari ( Ann. Statist. 1 (1973) 67–73) regarding the limiting distributions of Kolmogorov–Smirnov type statistics under the alternative hypothesis. Similar results are obtained for analogous statistics associated with copulas. We additionally solve an open problem about the Berk–Jones statistic proposed by Jager and Wellner (In A Festschrift for Herman Rubin (2004) 319–331 IMS). Finally, the asymptotic distribution of maximum mean discrepancies over Donsker classes of functions is derived.




re

Perfect sampling for Gibbs point processes using partial rejection sampling

Sarat B. Moka, Dirk P. Kroese.

Source: Bernoulli, Volume 26, Number 3, 2082--2104.

Abstract:
We present a perfect sampling algorithm for Gibbs point processes, based on the partial rejection sampling of Guo, Jerrum and Liu (In STOC’17 – Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing (2017) 342–355 ACM). Our particular focus is on pairwise interaction processes, penetrable spheres mixture models and area-interaction processes, with a finite interaction range. For an interaction range $2r$ of the target process, the proposed algorithm can generate a perfect sample with $O(log(1/r))$ expected running time complexity, provided that the intensity of the points is not too high and $Theta(1/r^{d})$ parallel processor units are available.




re

Functional weak limit theorem for a local empirical process of non-stationary time series and its application

Ulrike Mayer, Henryk Zähle, Zhou Zhou.

Source: Bernoulli, Volume 26, Number 3, 1891--1911.

Abstract:
We derive a functional weak limit theorem for a local empirical process of a wide class of piece-wise locally stationary (PLS) time series. The latter result is applied to derive the asymptotics of weighted empirical quantiles and weighted V-statistics of non-stationary time series. The class of admissible underlying time series is illustrated by means of PLS linear processes and PLS ARCH processes.




re

Kernel and wavelet density estimators on manifolds and more general metric spaces

Galatia Cleanthous, Athanasios G. Georgiadis, Gerard Kerkyacharian, Pencho Petrushev, Dominique Picard.

Source: Bernoulli, Volume 26, Number 3, 1832--1862.

Abstract:
We consider the problem of estimating the density of observations taking values in classical or nonclassical spaces such as manifolds and more general metric spaces. Our setting is quite general but also sufficiently rich in allowing the development of smooth functional calculus with well localized spectral kernels, Besov regularity spaces, and wavelet type systems. Kernel and both linear and nonlinear wavelet density estimators are introduced and studied. Convergence rates for these estimators are established and discussed.




re

Local differential privacy: Elbow effect in optimal density estimation and adaptation over Besov ellipsoids

Cristina Butucea, Amandine Dubois, Martin Kroll, Adrien Saumard.

Source: Bernoulli, Volume 26, Number 3, 1727--1764.

Abstract:
We address the problem of non-parametric density estimation under the additional constraint that only privatised data are allowed to be published and available for inference. For this purpose, we adopt a recent generalisation of classical minimax theory to the framework of local $alpha$-differential privacy and provide a lower bound on the rate of convergence over Besov spaces $mathcal{B}^{s}_{pq}$ under mean integrated $mathbb{L}^{r}$-risk. This lower bound is deteriorated compared to the standard setup without privacy, and reveals a twofold elbow effect. In order to fulfill the privacy requirement, we suggest adding suitably scaled Laplace noise to empirical wavelet coefficients. Upper bounds within (at most) a logarithmic factor are derived under the assumption that $alpha$ stays bounded as $n$ increases: A linear but non-adaptive wavelet estimator is shown to attain the lower bound whenever $pgeq r$ but provides a slower rate of convergence otherwise. An adaptive non-linear wavelet estimator with appropriately chosen smoothing parameters and thresholding is shown to attain the lower bound within a logarithmic factor for all cases.




re

Influence of the seed in affine preferential attachment trees

David Corlin Marchand, Ioan Manolescu.

Source: Bernoulli, Volume 26, Number 3, 1665--1705.

Abstract:
We study randomly growing trees governed by the affine preferential attachment rule. Starting with a seed tree $S$, vertices are attached one by one, each linked by an edge to a random vertex of the current tree, chosen with a probability proportional to an affine function of its degree. This yields a one-parameter family of preferential attachment trees $(T_{n}^{S})_{ngeq |S|}$, of which the linear model is a particular case. Depending on the choice of the parameter, the power-laws governing the degrees in $T_{n}^{S}$ have different exponents. We study the problem of the asymptotic influence of the seed $S$ on the law of $T_{n}^{S}$. We show that, for any two distinct seeds $S$ and $S'$, the laws of $T_{n}^{S}$ and $T_{n}^{S'}$ remain at uniformly positive total-variation distance as $n$ increases. This is a continuation of Curien et al. ( J. Éc. Polytech. Math. 2 (2015) 1–34), which in turn was inspired by a conjecture of Bubeck et al. ( IEEE Trans. Netw. Sci. Eng. 2 (2015) 30–39). The technique developed here is more robust than previous ones and is likely to help in the study of more general attachment mechanisms.




re

Reliable clustering of Bernoulli mixture models

Amir Najafi, Seyed Abolfazl Motahari, Hamid R. Rabiee.

Source: Bernoulli, Volume 26, Number 2, 1535--1559.

Abstract:
A Bernoulli Mixture Model (BMM) is a finite mixture of random binary vectors with independent dimensions. The problem of clustering BMM data arises in a variety of real-world applications, ranging from population genetics to activity analysis in social networks. In this paper, we analyze the clusterability of BMMs from a theoretical perspective, when the number of clusters is unknown. In particular, we stipulate a set of conditions on the sample complexity and dimension of the model in order to guarantee the Probably Approximately Correct (PAC)-clusterability of a dataset. To the best of our knowledge, these findings are the first non-asymptotic bounds on the sample complexity of learning or clustering BMMs.




re

On the probability distribution of the local times of diagonally operator-self-similar Gaussian fields with stationary increments

Kamran Kalbasi, Thomas Mountford.

Source: Bernoulli, Volume 26, Number 2, 1504--1534.

Abstract:
In this paper, we study the local times of vector-valued Gaussian fields that are ‘diagonally operator-self-similar’ and whose increments are stationary. Denoting the local time of such a Gaussian field around the spatial origin and over the temporal unit hypercube by $Z$, we show that there exists $lambdain(0,1)$ such that under some quite weak conditions, $lim_{n ightarrow+infty}frac{sqrt[n]{mathbb{E}(Z^{n})}}{n^{lambda}}$ and $lim_{x ightarrow+infty}frac{-logmathbb{P}(Z>x)}{x^{frac{1}{lambda}}}$ both exist and are strictly positive (possibly $+infty$). Moreover, we show that if the underlying Gaussian field is ‘strongly locally nondeterministic’, the above limits will be finite as well. These results are then applied to establish similar statements for the intersection local times of diagonally operator-self-similar Gaussian fields with stationary increments.




re

Limit theorems for long-memory flows on Wiener chaos

Shuyang Bai, Murad S. Taqqu.

Source: Bernoulli, Volume 26, Number 2, 1473--1503.

Abstract:
We consider a long-memory stationary process, defined not through a moving average type structure, but by a flow generated by a measure-preserving transform and by a multiple Wiener–Itô integral. The flow is described using a notion of mixing for infinite-measure spaces introduced by Krickeberg (In Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol. II: Contributions to Probability Theory, Part 2 (1967) 431–446 Univ. California Press). Depending on the interplay between the spreading rate of the flow and the order of the multiple integral, one can recover known central or non-central limit theorems, and also obtain joint convergence of multiple integrals of different orders.




re

The moduli of non-differentiability for Gaussian random fields with stationary increments

Wensheng Wang, Zhonggen Su, Yimin Xiao.

Source: Bernoulli, Volume 26, Number 2, 1410--1430.

Abstract:
We establish the exact moduli of non-differentiability of Gaussian random fields with stationary increments. As an application of the result, we prove that the uniform Hölder condition for the maximum local times of Gaussian random fields with stationary increments obtained in Xiao (1997) is optimal. These results are applicable to fractional Riesz–Bessel processes and stationary Gaussian random fields in the Matérn and Cauchy classes.




re

Stratonovich stochastic differential equation with irregular coefficients: Girsanov’s example revisited

Ilya Pavlyukevich, Georgiy Shevchenko.

Source: Bernoulli, Volume 26, Number 2, 1381--1409.

Abstract:
In this paper, we study the Stratonovich stochastic differential equation $mathrm{d}X=|X|^{alpha }circ mathrm{d}B$, $alpha in (-1,1)$, which has been introduced by Cherstvy et al. ( New J. Phys. 15 (2013) 083039) in the context of analysis of anomalous diffusions in heterogeneous media. We determine its weak and strong solutions, which are homogeneous strong Markov processes spending zero time at $0$: for $alpha in (0,1)$, these solutions have the form egin{equation*}X_{t}^{ heta }=((1-alpha)B_{t}^{ heta })^{1/(1-alpha )},end{equation*} where $B^{ heta }$ is the $ heta $-skew Brownian motion driven by $B$ and starting at $frac{1}{1-alpha }(X_{0})^{1-alpha }$, $ heta in [-1,1]$, and $(x)^{gamma }=|x|^{gamma }operatorname{sign}x$; for $alpha in (-1,0]$, only the case $ heta =0$ is possible. The central part of the paper consists in the proof of the existence of a quadratic covariation $[f(B^{ heta }),B]$ for a locally square integrable function $f$ and is based on the time-reversion technique for Markovian diffusions.




re

On stability of traveling wave solutions for integro-differential equations related to branching Markov processes

Pasha Tkachov.

Source: Bernoulli, Volume 26, Number 2, 1354--1380.

Abstract:
The aim of this paper is to prove stability of traveling waves for integro-differential equations connected with branching Markov processes. In other words, the limiting law of the left-most particle of a (time-continuous) branching Markov process with a Lévy non-branching part is demonstrated. The key idea is to approximate the branching Markov process by a branching random walk and apply the result of Aïdékon [ Ann. Probab. 41 (2013) 1362–1426] on the limiting law of the latter one.




re

A new McKean–Vlasov stochastic interpretation of the parabolic–parabolic Keller–Segel model: The one-dimensional case

Denis Talay, Milica Tomašević.

Source: Bernoulli, Volume 26, Number 2, 1323--1353.

Abstract:
In this paper, we analyze a stochastic interpretation of the one-dimensional parabolic–parabolic Keller–Segel system without cut-off. It involves an original type of McKean–Vlasov interaction kernel. At the particle level, each particle interacts with all the past of each other particle by means of a time integrated functional involving a singular kernel. At the mean-field level studied here, the McKean–Vlasov limit process interacts with all the past time marginals of its probability distribution in a similarly singular way. We prove that the parabolic–parabolic Keller–Segel system in the whole Euclidean space and the corresponding McKean–Vlasov stochastic differential equation are well-posed for any values of the parameters of the model.




re

Rates of convergence in de Finetti’s representation theorem, and Hausdorff moment problem

Emanuele Dolera, Stefano Favaro.

Source: Bernoulli, Volume 26, Number 2, 1294--1322.

Abstract:
Given a sequence ${X_{n}}_{ngeq 1}$ of exchangeable Bernoulli random variables, the celebrated de Finetti representation theorem states that $frac{1}{n}sum_{i=1}^{n}X_{i}stackrel{a.s.}{longrightarrow }Y$ for a suitable random variable $Y:Omega ightarrow [0,1]$ satisfying $mathsf{P}[X_{1}=x_{1},dots ,X_{n}=x_{n}|Y]=Y^{sum_{i=1}^{n}x_{i}}(1-Y)^{n-sum_{i=1}^{n}x_{i}}$. In this paper, we study the rate of convergence in law of $frac{1}{n}sum_{i=1}^{n}X_{i}$ to $Y$ under the Kolmogorov distance. After showing that a rate of the type of $1/n^{alpha }$ can be obtained for any index $alpha in (0,1]$, we find a sufficient condition on the distribution of $Y$ for the achievement of the optimal rate of convergence, that is $1/n$. Besides extending and strengthening recent results under the weaker Wasserstein distance, our main result weakens the regularity hypotheses on $Y$ in the context of the Hausdorff moment problem.




re

Consistent structure estimation of exponential-family random graph models with block structure

Michael Schweinberger.

Source: Bernoulli, Volume 26, Number 2, 1205--1233.

Abstract:
We consider the challenging problem of statistical inference for exponential-family random graph models based on a single observation of a random graph with complex dependence. To facilitate statistical inference, we consider random graphs with additional structure in the form of block structure. We have shown elsewhere that when the block structure is known, it facilitates consistency results for $M$-estimators of canonical and curved exponential-family random graph models with complex dependence, such as transitivity. In practice, the block structure is known in some applications (e.g., multilevel networks), but is unknown in others. When the block structure is unknown, the first and foremost question is whether it can be recovered with high probability based on a single observation of a random graph with complex dependence. The main consistency results of the paper show that it is possible to do so under weak dependence and smoothness conditions. These results confirm that exponential-family random graph models with block structure constitute a promising direction of statistical network analysis.




re

Robust regression via mutivariate regression depth

Chao Gao.

Source: Bernoulli, Volume 26, Number 2, 1139--1170.

Abstract:
This paper studies robust regression in the settings of Huber’s $epsilon$-contamination models. We consider estimators that are maximizers of multivariate regression depth functions. These estimators are shown to achieve minimax rates in the settings of $epsilon$-contamination models for various regression problems including nonparametric regression, sparse linear regression, reduced rank regression, etc. We also discuss a general notion of depth function for linear operators that has potential applications in robust functional linear regression.




re

Interacting reinforced stochastic processes: Statistical inference based on the weighted empirical means

Giacomo Aletti, Irene Crimaldi, Andrea Ghiglietti.

Source: Bernoulli, Volume 26, Number 2, 1098--1138.

Abstract:
This work deals with a system of interacting reinforced stochastic processes , where each process $X^{j}=(X_{n,j})_{n}$ is located at a vertex $j$ of a finite weighted directed graph, and it can be interpreted as the sequence of “actions” adopted by an agent $j$ of the network. The interaction among the dynamics of these processes depends on the weighted adjacency matrix $W$ associated to the underlying graph: indeed, the probability that an agent $j$ chooses a certain action depends on its personal “inclination” $Z_{n,j}$ and on the inclinations $Z_{n,h}$, with $h eq j$, of the other agents according to the entries of $W$. The best known example of reinforced stochastic process is the Pólya urn. The present paper focuses on the weighted empirical means $N_{n,j}=sum_{k=1}^{n}q_{n,k}X_{k,j}$, since, for example, the current experience is more important than the past one in reinforced learning. Their almost sure synchronization and some central limit theorems in the sense of stable convergence are proven. The new approach with weighted means highlights the key points in proving some recent results for the personal inclinations $Z^{j}=(Z_{n,j})_{n}$ and for the empirical means $overline{X}^{j}=(sum_{k=1}^{n}X_{k,j}/n)_{n}$ given in recent papers (e.g. Aletti, Crimaldi and Ghiglietti (2019), Ann. Appl. Probab. 27 (2017) 3787–3844, Crimaldi et al. Stochastic Process. Appl. 129 (2019) 70–101). In fact, with a more sophisticated decomposition of the considered processes, we can understand how the different convergence rates of the involved stochastic processes combine. From an application point of view, we provide confidence intervals for the common limit inclination of the agents and a test statistics to make inference on the matrix $W$, based on the weighted empirical means. In particular, we answer a research question posed in Aletti, Crimaldi and Ghiglietti (2019).




re

A unified principled framework for resampling based on pseudo-populations: Asymptotic theory

Pier Luigi Conti, Daniela Marella, Fulvia Mecatti, Federico Andreis.

Source: Bernoulli, Volume 26, Number 2, 1044--1069.

Abstract:
In this paper, a class of resampling techniques for finite populations under $pi $ps sampling design is introduced. The basic idea on which they rest is a two-step procedure consisting in: (i) constructing a “pseudo-population” on the basis of sample data; (ii) drawing a sample from the predicted population according to an appropriate resampling design. From a logical point of view, this approach is essentially based on the plug-in principle by Efron, at the “sampling design level”. Theoretical justifications based on large sample theory are provided. New approaches to construct pseudo populations based on various forms of calibrations are proposed. Finally, a simulation study is performed.




re

Degeneracy in sparse ERGMs with functions of degrees as sufficient statistics

Sumit Mukherjee.

Source: Bernoulli, Volume 26, Number 2, 1016--1043.

Abstract:
A sufficient criterion for “non-degeneracy” is given for Exponential Random Graph Models on sparse graphs with sufficient statistics which are functions of the degree sequence. This criterion explains why statistics such as alternating $k$-star are non-degenerate, whereas subgraph counts are degenerate. It is further shown that this criterion is “almost” tight. Existence of consistent estimates is then proved for non-degenerate Exponential Random Graph Models.




re

The maximal degree in a Poisson–Delaunay graph

Gilles Bonnet, Nicolas Chenavier.

Source: Bernoulli, Volume 26, Number 2, 948--979.

Abstract:
We investigate the maximal degree in a Poisson–Delaunay graph in $mathbf{R}^{d}$, $dgeq 2$, over all nodes in the window $mathbf{W}_{ ho }:= ho^{1/d}[0,1]^{d}$ as $ ho $ goes to infinity. The exact order of this maximum is provided in any dimension. In the particular setting $d=2$, we show that this quantity is concentrated on two consecutive integers with high probability. A weaker version of this result is discussed when $dgeq 3$.