re

Bootstrapping and sample splitting for high-dimensional, assumption-lean inference

Alessandro Rinaldo, Larry Wasserman, Max G’Sell.

Source: The Annals of Statistics, Volume 47, Number 6, 3438--3469.

Abstract:
Several new methods have been recently proposed for performing valid inference after model selection. An older method is sample splitting: use part of the data for model selection and the rest for inference. In this paper, we revisit sample splitting combined with the bootstrap (or the Normal approximation). We show that this leads to a simple, assumption-lean approach to inference and we establish results on the accuracy of the method. In fact, we find new bounds on the accuracy of the bootstrap and the Normal approximation for general nonlinear parameters with increasing dimension which we then use to assess the accuracy of regression inference. We define new parameters that measure variable importance and that can be inferred with greater accuracy than the usual regression coefficients. Finally, we elucidate an inference-prediction trade-off: splitting increases the accuracy and robustness of inference but can decrease the accuracy of the predictions.




re

A smeary central limit theorem for manifolds with application to high-dimensional spheres

Benjamin Eltzner, Stephan F. Huckemann.

Source: The Annals of Statistics, Volume 47, Number 6, 3360--3381.

Abstract:
The (CLT) central limit theorems for generalized Fréchet means (data descriptors assuming values in manifolds, such as intrinsic means, geodesics, etc.) on manifolds from the literature are only valid if a certain empirical process of Hessians of the Fréchet function converges suitably, as in the proof of the prototypical BP-CLT [ Ann. Statist. 33 (2005) 1225–1259]. This is not valid in many realistic scenarios and we provide for a new very general CLT. In particular, this includes scenarios where, in a suitable chart, the sample mean fluctuates asymptotically at a scale $n^{alpha }$ with exponents $alpha <1/2$ with a nonnormal distribution. As the BP-CLT yields only fluctuations that are, rescaled with $n^{1/2}$, asymptotically normal, just as the classical CLT for random vectors, these lower rates, somewhat loosely called smeariness, had to date been observed only on the circle. We make the concept of smeariness on manifolds precise, give an example for two-smeariness on spheres of arbitrary dimension, and show that smeariness, although “almost never” occurring, may have serious statistical implications on a continuum of sample scenarios nearby. In fact, this effect increases with dimension, striking in particular in high dimension low sample size scenarios.




re

On optimal designs for nonregular models

Yi Lin, Ryan Martin, Min Yang.

Source: The Annals of Statistics, Volume 47, Number 6, 3335--3359.

Abstract:
Classically, Fisher information is the relevant object in defining optimal experimental designs. However, for models that lack certain regularity, the Fisher information does not exist, and hence, there is no notion of design optimality available in the literature. This article seeks to fill the gap by proposing a so-called Hellinger information , which generalizes Fisher information in the sense that the two measures agree in regular problems, but the former also exists for certain types of nonregular problems. We derive a Hellinger information inequality, showing that Hellinger information defines a lower bound on the local minimax risk of estimators. This provides a connection between features of the underlying model—in particular, the design—and the performance of estimators, motivating the use of this new Hellinger information for nonregular optimal design problems. Hellinger optimal designs are derived for several nonregular regression problems, with numerical results empirically demonstrating the efficiency of these designs compared to alternatives.




re

Hypothesis testing on linear structures of high-dimensional covariance matrix

Shurong Zheng, Zhao Chen, Hengjian Cui, Runze Li.

Source: The Annals of Statistics, Volume 47, Number 6, 3300--3334.

Abstract:
This paper is concerned with test of significance on high-dimensional covariance structures, and aims to develop a unified framework for testing commonly used linear covariance structures. We first construct a consistent estimator for parameters involved in the linear covariance structure, and then develop two tests for the linear covariance structures based on entropy loss and quadratic loss used for covariance matrix estimation. To study the asymptotic properties of the proposed tests, we study related high-dimensional random matrix theory, and establish several highly useful asymptotic results. With the aid of these asymptotic results, we derive the limiting distributions of these two tests under the null and alternative hypotheses. We further show that the quadratic loss based test is asymptotically unbiased. We conduct Monte Carlo simulation study to examine the finite sample performance of the two tests. Our simulation results show that the limiting null distributions approximate their null distributions quite well, and the corresponding asymptotic critical values keep Type I error rate very well. Our numerical comparison implies that the proposed tests outperform existing ones in terms of controlling Type I error rate and power. Our simulation indicates that the test based on quadratic loss seems to have better power than the test based on entropy loss.




re

Quantile regression under memory constraint

Xi Chen, Weidong Liu, Yichen Zhang.

Source: The Annals of Statistics, Volume 47, Number 6, 3244--3273.

Abstract:
This paper studies the inference problem in quantile regression (QR) for a large sample size $n$ but under a limited memory constraint, where the memory can only store a small batch of data of size $m$. A natural method is the naive divide-and-conquer approach, which splits data into batches of size $m$, computes the local QR estimator for each batch and then aggregates the estimators via averaging. However, this method only works when $n=o(m^{2})$ and is computationally expensive. This paper proposes a computationally efficient method, which only requires an initial QR estimator on a small batch of data and then successively refines the estimator via multiple rounds of aggregations. Theoretically, as long as $n$ grows polynomially in $m$, we establish the asymptotic normality for the obtained estimator and show that our estimator with only a few rounds of aggregations achieves the same efficiency as the QR estimator computed on all the data. Moreover, our result allows the case that the dimensionality $p$ goes to infinity. The proposed method can also be applied to address the QR problem under distributed computing environment (e.g., in a large-scale sensor network) or for real-time streaming data.




re

On partial-sum processes of ARMAX residuals

Steffen Grønneberg, Benjamin Holcblat.

Source: The Annals of Statistics, Volume 47, Number 6, 3216--3243.

Abstract:
We establish general and versatile results regarding the limit behavior of the partial-sum process of ARMAX residuals. Illustrations include ARMA with seasonal dummies, misspecified ARMAX models with autocorrelated errors, nonlinear ARMAX models, ARMA with a structural break, a wide range of ARMAX models with infinite-variance errors, weak GARCH models and the consistency of kernel estimation of the density of ARMAX errors. Our results identify the limit distributions, and provide a general algorithm to obtain pivot statistics for CUSUM tests.




re

Statistical inference for autoregressive models under heteroscedasticity of unknown form

Ke Zhu.

Source: The Annals of Statistics, Volume 47, Number 6, 3185--3215.

Abstract:
This paper provides an entire inference procedure for the autoregressive model under (conditional) heteroscedasticity of unknown form with a finite variance. We first establish the asymptotic normality of the weighted least absolute deviations estimator (LADE) for the model. Second, we develop the random weighting (RW) method to estimate its asymptotic covariance matrix, leading to the implementation of the Wald test. Third, we construct a portmanteau test for model checking, and use the RW method to obtain its critical values. As a special weighted LADE, the feasible adaptive LADE (ALADE) is proposed and proved to have the same efficiency as its infeasible counterpart. The importance of our entire methodology based on the feasible ALADE is illustrated by simulation results and the real data analysis on three U.S. economic data sets.




re

Adaptive estimation of the rank of the coefficient matrix in high-dimensional multivariate response regression models

Xin Bing, Marten H. Wegkamp.

Source: The Annals of Statistics, Volume 47, Number 6, 3157--3184.

Abstract:
We consider the multivariate response regression problem with a regression coefficient matrix of low, unknown rank. In this setting, we analyze a new criterion for selecting the optimal reduced rank. This criterion differs notably from the one proposed in Bunea, She and Wegkamp ( Ann. Statist. 39 (2011) 1282–1309) in that it does not require estimation of the unknown variance of the noise, nor does it depend on a delicate choice of a tuning parameter. We develop an iterative, fully data-driven procedure, that adapts to the optimal signal-to-noise ratio. This procedure finds the true rank in a few steps with overwhelming probability. At each step, our estimate increases, while at the same time it does not exceed the true rank. Our finite sample results hold for any sample size and any dimension, even when the number of responses and of covariates grow much faster than the number of observations. We perform an extensive simulation study that confirms our theoretical findings. The new method performs better and is more stable than the procedure of Bunea, She and Wegkamp ( Ann. Statist. 39 (2011) 1282–1309) in both low- and high-dimensional settings.




re

Sorted concave penalized regression

Long Feng, Cun-Hui Zhang.

Source: The Annals of Statistics, Volume 47, Number 6, 3069--3098.

Abstract:
The Lasso is biased. Concave penalized least squares estimation (PLSE) takes advantage of signal strength to reduce this bias, leading to sharper error bounds in prediction, coefficient estimation and variable selection. For prediction and estimation, the bias of the Lasso can be also reduced by taking a smaller penalty level than what selection consistency requires, but such smaller penalty level depends on the sparsity of the true coefficient vector. The sorted $ell_{1}$ penalized estimation (Slope) was proposed for adaptation to such smaller penalty levels. However, the advantages of concave PLSE and Slope do not subsume each other. We propose sorted concave penalized estimation to combine the advantages of concave and sorted penalizations. We prove that sorted concave penalties adaptively choose the smaller penalty level and at the same time benefits from signal strength, especially when a significant proportion of signals are stronger than the corresponding adaptively selected penalty levels. A local convex approximation for sorted concave penalties, which extends the local linear and quadratic approximations for separable concave penalties, is developed to facilitate the computation of sorted concave PLSE and proven to possess desired prediction and estimation error bounds. Our analysis of prediction and estimation errors requires the restricted eigenvalue condition on the design, not beyond, and provides selection consistency under a required minimum signal strength condition in addition. Thus, our results also sharpens existing results on concave PLSE by removing the upper sparse eigenvalue component of the sparse Riesz condition.




re

Additive models with trend filtering

Veeranjaneyulu Sadhanala, Ryan J. Tibshirani.

Source: The Annals of Statistics, Volume 47, Number 6, 3032--3068.

Abstract:
We study additive models built with trend filtering, that is, additive models whose components are each regularized by the (discrete) total variation of their $k$th (discrete) derivative, for a chosen integer $kgeq0$. This results in $k$th degree piecewise polynomial components, (e.g., $k=0$ gives piecewise constant components, $k=1$ gives piecewise linear, $k=2$ gives piecewise quadratic, etc.). Analogous to its advantages in the univariate case, additive trend filtering has favorable theoretical and computational properties, thanks in large part to the localized nature of the (discrete) total variation regularizer that it uses. On the theory side, we derive fast error rates for additive trend filtering estimates, and show these rates are minimax optimal when the underlying function is additive and has component functions whose derivatives are of bounded variation. We also show that these rates are unattainable by additive smoothing splines (and by additive models built from linear smoothers, in general). On the computational side, we use backfitting, to leverage fast univariate trend filtering solvers; we also describe a new backfitting algorithm whose iterations can be run in parallel, which (as far as we can tell) is the first of its kind. Lastly, we present a number of experiments to examine the empirical performance of trend filtering.




re

Inference for the mode of a log-concave density

Charles R. Doss, Jon A. Wellner.

Source: The Annals of Statistics, Volume 47, Number 5, 2950--2976.

Abstract:
We study a likelihood ratio test for the location of the mode of a log-concave density. Our test is based on comparison of the log-likelihoods corresponding to the unconstrained maximum likelihood estimator of a log-concave density and the constrained maximum likelihood estimator where the constraint is that the mode of the density is fixed, say at $m$. The constrained estimation problem is studied in detail in Doss and Wellner (2018). Here, the results of that paper are used to show that, under the null hypothesis (and strict curvature of $-log f$ at the mode), the likelihood ratio statistic is asymptotically pivotal: that is, it converges in distribution to a limiting distribution which is free of nuisance parameters, thus playing the role of the $chi_{1}^{2}$ distribution in classical parametric statistical problems. By inverting this family of tests, we obtain new (likelihood ratio based) confidence intervals for the mode of a log-concave density $f$. These new intervals do not depend on any smoothing parameters. We study the new confidence intervals via Monte Carlo methods and illustrate them with two real data sets. The new intervals seem to have several advantages over existing procedures. Software implementing the test and confidence intervals is available in the R package verb+logcondens.mode+.




re

Test for high-dimensional correlation matrices

Shurong Zheng, Guanghui Cheng, Jianhua Guo, Hongtu Zhu.

Source: The Annals of Statistics, Volume 47, Number 5, 2887--2921.

Abstract:
Testing correlation structures has attracted extensive attention in the literature due to both its importance in real applications and several major theoretical challenges. The aim of this paper is to develop a general framework of testing correlation structures for the one , two and multiple sample testing problems under a high-dimensional setting when both the sample size and data dimension go to infinity. Our test statistics are designed to deal with both the dense and sparse alternatives. We systematically investigate the asymptotic null distribution, power function and unbiasedness of each test statistic. Theoretically, we make great efforts to deal with the nonindependency of all random matrices of the sample correlation matrices. We use simulation studies and real data analysis to illustrate the versatility and practicability of our test statistics.




re

Exact lower bounds for the agnostic probably-approximately-correct (PAC) machine learning model

Aryeh Kontorovich, Iosif Pinelis.

Source: The Annals of Statistics, Volume 47, Number 5, 2822--2854.

Abstract:
We provide an exact nonasymptotic lower bound on the minimax expected excess risk (EER) in the agnostic probably-approximately-correct (PAC) machine learning classification model and identify minimax learning algorithms as certain maximally symmetric and minimally randomized “voting” procedures. Based on this result, an exact asymptotic lower bound on the minimax EER is provided. This bound is of the simple form $c_{infty}/sqrt{ u}$ as $ u oinfty$, where $c_{infty}=0.16997dots$ is a universal constant, $ u=m/d$, $m$ is the size of the training sample and $d$ is the Vapnik–Chervonenkis dimension of the hypothesis class. It is shown that the differences between these asymptotic and nonasymptotic bounds, as well as the differences between these two bounds and the maximum EER of any learning algorithms that minimize the empirical risk, are asymptotically negligible, and all these differences are due to ties in the mentioned “voting” procedures. A few easy to compute nonasymptotic lower bounds on the minimax EER are also obtained, which are shown to be close to the exact asymptotic lower bound $c_{infty}/sqrt{ u}$ even for rather small values of the ratio $ u=m/d$. As an application of these results, we substantially improve existing lower bounds on the tail probability of the excess risk. Among the tools used are Bayes estimation and apparently new identities and inequalities for binomial distributions.




re

A unified treatment of multiple testing with prior knowledge using the p-filter

Aaditya K. Ramdas, Rina F. Barber, Martin J. Wainwright, Michael I. Jordan.

Source: The Annals of Statistics, Volume 47, Number 5, 2790--2821.

Abstract:
There is a significant literature on methods for incorporating knowledge into multiple testing procedures so as to improve their power and precision. Some common forms of prior knowledge include (a) beliefs about which hypotheses are null, modeled by nonuniform prior weights; (b) differing importances of hypotheses, modeled by differing penalties for false discoveries; (c) multiple arbitrary partitions of the hypotheses into (possibly overlapping) groups and (d) knowledge of independence, positive or arbitrary dependence between hypotheses or groups, suggesting the use of more aggressive or conservative procedures. We present a unified algorithmic framework called p-filter for global null testing and false discovery rate (FDR) control that allows the scientist to incorporate all four types of prior knowledge (a)–(d) simultaneously, recovering a variety of known algorithms as special cases.




re

Distance multivariance: New dependence measures for random vectors

Björn Böttcher, Martin Keller-Ressel, René L. Schilling.

Source: The Annals of Statistics, Volume 47, Number 5, 2757--2789.

Abstract:
We introduce two new measures for the dependence of $nge2$ random variables: distance multivariance and total distance multivariance . Both measures are based on the weighted $L^{2}$-distance of quantities related to the characteristic functions of the underlying random variables. These extend distance covariance (introduced by Székely, Rizzo and Bakirov) from pairs of random variables to $n$-tuplets of random variables. We show that total distance multivariance can be used to detect the independence of $n$ random variables and has a simple finite-sample representation in terms of distance matrices of the sample points, where distance is measured by a continuous negative definite function. Under some mild moment conditions, this leads to a test for independence of multiple random vectors which is consistent against all alternatives.




re

An operator theoretic approach to nonparametric mixture models

Robert A. Vandermeulen, Clayton D. Scott.

Source: The Annals of Statistics, Volume 47, Number 5, 2704--2733.

Abstract:
When estimating finite mixture models, it is common to make assumptions on the mixture components, such as parametric assumptions. In this work, we make no distributional assumptions on the mixture components and instead assume that observations from the mixture model are grouped, such that observations in the same group are known to be drawn from the same mixture component. We precisely characterize the number of observations $n$ per group needed for the mixture model to be identifiable, as a function of the number $m$ of mixture components. In addition to our assumption-free analysis, we also study the settings where the mixture components are either linearly independent or jointly irreducible. Furthermore, our analysis considers two kinds of identifiability, where the mixture model is the simplest one explaining the data, and where it is the only one. As an application of these results, we precisely characterize identifiability of multinomial mixture models. Our analysis relies on an operator-theoretic framework that associates mixture models in the grouped-sample setting with certain infinite-dimensional tensors. Based on this framework, we introduce a general spectral algorithm for recovering the mixture components.




re

Doubly penalized estimation in additive regression with high-dimensional data

Zhiqiang Tan, Cun-Hui Zhang.

Source: The Annals of Statistics, Volume 47, Number 5, 2567--2600.

Abstract:
Additive regression provides an extension of linear regression by modeling the signal of a response as a sum of functions of covariates of relatively low complexity. We study penalized estimation in high-dimensional nonparametric additive regression where functional semi-norms are used to induce smoothness of component functions and the empirical $L_{2}$ norm is used to induce sparsity. The functional semi-norms can be of Sobolev or bounded variation types and are allowed to be different amongst individual component functions. We establish oracle inequalities for the predictive performance of such methods under three simple technical conditions: a sub-Gaussian condition on the noise, a compatibility condition on the design and the functional classes under consideration and an entropy condition on the functional classes. For random designs, the sample compatibility condition can be replaced by its population version under an additional condition to ensure suitable convergence of empirical norms. In homogeneous settings where the complexities of the component functions are of the same order, our results provide a spectrum of minimax convergence rates, from the so-called slow rate without requiring the compatibility condition to the fast rate under the hard sparsity or certain $L_{q}$ sparsity to allow many small components in the true regression function. These results significantly broaden and sharpen existing ones in the literature.




re

Semi-supervised inference: General theory and estimation of means

Anru Zhang, Lawrence D. Brown, T. Tony Cai.

Source: The Annals of Statistics, Volume 47, Number 5, 2538--2566.

Abstract:
We propose a general semi-supervised inference framework focused on the estimation of the population mean. As usual in semi-supervised settings, there exists an unlabeled sample of covariate vectors and a labeled sample consisting of covariate vectors along with real-valued responses (“labels”). Otherwise, the formulation is “assumption-lean” in that no major conditions are imposed on the statistical or functional form of the data. We consider both the ideal semi-supervised setting where infinitely many unlabeled samples are available, as well as the ordinary semi-supervised setting in which only a finite number of unlabeled samples is available. Estimators are proposed along with corresponding confidence intervals for the population mean. Theoretical analysis on both the asymptotic distribution and $ell_{2}$-risk for the proposed procedures are given. Surprisingly, the proposed estimators, based on a simple form of the least squares method, outperform the ordinary sample mean. The simple, transparent form of the estimator lends confidence to the perception that its asymptotic improvement over the ordinary sample mean also nearly holds even for moderate size samples. The method is further extended to a nonparametric setting, in which the oracle rate can be achieved asymptotically. The proposed estimators are further illustrated by simulation studies and a real data example involving estimation of the homeless population.




re

A knockoff filter for high-dimensional selective inference

Rina Foygel Barber, Emmanuel J. Candès.

Source: The Annals of Statistics, Volume 47, Number 5, 2504--2537.

Abstract:
This paper develops a framework for testing for associations in a possibly high-dimensional linear model where the number of features/variables may far exceed the number of observational units. In this framework, the observations are split into two groups, where the first group is used to screen for a set of potentially relevant variables, whereas the second is used for inference over this reduced set of variables; we also develop strategies for leveraging information from the first part of the data at the inference step for greater power. In our work, the inferential step is carried out by applying the recently introduced knockoff filter, which creates a knockoff copy—a fake variable serving as a control—for each screened variable. We prove that this procedure controls the directional false discovery rate (FDR) in the reduced model controlling for all screened variables; this says that our high-dimensional knockoff procedure “discovers” important variables as well as the directions (signs) of their effects, in such a way that the expected proportion of wrongly chosen signs is below the user-specified level (thereby controlling a notion of Type S error averaged over the selected set). This result is nonasymptotic, and holds for any distribution of the original features and any values of the unknown regression coefficients, so that inference is not calibrated under hypothesized values of the effect sizes. We demonstrate the performance of our general and flexible approach through numerical studies, showing more power than existing alternatives. Finally, we apply our method to a genome-wide association study to find locations on the genome that are possibly associated with a continuous phenotype.




re

Isotonic regression in general dimensions

Qiyang Han, Tengyao Wang, Sabyasachi Chatterjee, Richard J. Samworth.

Source: The Annals of Statistics, Volume 47, Number 5, 2440--2471.

Abstract:
We study the least squares regression function estimator over the class of real-valued functions on $[0,1]^{d}$ that are increasing in each coordinate. For uniformly bounded signals and with a fixed, cubic lattice design, we establish that the estimator achieves the minimax rate of order $n^{-min{2/(d+2),1/d}}$ in the empirical $L_{2}$ loss, up to polylogarithmic factors. Further, we prove a sharp oracle inequality, which reveals in particular that when the true regression function is piecewise constant on $k$ hyperrectangles, the least squares estimator enjoys a faster, adaptive rate of convergence of $(k/n)^{min(1,2/d)}$, again up to polylogarithmic factors. Previous results are confined to the case $dleq2$. Finally, we establish corresponding bounds (which are new even in the case $d=2$) in the more challenging random design setting. There are two surprising features of these results: first, they demonstrate that it is possible for a global empirical risk minimisation procedure to be rate optimal up to polylogarithmic factors even when the corresponding entropy integral for the function class diverges rapidly; second, they indicate that the adaptation rate for shape-constrained estimators can be strictly worse than the parametric rate.




re

On testing conditional qualitative treatment effects

Chengchun Shi, Rui Song, Wenbin Lu.

Source: The Annals of Statistics, Volume 47, Number 4, 2348--2377.

Abstract:
Precision medicine is an emerging medical paradigm that focuses on finding the most effective treatment strategy tailored for individual patients. In the literature, most of the existing works focused on estimating the optimal treatment regime. However, there has been less attention devoted to hypothesis testing regarding the optimal treatment regime. In this paper, we first introduce the notion of conditional qualitative treatment effects (CQTE) of a set of variables given another set of variables and provide a class of equivalent representations for the null hypothesis of no CQTE. The proposed definition of CQTE does not assume any parametric form for the optimal treatment rule and plays an important role for assessing the incremental value of a set of new variables in optimal treatment decision making conditional on an existing set of prescriptive variables. We then propose novel testing procedures for no CQTE based on kernel estimation of the conditional contrast functions. We show that our test statistics have asymptotically correct size and nonnegligible power against some nonstandard local alternatives. The empirical performance of the proposed tests are evaluated by simulations and an application to an AIDS data set.




re

Convergence complexity analysis of Albert and Chib’s algorithm for Bayesian probit regression

Qian Qin, James P. Hobert.

Source: The Annals of Statistics, Volume 47, Number 4, 2320--2347.

Abstract:
The use of MCMC algorithms in high dimensional Bayesian problems has become routine. This has spurred so-called convergence complexity analysis, the goal of which is to ascertain how the convergence rate of a Monte Carlo Markov chain scales with sample size, $n$, and/or number of covariates, $p$. This article provides a thorough convergence complexity analysis of Albert and Chib’s [ J. Amer. Statist. Assoc. 88 (1993) 669–679] data augmentation algorithm for the Bayesian probit regression model. The main tools used in this analysis are drift and minorization conditions. The usual pitfalls associated with this type of analysis are avoided by utilizing centered drift functions, which are minimized in high posterior probability regions, and by using a new technique to suppress high-dimensionality in the construction of minorization conditions. The main result is that the geometric convergence rate of the underlying Markov chain is bounded below 1 both as $n ightarrowinfty$ (with $p$ fixed), and as $p ightarrowinfty$ (with $n$ fixed). Furthermore, the first computable bounds on the total variation distance to stationarity are byproducts of the asymptotic analysis.




re

Convergence rates of least squares regression estimators with heavy-tailed errors

Qiyang Han, Jon A. Wellner.

Source: The Annals of Statistics, Volume 47, Number 4, 2286--2319.

Abstract:
We study the performance of the least squares estimator (LSE) in a general nonparametric regression model, when the errors are independent of the covariates but may only have a $p$th moment ($pgeq1$). In such a heavy-tailed regression setting, we show that if the model satisfies a standard “entropy condition” with exponent $alphain(0,2)$, then the $L_{2}$ loss of the LSE converges at a rate [mathcal{O}_{mathbf{P}}igl(n^{-frac{1}{2+alpha}}vee n^{-frac{1}{2}+frac{1}{2p}}igr).] Such a rate cannot be improved under the entropy condition alone. This rate quantifies both some positive and negative aspects of the LSE in a heavy-tailed regression setting. On the positive side, as long as the errors have $pgeq1+2/alpha$ moments, the $L_{2}$ loss of the LSE converges at the same rate as if the errors are Gaussian. On the negative side, if $p<1+2/alpha$, there are (many) hard models at any entropy level $alpha$ for which the $L_{2}$ loss of the LSE converges at a strictly slower rate than other robust estimators. The validity of the above rate relies crucially on the independence of the covariates and the errors. In fact, the $L_{2}$ loss of the LSE can converge arbitrarily slowly when the independence fails. The key technical ingredient is a new multiplier inequality that gives sharp bounds for the “multiplier empirical process” associated with the LSE. We further give an application to the sparse linear regression model with heavy-tailed covariates and errors to demonstrate the scope of this new inequality.




re

On deep learning as a remedy for the curse of dimensionality in nonparametric regression

Benedikt Bauer, Michael Kohler.

Source: The Annals of Statistics, Volume 47, Number 4, 2261--2285.

Abstract:
Assuming that a smoothness condition and a suitable restriction on the structure of the regression function hold, it is shown that least squares estimates based on multilayer feedforward neural networks are able to circumvent the curse of dimensionality in nonparametric regression. The proof is based on new approximation results concerning multilayer feedforward neural networks with bounded weights and a bounded number of hidden neurons. The estimates are compared with various other approaches by using simulated data.




re

Negative association, ordering and convergence of resampling methods

Mathieu Gerber, Nicolas Chopin, Nick Whiteley.

Source: The Annals of Statistics, Volume 47, Number 4, 2236--2260.

Abstract:
We study convergence and convergence rates for resampling schemes. Our first main result is a general consistency theorem based on the notion of negative association, which is applied to establish the almost sure weak convergence of measures output from Kitagawa’s [ J. Comput. Graph. Statist. 5 (1996) 1–25] stratified resampling method. Carpenter, Ckiffird and Fearnhead’s [ IEE Proc. Radar Sonar Navig. 146 (1999) 2–7] systematic resampling method is similar in structure but can fail to converge depending on the order of the input samples. We introduce a new resampling algorithm based on a stochastic rounding technique of [In 42nd IEEE Symposium on Foundations of Computer Science ( Las Vegas , NV , 2001) (2001) 588–597 IEEE Computer Soc.], which shares some attractive properties of systematic resampling, but which exhibits negative association and, therefore, converges irrespective of the order of the input samples. We confirm a conjecture made by [ J. Comput. Graph. Statist. 5 (1996) 1–25] that ordering input samples by their states in $mathbb{R}$ yields a faster rate of convergence; we establish that when particles are ordered using the Hilbert curve in $mathbb{R}^{d}$, the variance of the resampling error is ${scriptstylemathcal{O}}(N^{-(1+1/d)})$ under mild conditions, where $N$ is the number of particles. We use these results to establish asymptotic properties of particle algorithms based on resampling schemes that differ from multinomial resampling.




re

Spectral method and regularized MLE are both optimal for top-&#36;K&#36; ranking

Yuxin Chen, Jianqing Fan, Cong Ma, Kaizheng Wang.

Source: The Annals of Statistics, Volume 47, Number 4, 2204--2235.

Abstract:
This paper is concerned with the problem of top-$K$ ranking from pairwise comparisons. Given a collection of $n$ items and a few pairwise comparisons across them, one wishes to identify the set of $K$ items that receive the highest ranks. To tackle this problem, we adopt the logistic parametric model—the Bradley–Terry–Luce model, where each item is assigned a latent preference score, and where the outcome of each pairwise comparison depends solely on the relative scores of the two items involved. Recent works have made significant progress toward characterizing the performance (e.g., the mean square error for estimating the scores) of several classical methods, including the spectral method and the maximum likelihood estimator (MLE). However, where they stand regarding top-$K$ ranking remains unsettled. We demonstrate that under a natural random sampling model, the spectral method alone, or the regularized MLE alone, is minimax optimal in terms of the sample complexity—the number of paired comparisons needed to ensure exact top-$K$ identification, for the fixed dynamic range regime. This is accomplished via optimal control of the entrywise error of the score estimates. We complement our theoretical studies by numerical experiments, confirming that both methods yield low entrywise errors for estimating the underlying scores. Our theory is established via a novel leave-one-out trick, which proves effective for analyzing both iterative and noniterative procedures. Along the way, we derive an elementary eigenvector perturbation bound for probability transition matrices, which parallels the Davis–Kahan $mathop{mathrm{sin}} olimits Theta $ theorem for symmetric matrices. This also allows us to close the gap between the $ell_{2}$ error upper bound for the spectral method and the minimax lower limit.




re

Generalized cluster trees and singular measures

Yen-Chi Chen.

Source: The Annals of Statistics, Volume 47, Number 4, 2174--2203.

Abstract:
In this paper we study the $alpha $-cluster tree ($alpha $-tree) under both singular and nonsingular measures. The $alpha $-tree uses probability contents within a set created by the ordering of points to construct a cluster tree so that it is well defined even for singular measures. We first derive the convergence rate for a density level set around critical points, which leads to the convergence rate for estimating an $alpha $-tree under nonsingular measures. For singular measures, we study how the kernel density estimator (KDE) behaves and prove that the KDE is not uniformly consistent but pointwise consistent after rescaling. We further prove that the estimated $alpha $-tree fails to converge in the $L_{infty }$ metric but is still consistent under the integrated distance. We also observe a new type of critical points—the dimensional critical points (DCPs)—of a singular measure. DCPs are points that contribute to cluster tree topology but cannot be defined using density gradient. Building on the analysis of the KDE and DCPs, we prove the topological consistency of an estimated $alpha $-tree.




re

middleware

Integration software. Middleware is the term coined to describe software that connects other software together. In the early days of computing, each software system in an organization was a separate 'stovepipe' or 'silo' that stood alone and was dedicated to automating a specific part of the business or its IT operations. Middleware aims to connect those individual islands of automation, both within an enterprise and out to external systems (for example at customers and suppliers). For a long while, middleware has either been custom coded for individual projects or has come in the form of proprietary products or suites, most notably as enterprise application integration (EAI) software. The emergence of industry-agreed web services specifications is now enabling convergence on standards-based distributed middleware, which in theory should allow all systems to automatically connect together on demand.




re

registry

Recognized service directory. A registry stores information about services in an SOA. At a minimum, the registry includes information that other participants can look up to find out the location of the service and what it does (the UDDI specification defines a web services standard for this functionality). A registry may also include information about policies that are applied to the service, such as security requirements, quality of service commitments and billing. Some registries are extended with document repositories, providing more detailed information about the operation and constraints of the service that may be useful to developers, administrators or users.




re

data warehouse

A large store of data for analysis. Organizations use data warehouses (and smaller 'data marts') to help them analyze historic transaction data to detect useful patterns and trends. First of all the data is transferred into the data warehouse using a process called extracting, transforming and loading (ETL). Then it is organized and stored in the data warehouse in ways that optimize it for high-performance analysis. The transfer to a separate data warehouse system, which is usually performed as a regular batch job every night or at some other interval, insulates the live transaction systems from any side-effects of the analysis, but at the cost of not having the very latest data included in the analysis.




re

Correction: Sensitivity analysis for an unobserved moderator in RCT-to-target-population generalization of treatment effects

Trang Quynh Nguyen, Elizabeth A. Stuart.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 518--520.




re

A comparison of principal component methods between multiple phenotype regression and multiple SNP regression in genetic association studies

Zhonghua Liu, Ian Barnett, Xihong Lin.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 433--451.

Abstract:
Principal component analysis (PCA) is a popular method for dimension reduction in unsupervised multivariate analysis. However, existing ad hoc uses of PCA in both multivariate regression (multiple outcomes) and multiple regression (multiple predictors) lack theoretical justification. The differences in the statistical properties of PCAs in these two regression settings are not well understood. In this paper we provide theoretical results on the power of PCA in genetic association testings in both multiple phenotype and SNP-set settings. The multiple phenotype setting refers to the case when one is interested in studying the association between a single SNP and multiple phenotypes as outcomes. The SNP-set setting refers to the case when one is interested in studying the association between multiple SNPs in a SNP set and a single phenotype as the outcome. We demonstrate analytically that the properties of the PC-based analysis in these two regression settings are substantially different. We show that the lower order PCs, that is, PCs with large eigenvalues, are generally preferred and lead to a higher power in the SNP-set setting, while the higher-order PCs, that is, PCs with small eigenvalues, are generally preferred in the multiple phenotype setting. We also investigate the power of three other popular statistical methods, the Wald test, the variance component test and the minimum $p$-value test, in both multiple phenotype and SNP-set settings. We use theoretical power, simulation studies, and two real data analyses to validate our findings.




re

Estimating and forecasting the smoking-attributable mortality fraction for both genders jointly in over 60 countries

Yicheng Li, Adrian E. Raftery.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 381--408.

Abstract:
Smoking is one of the leading preventable threats to human health and a major risk factor for lung cancer, upper aerodigestive cancer and chronic obstructive pulmonary disease. Estimating and forecasting the smoking attributable fraction (SAF) of mortality can yield insights into smoking epidemics and also provide a basis for more accurate mortality and life expectancy projection. Peto et al. ( Lancet 339 (1992) 1268–1278) proposed a method to estimate the SAF using the lung cancer mortality rate as an indicator of exposure to smoking in the population of interest. Here, we use the same method to estimate the all-age SAF (ASAF) for both genders for over 60 countries. We document a strong and cross-nationally consistent pattern of the evolution of the SAF over time. We use this as the basis for a new Bayesian hierarchical model to project future male and female ASAF from over 60 countries simultaneously. This gives forecasts as well as predictive distributions that can be used to find uncertainty intervals for any quantity of interest. We assess the model using out-of-sample predictive validation and find that it provides good forecasts and well-calibrated forecast intervals, comparing favorably with other methods.




re

Regression for copula-linked compound distributions with applications in modeling aggregate insurance claims

Peng Shi, Zifeng Zhao.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 357--380.

Abstract:
In actuarial research a task of particular interest and importance is to predict the loss cost for individual risks so that informative decisions are made in various insurance operations such as underwriting, ratemaking and capital management. The loss cost is typically viewed to follow a compound distribution where the summation of the severity variables is stopped by the frequency variable. A challenging issue in modeling such outcomes is to accommodate the potential dependence between the number of claims and the size of each individual claim. In this article we introduce a novel regression framework for compound distributions that uses a copula to accommodate the association between the frequency and the severity variables and, thus, allows for arbitrary dependence between the two components. We further show that the new model is very flexible and is easily modified to account for incomplete data due to censoring or truncation. The flexibility of the proposed model is illustrated using both simulated and real data sets. In the analysis of granular claims data from property insurance, we find substantive negative relationship between the number and the size of insurance claims. In addition, we demonstrate that ignoring the frequency-severity association could lead to biased decision-making in insurance operations.




re

Modeling wildfire ignition origins in southern California using linear network point processes

Medha Uppala, Mark S. Handcock.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 339--356.

Abstract:
This paper focuses on spatial and temporal modeling of point processes on linear networks. Point processes on linear networks can simply be defined as point events occurring on or near line segment network structures embedded in a certain space. A separable modeling framework is introduced that posits separate formation and dissolution models of point processes on linear networks over time. While the model was inspired by spider web building activity in brick mortar lines, the focus is on modeling wildfire ignition origins near road networks over a span of 14 years. As most wildfires in California have human-related origins, modeling the origin locations with respect to the road network provides insight into how human, vehicular and structural densities affect ignition occurrence. Model results show that roads that traverse different types of regions such as residential, interface and wildland regions have higher ignition intensities compared to roads that only exist in each of the mentioned region types.




re

Feature selection for generalized varying coefficient mixed-effect models with application to obesity GWAS

Wanghuan Chu, Runze Li, Jingyuan Liu, Matthew Reimherr.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 276--298.

Abstract:
Motivated by an empirical analysis of data from a genome-wide association study on obesity, measured by the body mass index (BMI), we propose a two-step gene-detection procedure for generalized varying coefficient mixed-effects models with ultrahigh dimensional covariates. The proposed procedure selects significant single nucleotide polymorphisms (SNPs) impacting the mean BMI trend, some of which have already been biologically proven to be “fat genes.” The method also discovers SNPs that significantly influence the age-dependent variability of BMI. The proposed procedure takes into account individual variations of genetic effects and can also be directly applied to longitudinal data with continuous, binary or count responses. We employ Monte Carlo simulation studies to assess the performance of the proposed method and further carry out causal inference for the selected SNPs.




re

Estimating the health effects of environmental mixtures using Bayesian semiparametric regression and sparsity inducing priors

Joseph Antonelli, Maitreyi Mazumdar, David Bellinger, David Christiani, Robert Wright, Brent Coull.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 257--275.

Abstract:
Humans are routinely exposed to mixtures of chemical and other environmental factors, making the quantification of health effects associated with environmental mixtures a critical goal for establishing environmental policy sufficiently protective of human health. The quantification of the effects of exposure to an environmental mixture poses several statistical challenges. It is often the case that exposure to multiple pollutants interact with each other to affect an outcome. Further, the exposure-response relationship between an outcome and some exposures, such as some metals, can exhibit complex, nonlinear forms, since some exposures can be beneficial and detrimental at different ranges of exposure. To estimate the health effects of complex mixtures, we propose a flexible Bayesian approach that allows exposures to interact with each other and have nonlinear relationships with the outcome. We induce sparsity using multivariate spike and slab priors to determine which exposures are associated with the outcome and which exposures interact with each other. The proposed approach is interpretable, as we can use the posterior probabilities of inclusion into the model to identify pollutants that interact with each other. We utilize our approach to study the impact of exposure to metals on child neurodevelopment in Bangladesh and find a nonlinear, interactive relationship between arsenic and manganese.




re

A hierarchical Bayesian model for predicting ecological interactions using scaled evolutionary relationships

Mohamad Elmasri, Maxwell J. Farrell, T. Jonathan Davies, David A. Stephens.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 221--240.

Abstract:
Identifying undocumented or potential future interactions among species is a challenge facing modern ecologists. Recent link prediction methods rely on trait data; however, large species interaction databases are typically sparse and covariates are limited to only a fraction of species. On the other hand, evolutionary relationships, encoded as phylogenetic trees, can act as proxies for underlying traits and historical patterns of parasite sharing among hosts. We show that, using a network-based conditional model, phylogenetic information provides strong predictive power in a recently published global database of host-parasite interactions. By scaling the phylogeny using an evolutionary model, our method allows for biological interpretation often missing from latent variable models. To further improve on the phylogeny-only model, we combine a hierarchical Bayesian latent score framework for bipartite graphs that accounts for the number of interactions per species with host dependence informed by phylogeny. Combining the two information sources yields significant improvement in predictive accuracy over each of the submodels alone. As many interaction networks are constructed from presence-only data, we extend the model by integrating a correction mechanism for missing interactions which proves valuable in reducing uncertainty in unobserved interactions.




re

Modifying the Chi-square and the CMH test for population genetic inference: Adapting to overdispersion

Kerstin Spitzer, Marta Pelizzola, Andreas Futschik.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 202--220.

Abstract:
Evolve and resequence studies provide a popular approach to simulate evolution in the lab and explore its genetic basis. In this context, Pearson’s chi-square test, Fisher’s exact test as well as the Cochran–Mantel–Haenszel test are commonly used to infer genomic positions affected by selection from temporal changes in allele frequency. However, the null model associated with these tests does not match the null hypothesis of actual interest. Indeed, due to genetic drift and possibly other additional noise components such as pool sequencing, the null variance in the data can be substantially larger than accounted for by these common test statistics. This leads to $p$-values that are systematically too small and, therefore, a huge number of false positive results. Even, if the ranking rather than the actual $p$-values is of interest, a naive application of the mentioned tests will give misleading results, as the amount of overdispersion varies from locus to locus. We therefore propose adjusted statistics that take the overdispersion into account while keeping the formulas simple. This is particularly useful in genome-wide applications, where millions of SNPs can be handled with little computational effort. We then apply the adapted test statistics to real data from Drosophila and investigate how information from intermediate generations can be included when available. We also discuss further applications such as genome-wide association studies based on pool sequencing data and tests for local adaptation.




re

TFisher: A powerful truncation and weighting procedure for combining &#36;p&#36;-values

Hong Zhang, Tiejun Tong, John Landers, Zheyang Wu.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 178--201.

Abstract:
The $p$-value combination approach is an important statistical strategy for testing global hypotheses with broad applications in signal detection, meta-analysis, data integration, etc. In this paper we extend the classic Fisher’s combination method to a unified family of statistics, called TFisher, which allows a general truncation-and-weighting scheme of input $p$-values. TFisher can significantly improve statistical power over the Fisher and related truncation-only methods for detecting both rare and dense “signals.” To address wide applications, analytical calculations for TFisher’s size and power are deduced under any two continuous distributions in the null and the alternative hypotheses. The corresponding omnibus test (oTFisher) and its size calculation are also provided for data-adaptive analysis. We study the asymptotic optimal parameters of truncation and weighting based on Bahadur efficiency (BE). A new asymptotic measure, called the asymptotic power efficiency (APE), is also proposed for better reflecting the statistics’ performance in real data analysis. Interestingly, under the Gaussian mixture model in the signal detection problem, both BE and APE indicate that the soft-thresholding scheme is the best, the truncation and weighting parameters should be equal. By simulations of various signal patterns, we systematically compare the power of statistics within TFisher family as well as some rare-signal-optimal tests. We illustrate the use of TFisher in an exome-sequencing analysis for detecting novel genes of amyotrophic lateral sclerosis. Relevant computation has been implemented into an R package TFisher published on the Comprehensive R Archive Network to cater for applications.




re

Assessing wage status transition and stagnation using quantile transition regression

Chih-Yuan Hsu, Yi-Hau Chen, Ruoh-Rong Yu, Tsung-Wei Hung.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 160--177.

Abstract:
Workers in Taiwan overall have been suffering from long-lasting wage stagnation since the mid-1990s. In particular, there seems to be little mobility for the wages of Taiwanese workers to transit across wage quantile groups. It is of interest to see if certain groups of workers, such as female, lower educated and younger generation workers, suffer from the problem more seriously than the others. This work tries to apply a systematic statistical approach to study this issue, based on the longitudinal data from the Panel Study of Family Dynamics (PSFD) survey conducted in Taiwan since 1999. We propose the quantile transition regression model, generalizing recent methodology for quantile association, to assess the wage status transition with respect to the marginal wage quantiles over time as well as the effects of certain demographic and job factors on the wage status transition. Estimation of the model can be based on the composite likelihoods utilizing the binary, or ordinal-data information regarding the quantile transition, with the associated asymptotic theory established. A goodness-of-fit procedure for the proposed model is developed. The performances of the estimation and the goodness-of-fit procedures for the quantile transition model are illustrated through simulations. The application of the proposed methodology to the PSFD survey data suggests that female, private-sector workers with higher age and education below postgraduate level suffer from more severe wage status stagnation than the others.




re

Surface temperature monitoring in liver procurement via functional variance change-point analysis

Zhenguo Gao, Pang Du, Ran Jin, John L. Robertson.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 143--159.

Abstract:
Liver procurement experiments with surface-temperature monitoring motivated Gao et al. ( J. Amer. Statist. Assoc. 114 (2019) 773–781) to develop a variance change-point detection method under a smoothly-changing mean trend. However, the spotwise change points yielded from their method do not offer immediate information to surgeons since an organ is often transplanted as a whole or in part. We develop a new practical method that can analyze a defined portion of the organ surface at a time. It also provides a novel addition to the developing field of functional data monitoring. Furthermore, numerical challenge emerges for simultaneously modeling the variance functions of 2D locations and the mean function of location and time. The respective sample sizes in the scales of 10,000 and 1,000,000 for modeling these functions make standard spline estimation too costly to be useful. We introduce a multistage subsampling strategy with steps educated by quickly-computable preliminary statistical measures. Extensive simulations show that the new method can efficiently reduce the computational cost and provide reasonable parameter estimates. Application of the new method to our liver surface temperature monitoring data shows its effectiveness in providing accurate status change information for a selected portion of the organ in the experiment.




re

Modeling microbial abundances and dysbiosis with beta-binomial regression

Bryan D. Martin, Daniela Witten, Amy D. Willis.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 94--115.

Abstract:
Using a sample from a population to estimate the proportion of the population with a certain category label is a broadly important problem. In the context of microbiome studies, this problem arises when researchers wish to use a sample from a population of microbes to estimate the population proportion of a particular taxon, known as the taxon’s relative abundance . In this paper, we propose a beta-binomial model for this task. Like existing models, our model allows for a taxon’s relative abundance to be associated with covariates of interest. However, unlike existing models, our proposal also allows for the overdispersion in the taxon’s counts to be associated with covariates of interest. We exploit this model in order to propose tests not only for differential relative abundance, but also for differential variability. The latter is particularly valuable in light of speculation that dysbiosis , the perturbation from a normal microbiome that can occur in certain disease conditions, may manifest as a loss of stability, or increase in variability, of the counts associated with each taxon. We demonstrate the performance of our proposed model using a simulation study and an application to soil microbial data.




re

Efficient real-time monitoring of an emerging influenza pandemic: How feasible?

Paul J. Birrell, Lorenz Wernisch, Brian D. M. Tom, Leonhard Held, Gareth O. Roberts, Richard G. Pebody, Daniela De Angelis.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 74--93.

Abstract:
A prompt public health response to a new epidemic relies on the ability to monitor and predict its evolution in real time as data accumulate. The 2009 A/H1N1 outbreak in the UK revealed pandemic data as noisy, contaminated, potentially biased and originating from multiple sources. This seriously challenges the capacity for real-time monitoring. Here, we assess the feasibility of real-time inference based on such data by constructing an analytic tool combining an age-stratified SEIR transmission model with various observation models describing the data generation mechanisms. As batches of data become available, a sequential Monte Carlo (SMC) algorithm is developed to synthesise multiple imperfect data streams, iterate epidemic inferences and assess model adequacy amidst a rapidly evolving epidemic environment, substantially reducing computation time in comparison to standard MCMC, to ensure timely delivery of real-time epidemic assessments. In application to simulated data designed to mimic the 2009 A/H1N1 epidemic, SMC is shown to have additional benefits in terms of assessing predictive performance and coping with parameter nonidentifiability.




re

A general theory for preferential sampling in environmental networks

Joe Watson, James V. Zidek, Gavin Shaddick.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2662--2700.

Abstract:
This paper presents a general model framework for detecting the preferential sampling of environmental monitors recording an environmental process across space and/or time. This is achieved by considering the joint distribution of an environmental process with a site-selection process that considers where and when sites are placed to measure the process. The environmental process may be spatial, temporal or spatio-temporal in nature. By sharing random effects between the two processes, the joint model is able to establish whether site placement was stochastically dependent of the environmental process under study. Furthermore, if stochastic dependence is identified between the two processes, then inferences about the probability distribution of the spatio-temporal process will change, as will predictions made of the process across space and time. The embedding into a spatio-temporal framework also allows for the modelling of the dynamic site-selection process itself. Real-world factors affecting both the size and location of the network can be easily modelled and quantified. Depending upon the choice of the population of locations considered for selection across space and time under the site-selection process, different insights about the precise nature of preferential sampling can be obtained. The general framework developed in the paper is designed to be easily and quickly fit using the R-INLA package. We apply this framework to a case study involving particulate air pollution over the UK where a major reduction in the size of a monitoring network through time occurred. It is demonstrated that a significant response-biased reduction in the air quality monitoring network occurred, namely the relocation of monitoring sites to locations with the highest pollution levels, and the routine removal of sites at locations with the lowest. We also show that the network was consistently unrepresenting levels of particulate matter seen across much of GB throughout the operating life of the network. Finally we show that this may have led to a severe overreporting of the population-average exposure levels experienced across GB. This could have great impacts on estimates of the health effects of black smoke levels.




re

Hierarchical infinite factor models for improving the prediction of surgical complications for geriatric patients

Elizabeth Lorenzi, Ricardo Henao, Katherine Heller.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2637--2661.

Abstract:
Nearly a third of all surgeries performed in the United States occur for patients over the age of 65; these older adults experience a higher rate of postoperative morbidity and mortality. To improve the care for these patients, we aim to identify and characterize high risk geriatric patients to send to a specialized perioperative clinic while leveraging the overall surgical population to improve learning. To this end, we develop a hierarchical infinite latent factor model (HIFM) to appropriately account for the covariance structure across subpopulations in data. We propose a novel Hierarchical Dirichlet Process shrinkage prior on the loadings matrix that flexibly captures the underlying structure of our data while sharing information across subpopulations to improve inference and prediction. The stick-breaking construction of the prior assumes an infinite number of factors and allows for each subpopulation to utilize different subsets of the factor space and select the number of factors needed to best explain the variation. We develop the model into a latent factor regression method that excels at prediction and inference of regression coefficients. Simulations validate this strong performance compared to baseline methods. We apply this work to the problem of predicting surgical complications using electronic health record data for geriatric patients and all surgical patients at Duke University Health System (DUHS). The motivating application demonstrates the improved predictive performance when using HIFM in both area under the ROC curve and area under the PR Curve while providing interpretable coefficients that may lead to actionable interventions.




re

Bayesian indicator variable selection to incorporate hierarchical overlapping group structure in multi-omics applications

Li Zhu, Zhiguang Huo, Tianzhou Ma, Steffi Oesterreich, George C. Tseng.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2611--2636.

Abstract:
Variable selection is a pervasive problem in modern high-dimensional data analysis where the number of features often exceeds the sample size (a.k.a. small-n-large-p problem). Incorporation of group structure knowledge to improve variable selection has been widely studied. Here, we consider prior knowledge of a hierarchical overlapping group structure to improve variable selection in regression setting. In genomics applications, for instance, a biological pathway contains tens to hundreds of genes and a gene can be mapped to multiple experimentally measured features (such as its mRNA expression, copy number variation and methylation levels of possibly multiple sites). In addition to the hierarchical structure, the groups at the same level may overlap (e.g., two pathways can share common genes). Incorporating such hierarchical overlapping groups in traditional penalized regression setting remains a difficult optimization problem. Alternatively, we propose a Bayesian indicator model that can elegantly serve the purpose. We evaluate the model in simulations and two breast cancer examples, and demonstrate its superior performance over existing models. The result not only enhances prediction accuracy but also improves variable selection and model interpretation that lead to deeper biological insight of the disease.




re

On Bayesian new edge prediction and anomaly detection in computer networks

Silvia Metelli, Nicholas Heard.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2586--2610.

Abstract:
Monitoring computer network traffic for anomalous behaviour presents an important security challenge. Arrivals of new edges in a network graph represent connections between a client and server pair not previously observed, and in rare cases these might suggest the presence of intruders or malicious implants. We propose a Bayesian model and anomaly detection method for simultaneously characterising existing network structure and modelling likely new edge formation. The method is demonstrated on real computer network authentication data and successfully identifies some machines which are known to be compromised.




re

Scalable high-resolution forecasting of sparse spatiotemporal events with kernel methods: A winning solution to the NIJ “Real-Time Crime Forecasting Challenge”

Seth Flaxman, Michael Chirico, Pau Pereira, Charles Loeffler.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2564--2585.

Abstract:
We propose a generic spatiotemporal event forecasting method which we developed for the National Institute of Justice’s (NIJ) Real-Time Crime Forecasting Challenge (National Institute of Justice (2017)). Our method is a spatiotemporal forecasting model combining scalable randomized Reproducing Kernel Hilbert Space (RKHS) methods for approximating Gaussian processes with autoregressive smoothing kernels in a regularized supervised learning framework. While the smoothing kernels capture the two main approaches in current use in the field of crime forecasting, kernel density estimation (KDE) and self-exciting point process (SEPP) models, the RKHS component of the model can be understood as an approximation to the popular log-Gaussian Cox Process model. For inference, we discretize the spatiotemporal point pattern and learn a log-intensity function using the Poisson likelihood and highly efficient gradient-based optimization methods. Model hyperparameters including quality of RKHS approximation, spatial and temporal kernel lengthscales, number of autoregressive lags and bandwidths for smoothing kernels as well as cell shape, size and rotation, were learned using cross validation. Resulting predictions significantly exceeded baseline KDE estimates and SEPP models for sparse events.




re

Propensity score weighting for causal inference with multiple treatments

Fan Li, Fan Li.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2389--2415.

Abstract:
Causal or unconfounded descriptive comparisons between multiple groups are common in observational studies. Motivated from a racial disparity study in health services research, we propose a unified propensity score weighting framework, the balancing weights, for estimating causal effects with multiple treatments. These weights incorporate the generalized propensity scores to balance the weighted covariate distribution of each treatment group, all weighted toward a common prespecified target population. The class of balancing weights include several existing approaches such as the inverse probability weights and trimming weights as special cases. Within this framework, we propose a set of target estimands based on linear contrasts. We further develop the generalized overlap weights, constructed as the product of the inverse probability weights and the harmonic mean of the generalized propensity scores. The generalized overlap weighting scheme corresponds to the target population with the most overlap in covariates across the multiple treatments. These weights are bounded and thus bypass the problem of extreme propensities. We show that the generalized overlap weights minimize the total asymptotic variance of the moment weighting estimators for the pairwise contrasts within the class of balancing weights. We consider two balance check criteria and propose a new sandwich variance estimator for estimating the causal effects with generalized overlap weights. We apply these methods to study the racial disparities in medical expenditure between several racial groups using the 2009 Medical Expenditure Panel Survey (MEPS) data. Simulations were carried out to compare with existing methods.