rc

Integrated circuit floorplan for compact clock distribution

An integrated circuit includes core logic and a plurality of interface blocks disposed about a periphery of the core logic. A plurality of input or output (I/O) circuits is assigned to one of the plurality of interface blocks. The I/O circuits include external I/O circuits coupled to a device other than the integrated circuit and internal I/O circuits coupled to the integrated circuit. Each interface block includes a first plurality of I/O circuits disposed on a first side of the interface block and a second plurality of I/O circuits disposed on a second side of the interface block. Each interface block also includes interface logic for the interface block between the first plurality of I/O circuits and the second plurality of I/O circuits, and a logic hub that includes a clock distribution of minimal length that drives launch logic and capture logic to form the I/O circuits of the interface block.




rc

Interconnection substrate design supporting device, method of designing interconnection substrate, program, and interconnection substrate

A via disposition information acquiring unit acquires via disposition information indicating a disposition of the plurality of first vias (212). A second conductor information acquiring unit acquires second conductor information indicating disposition positions of a plurality of second conductors (232) repeatedly disposed in the second conductor layer (230). A via extracting unit extracts an extraction via with respect to each of the plurality of second conductors (232). The extraction via is each of the first vias (212) overlapping the second conductor (232). A via selecting unit selects a selection via with respect to each of the plurality of second conductors (232). The selection via is each of first vias (212) selected in a predetermined number from the extraction vias. An opening introducing unit introduces a first opening (234) to each of the plurality of second conductors (232). The first opening (234) overlaps the extraction via not selected by the via selecting unit in plan view.




rc

Method and system for semiconductor design hierarchy analysis and transformation

A method and apparatus for partitioning of the input design into repeating patterns called template cores for the application of reticle enhancement methods, design verification for manufacturability and design corrections for optical and process effects is accomplished by hierarchy analysis to extract cell overlap information. Also hierarchy analysis is performed to extract hierarchy statistics. Finally template core candidates are identified. This allows to the design to be made amenable for design corrections or other analyses or modifications that are able to leverage the hierarchy of the design since the cell hierarchy could otherwise be very deep or cells could have significant overlap with each other.




rc

Automated integrated circuit design documentation

A method of creating a datasheet includes obtaining integrated circuit data from at least one data source, creating a data structure including the integrated circuit data obtained from the at least one data source, and creating a datasheet using data contained in the data structure. The datasheet is created in a human-readable format.




rc

DRC format for stacked CMOS design

The present disclosure relates a method of performing a design rule checking (DRC) procedure on a multi-tiered integrated chip. In some embodiments, the method is performed by defining layer databases for a plurality of tiers within a multi-tiered integrated chip. The layer databases respectively identify design layers within an associated tier. A DRC (design rule checking) deck is then generated, which defines one or more individual design layer definitions as a function of a plurality of layer databases, so that the one or more individual design layer definitions are defined for a plurality of tiers. One or more design rules for the one or more individual design layer definitions are defined within the DRC deck. Since the individual design layer definitions are defined as functions of the plurality of layer databases, the design rules apply to the plurality of tiers.




rc

Horizontal interconnects crosstalk optimization

A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus generates a plurality of interconnect patterns for a set of longitudinal channels that are occupied by horizontal interconnects. Each interconnect pattern may be different from the other interconnect patterns. Each interconnect pattern may define relative locations for the set of horizontal interconnects and gap channels. Highest crosstalk is determined for each of the interconnect patterns and the interconnect pattern with the minimum highest crosstalk is selected as a preferred pattern. The highest crosstalk may comprise far-end crosstalk or near-end crosstalk and may be calculated for a range of frequencies or for a plurality of frequencies. The crosstalk may be calculated by modeling the interconnects as transmission lines.




rc

Circuit design support method, computer product, and circuit design support apparatus

A circuit-design support method includes obtaining information for a circuit having a logic circuit in which signal lines are connected to input terminals, signals of the signal lines being output via the logic circuit; obtaining information concerning a control circuit that has a first flip-flop for scanning and that can control a value of a given signal line by a value set by the first flip-flop; selecting, based on the circuit information, a second flip-flop at an output destination of a signal from the logic circuit, among second flip-flops of the circuit; and generating, based on the control circuit information, information indicating a serial connection of the control circuit between an output source of the signal of the given signal line and the given signal line and a connection of a data input terminal of the first flip-flop and an output terminal of the selected second flip-flop.




rc

Integrated circuit design verification through forced clock glitches

A technique for determining whether an integrated circuit design is susceptible to glitches includes identifying storage elements in an original register-transfer level (RTL) file of the integrated circuit design and identifying clock signals for each of the storage elements in the original RTL file. The technique also includes generating respective assertions for each of the identified clock signals and identifying potential glitchy logic in respective clock paths for each of the identified clock signals. Finally, the technique includes inserting, at the potential glitchy logic, glitches in each of the respective clock paths of the original RTL file to provide a modified RTL file and executing an RTL simulation using the modified RTL file and the respective assertions.




rc

Legalizing a portion of a circuit layout

A layout-legalizing system modifies a portion of a circuit layout that is selected by a user to generate a modified portion that satisfies a set of technology constraints and a set of design constraints. The system receives as input the set of technology constraints which a semiconductor manufacturing foundry requires the circuit layout to satisfy for manufacturability purposes. The system also receives a set of design constraints from the user which restricts how objects in the portion of the circuit layout can be modified to satisfy the set of technology constraints. The system can further receive a selection input from the user which identifies the portion of the circuit layout which is to be legalized. The system then modifies the identified portion of the circuit layout to obtain a modified portion which satisfies the set of design constraints and at least a subset of the set of technology constraints.




rc

Methods, systems, and articles of manufacture for implementing physical design using force models with custom connectivity

Disclosed are methods, systems, and articles of manufactures for implementing physical designs by using multiple force models to iteratively morph a layout decomposition. In addition to attractive force model(s) or repulsive force model(s), the physical implementation also uses a containment force model for grouping multiple design blocks or for confining a node of a cell within the boundary of a container. Another aspect is directed at deriving a first force model at the first hierarchical level from a second force model at the second hierarchical level by directly modifying the second model based at least in part on characteristic(s) of the first hierarchical level and of the second hierarchical level. In a design with multiple hierarchies, a cell-based force model is also used to ensure child nodes of a parent cell stay within a close proximity of the parent node of the parent cell.




rc

Routing interconnect of integrated circuit designs with varying grid densities

Routing methods for an integrated circuit design layout are disclosed. The layout can include design netlists and library cells. A multiple-level global routing can generate topological wire for each net. An area oriented graph-based detail routing on the design can be performed. A post route optimization after the detail routing can be performed to further improve the routing quality. Some methods can be single threaded all or some of the time, and/or multi-threaded some or all of the time.




rc

Density-based integrated circuit design adjustment

The disclosed technology is related to adjusting an integrated circuit design while accounting for a local density of the design. In particular exemplary embodiments, a local density value for a layout design that defines a plurality of geometric shapes is derived. Subsequently, one or more of the geometric shapes are adjusted such that the local density value is preserved. With some implementations, the local density value is preserved if the adjusted local density value is within a threshold amount of the derived local density value.




rc

Metal conservation with stripper solutions containing resorcinol

Resist stripping agents useful for fabricating circuits and/or forming electrodes on semiconductor devices for semiconductor integrated circuits and/or liquid crystals with reduced metal and metal alloy etch rates (particularly copper etch rates and TiW etch rates), are provided with methods for their use. The preferred stripping agents contain low concentrations of resorcinol or a resorcinol derivative, with or without an added copper salt, and with or without an added amine to improve solubility of the copper salt. Further provided are integrated circuit devices and electronic interconnect structures prepared according to these methods.




rc

Segmented soap bar with soap bodies forming concave arc surface

An elongated segmented soap bar is segmented longitudinally into a plurality of soap bodies separate and discrete from one another. Adjacent soap bodies are movable with respect to one another between at least two different configurations including at least an arc configuration with the plurality of soap bodies disposed in an arc. At least one coupler couples the plurality of soap bodies together to allow the adjacent soap bodies to move with respect to one another between the at least two different configurations.




rc

Intercalated bleach compositions, related methods of manufacture and use

The invention relates to compositions, methods of use, and methods of manufacture for an intercalated bleach compound and compositions thereof. The intercalated bleach compound has the formula Mx(OCl)y(O)m(OH)n where M is an alkaline earth metal such as magnesium, calcium or mixture thereof. The values of x and y independently equal any number greater than or equal to 1 (e.g., 1, 2, 3, 4, etc.), and m and n independently equal any number greater than or equal to 0 (e.g., 0, 1, 2, 3, 4, etc.), but m and n are not both 0. In addition, the molar ratio of the alkaline earth metal (e.g., magnesium or calcium) to hypochlorite is at least 3:1. In other words, x is ≧3y. The compounds exhibit excellent stability, little or no chlorine bleach odor, exhibit excellent pH buffering characteristics, and less reactivity with organic materials as compared to alternative chlorine bleach products.




rc

Fast-cycling, conduction-cooled, quasi-isothermal, superconducting fault current limiter

Fault Current Limiters (FCL) provide protection for upstream and/or downstream devices in electric power grids. Conventional FCL require the use of expensive conductors and liquid or gas cryogen handling. Disclosed embodiments describe FCL systems and devices that use lower cost superconductors, require no liquid cryogen, and are fast cycling. These improved FCL can sustain many sequential faults and require less time to clear faults while avoiding the use of liquid cryogen. Disclosed embodiments describe a FCL with a superconductor and cladding cooled to cryogenic temperatures; these are connected in parallel with a second resistor across two nodes in a circuit. According to disclosed embodiments, the resistance of the superconducting components and its sheath in the fault mode are sufficiently high to minimize energy deposition within the cryogenic system, minimizing recovery time. A scheme for intermediate heat storage also is described which allows a useful compromise between conductor length enabled energy minimization and allowable number of sequential faults to enable an overall system design which is affordable, and yet allows conduction cooled (cryogen free) systems which have fast recovery and allows for multiple sequential faults.




rc

Transmission system with a superconducting cable

A transmission system is provided with a superconductive cable having three phase conductors and a cryostat, surrounding the phase conductors, and encasing a hollow space, for conducting a cooling agent. For the three phase conductors, a common neutral conductor is provided, being made of electrically normally conducting material, carried out as insulating round conductor and placed outside the cryostat and next to it. The cryostat is made of a circumferentially enclosed, thermally insulated sheath.




rc

Method of manufacturing superconducting accelerator cavity

Provided is a method of manufacturing a superconducting accelerator cavity in which a plurality of half cells having opening portions (equator portions and iris portions) at both ends thereof in an axial direction are placed one after another in the axial direction, contact portions where the corresponding opening portions come into contact with each other are joined by welding, and thus, a superconducting accelerator cavity is manufactured, the half cells to be joined are arranged so that the axial direction thereof extends in a vertical direction; and concave portions that are concave towards an outer side are also formed at inner circumferential surfaces located below the contact portions of the half cells positioned at a bottom; and the contact portions are joined from outside by penetration welding.




rc

Superconductive magnet

A superconductive magnet includes a superconductive coil that is an air-core coil; a pair of bobbin bodies that support the superconductive coil while interposing the superconductive coil therebetween on both sides of a center axial line direction of the superconductive coil; an outer circumference-side binding portion that extends in the center axial line direction on an outer circumferential side of the superconductive coil to bind the pair of bobbin bodies; and a belt-shaped or a wire-shaped inner circumference-side tension imparted portion which extends in the center axial line direction on an inner circumferential side of the superconductive coil to connect the pair of bobbin bodies, and on which tension is imparted in the center axial line direction.




rc

Low-loss superconducting devices

Low-loss superconducting devices and methods for fabricating low loss superconducting devices. For example, superconducting devices, such as superconducting resonator devices, are formed with a (200)-oriented texture titanium nitride (TiN) layer to provide high Q, low loss resonator structures particularly suitable for application to radio-frequency (RF) and/or microwave superconducting resonators, such as coplanar waveguide superconducting resonators. In one aspect, a method of forming a superconducting device includes forming a silicon nitride (SiN) seed layer on a substrate, and forming a (200)-oriented texture titanium nitride (TiN) layer on the SiN seed layer.




rc

Superconducting direct-current electrical cable

A superconductive electrical direct current cable with at least two conductors insulated relative to each other is indicated, where the cable is placed with at least two conductors insulated relative to each other, where the conductors are arranged in a cryostat suitable for guidance of the cooling agent, wherein the cryostat is composed of at least one metal pipe which is surrounded by a circumferentially closed layer with thermally insulating properties. In the cryostat is arranged a strand-shaped carrier composed of insulating material, where the carrier has at least two diametrically oppositely located outwardly open grooves in each of which is arranged one of the conductors. Each conductor is composed of a plurality of superconductive elements.




rc

Superconducting rotating electrical machine and manufacturing method for high temperature superconducting film thereof

The present disclosure relates to a superconducting rotating electrical machine and a manufacturing method for a high temperature superconducting film thereof. The superconducting rotating electrical machine includes a stator, and a rotor rotatable with respect to the stator, the rotor having a rotary shaft and a rotor winding. Here, the rotor winding includes tubes disposed on a circumference of the rotary shaft and each forming a passage for a cooling fluid therein, superconducting wires accommodated within the tubes, and a cooling fluid flowing through the inside of the tubes. This configuration may allow for direct heat exchange between the superconducting wires and a refrigerant, resulting in improvement of heat exchange efficiencies of the superconducting wires.




rc

Persistent-mode high-temperature superconducting shim coils to enhance spatial magnetic field homogeneity for superconducting magnets

A persistent-mode High Temperature Superconductor (HTS) shim coil is provided having at least one rectangular shaped thin sheet of HTS, wherein the thin sheet of HTS contains a first long portion, a second long portion parallel to first long portion, a first end, and a second end parallel to the first end. The rectangular shaped thin sheet of high-temperature superconductor has a hollow center and forms a continuous loop. In addition, the first end and the second end are folded toward each other forming two rings, and the thin sheet of high-temperature superconductor has a radial build that is less than 5 millimeters (mm) and able to withstand very strong magnetic field ranges of greater than approximately 12 Tesla (T) within a center-portion of a superconducting magnet of a superconducting magnet assembly.




rc

Oxide superconductor cabling and method of manufacturing oxide superconductor cabling

Disclosed are an oxide superconductor tape and a method of manufacturing the oxide superconductor tape capable of improving the length and characteristics of superconductor tape and obtaining stabilized characteristics across the entire length thereof. A Y-class superconductor tape (10), as an oxide superconductor tape, comprises a tape (13) further comprising a tape-shaped non-oriented metallic substrate (11), and a first buffer layer (sheet layer) (12) that is formed by IBAD upon the tape-shaped non-oriented metallic substrate (11); and a second buffer layer (gap layer) (14), further comprising a lateral face portion (14a) that is extended to the lateral faces of the first buffer layer (sheet layer) (12) upon the tape (13) by RTR RF-magnetron sputtering.




rc

Superconductive electromagnet apparatus

A superconductive electromagnet apparatus and a magnetic resonance imaging apparatus including the superconductive electromagnet apparatus are provided. The superconductive electromagnet apparatus includes a thermal anchor, a cryogenic cooling device which cools the thermal anchor, and at least one connecting ring into which the thermal anchor is inserted and a plurality of wires which are connected to the connecting ring.




rc

Superconducting devices with ferromagnetic barrier junctions

A superconducting memory cell includes a magnetic Josephson junction (MJJ) with a ferromagnetic material, having at least two switchable states of magnetization. The binary state of the MJJ manifests itself as a pulse appearing, or not appearing, on the output. A superconducting memory includes an array of memory cells. Each memory cell includes a comparator with at least one MJJ. Selected X and Y-directional write lines in their combination are capable of switching the magnetization of the MJJ. A superconducting device includes a first and a second junction in a stacked configuration. The first junction has an insulating layer barrier, and the second junction has an insulating layer sandwiched in-between two ferromagnetic layers as barrier. An electrical signal inputted across the first junction is amplified across the second junction.




rc

Method of manufacturing base material for superconducting conductor, method of manufacturing superconducting conductor, base material for superconducting conductor, and superconducting conductor

A method for manufacturing a base material 2 for a superconductive conductor which includes: a conductive bed layer forming process of forming a non-oriented bed layer 24 having conductivity on a substrate 10; and a biaxially oriented layer forming process of forming a biaxially oriented layer 26 on the bed layer 24.




rc

High temperature superconducting tape conductor having high critical ampacity

The invention relates to a high temperature superconducting tape conductor having a flexible metal substrate that comprises at least one intermediate layer disposed on the flexible metal substrate and comprising terraces on the side opposite the flexible metal substrate, wherein a mean width of the terraces is less than 1 μm and a mean height of the terraces is more than 20 nm, and that comprises at least one high temperature superconducting layer disposed on the intermediate layer, which is disposed on the at least one intermediate layer and comprises a layer thickness of more than 3 μm. The ampacity of the high temperature superconducting tape conductor relative to the conductor width is more than 600 A/cm at 77 K.




rc

Superconducting electromagnet device, cooling method therefor, and magnetic resonance imaging device

A superconducting magnet device is configured to include: a refrigerant circulation flowpath in which a refrigerant (R) circulates; a refrigerator for cooling vapor of the refrigerant (R) in the refrigerant circulation flowpath; a superconducting coil cooled by the circulating refrigerant (R); a protective resistor thermally contacting the superconducting coil and having an internal space (S); a high-boiling-point refrigerant supply section for supplying a high-boiling-point refrigerant having a higher boiling point than the refrigerant (R) and frozen by the refrigerant (R) to the internal space (S) in the protective resistor; and a vacuum insulating container for at least accommodating the refrigerant circulation flowpath, the superconducting coil, and the protective resistor.




rc

Superconducting magnet

A superconducting magnet includes a superconducting coil, a heat shield surrounding the superconducting coil, a vacuum chamber accommodating the heat shield, a magnetic shield covering at least a part of the vacuum chamber, and a refrigerating machine fixed to the vacuum chamber to cool the superconducting coil through a heat conducting body. The magnetic shield abuts against said vacuum chamber with an elastic body therebetween to support the vacuum chamber.




rc

Superconducting magnet apparatus

A superconducting magnet apparatus includes: a bobbin around which a superconducting coil is wound, the bobbin serving as a protective resistor; a persistent current switch for supplying a persistent current to the superconducting coil; a first closed circuit with the superconducting coil and the persistent current switch connected in series to the coil; and a second closed circuit with the superconducting coil and the bobbin connected in series to the coil.




rc

Layered superconductor device

A layered superconductor device includes multiple layers of a single crystal superconducting material having intermittent layers of superconducting material dispersed in a pattern with a second material such that each layer of the multiple layers a single crystal superconducting material are interconnected via superconducting material, allowing for a continuous current path, and a thickness of the superconducting material never exceeds a first predetermined thickness.




rc

Substrate for superconducting compound and method for manufacturing the substrate

Provided are a substrate for a superconducting compound and a method for manufacturing the substrate which can realize the excellent adhesive strength simultaneously with high orientation of copper. An absorbed material on a surface of a copper foil to which rolling is applied at a draft of 90% or more is removed by applying sputter etching to the surface of the copper foil, sputter etching is applied to a nonmagnetic metal sheet, the copper foil and the metal sheet are bonded to each other by applying a pressure to the copper foil and the metal sheet using reduction rolls, crystals of the copper in the copper foil are oriented by heating a laminated body formed by such bonding, copper is diffused into the metal sheet by heating with a copper diffusion distance of 10 nm or more, and a protective layer is laminated to a surface of the copper foil of the laminated body.




rc

Methods of splicing 2G rebco high temperature superconductors using partial micro-melting diffusion pressurized splicing by direct face-to-face contact of high temperature superconducting layers and recovering superconductivity by oxygenation annealing

Disclosed is a splicing method of two second-generation ReBCO high temperature superconductor coated conductors (2G ReBCO HTS CCs), in which, with stabilizing layers removed from the two strands of 2G ReBCO HTS CCs through chemical wet etching or plasma dry etching, surfaces of the two high temperature superconducting layers are brought into direct contact with each other and heated in a splicing furnace in a vacuum for micro-melting portions of the surfaces of the high temperature superconducting layers to permit inter-diffusion of ReBCO atoms such that the surfaces of the two superconducting layers can be spliced to each other and oxygenation annealing for recovery of superconductivity which was lost during splicing.




rc

Self-shield open magnetic resonance imaging superconducting magnet

A self-shield open magnetic resonance imaging superconducting magnet comprises five pairs of coils: shim coils, first main magnetic coils, second main magnetic coils, third main magnetic coils, and shielding coils. The five pairs of coils are symmetric about the center. The shim coils are arranged closest to the center point; the first main magnetic coils, the second main magnetic coils, the third main magnetic coils, and the shielding coils are arranged in sequence outside. The first main magnetic coils are connected with reverse current. The second and third main magnetic coils are connected with positive current for providing the main magnetic field strength. The shim coils are connected with positive current for compensating the magnetic field in the central region. The shielding coils are connected with reverse current for creating a magnetic field opposite to the main magnetic field for compensating the stray magnetic field in the space.




rc

Superconducting magnet device and magnetic resonance imaging system

A superconducting magnet device and a magnetic resonance imaging system not only avoid the need for costly aluminum alloy formers but also lower quench pressure effectively, have a baffle covering the former and the coil, with a gap between the baffle and the coil.




rc

Superconducting cable

A superconducting cable is provided. The superconducting cable includes a core part including a former disposed at the center of the core part, one or more superconducting conductive layers with each electric phase disposed at the outside of the former in a radial directions, a insulating layer disposed at the outside of each the conductive layer in a radial direction and a shielding layer disposed at the outermost of the insulating layer; and a cryostat disposed at the outside of the core part in a radial direction with first space being interposed therebetween, having a vacuum part disposed therein and electrically wired to neutral pole (N pole).




rc

Superconducting film-forming substrate, superconducting wire, and superconducting wire manufacturing method

A tape-shaped superconducting film-forming substrate is disclosed, which includes a film-forming face for forming a laminate including a superconducting layer thereon, a rear face that is a face at a side opposite to the film-forming face, a pair of end faces connected to the film-forming face and the rear face, and a pair of side faces connected to the film-forming face, the rear face, and the pair of end faces, in which each of the pair of side faces includes a spreading face that spreads toward an outer side in an in-plane direction of the film-forming face from an edge part of the film-forming face toward the rear face side. A superconducting wire and a superconducting wire manufacturing method are also disclosed.




rc

Superconducting cable

An AC superconducting cable with an insulating layer on the external circumference of a conductor, and wherein: the insulating layer includes a first insulating layer, a second insulating layer and a third insulating layer, from the inside layer to the outside layer; the insulating layer is impregnated with liquid nitrogen; the product of the dielectric constant ∈1 of the first insulating layer and the dielectric loss tangent tan δ1 and the product of the dielectric constant ∈2 of the second insulating layer and the dielectric loss tangent tan δ2 fulfilling the relationship ∈1×tan δ1>∈2×tan δ2; and the product of the dielectric constant ∈2 of the second insulating layer and the dielectric loss tangent tan δ2 and the product of the dielectric constant ∈3 of the third insulating layer and the dielectric loss tangent tan δ3 fulfilling the relationship ∈2×tan δ2




rc

Electrochemical system and method for electropolishing superconductive radio frequency cavities

An electrochemical finishing system for super conducting radio frequency (SCRF) cavities including a low viscosity electrolyte solution that is free of hydrofluoric acid, an electrode in contact with the electrolyte solution, the SCRF cavity being spaced apart from the electrode and in contact with the electrolyte solution and a power source including a first electrical lead electrically coupled to the electrode and a second electrical lead electrically coupled to the cavity, the power source being configured to pass an electric current between the electrode and the workpiece, wherein the electric current includes anodic pulses and cathodic pulses, and wherein the cathodic pulses are interposed between at least some of the anodic pulses. The SCRF cavity may be vertically oriented during the finishing process.




rc

System with a superconductive cable and a surrounding cryostat

A superconductive cable which has a cryostat with two concentric metal pipes where the cryostat has at least a first axial section with a first axial spring constant, and at least a second axial section which has a second axial spring constant which at most is 20%, more preferred at most 10%, of the axial spring constant of the first section.




rc

Terminal structure of superconducting cable conductor and terminal member used therein

In a terminal structure of a superconducting cable conductor, a terminal portion of the superconducting cable conductor is connected with a terminal member of a good conductor. The terminal portion includes a superconducting layer disposed on an outer periphery of a central support; and an insulating layer surrounding the superconducting layer. The insulating layer and the superconducting layer are partially removed to expose the central support and the superconducting layer in this order from an end of the superconducting cable conductor. The terminal member includes a metal sleeve which includes a first cylindrical portion whose inner surface is in close contact with an exposed portion of the central support; a second cylindrical portion which is soldered around an exposed portion of the superconducting layer; and a third cylindrical portion into which the insulating layer is inserted.




rc

Techniques for protecting a superconducting (SC) tape

Techniques for protecting a superconducting (SC) article are disclosed. The techniques may be realized as an apparatus for protecting a superconducting (SC) article. The apparatus may comprise a porous sleeve configured to fit around the superconducting (SC) article. The porous sleeve may be made of non-conductive, dielectric material.




rc

Superconducting structure comprising coated conductor tapes, in particular stapled perpendicularly to their substrate planes

A superconducting structure (1) has a plurality of coated conductor tapes (2; 2a-2o), each with a substrate (3) which is one-sided coated with a superconducting film (4), in particular an YBCO film, wherein the superconducting structure (1) provides a superconducting current path along an extension direction (z) of the superconducting structure (1), wherein the coated conductor tapes (2; 2a-2o) provide electrically parallel partial superconducting current paths in the extension direction (z) of the superconducting structure (1), is characterized in that the coated conductor tapes (2; 2a-2o) are superconductively connected among themselves along the extension direction (z) continuously or intermittently. A more stable superconducting structure with which high electric current strengths may be transported is thereby provided.




rc

Device and method for the densification of filaments in a long superconductive wire

A device for the high pressure densification of superconducting wire from compacted superconductor material or superconductor precursor powder particles, has four hard metal anvils (5, 6, 7, 8) with a total length (L2) parallel to the superconducting wire, the hard metal anvils borne in external independent pressure blocks (9, 10, 11), which are in turn either fixed or connected to high pressure devices, preferably hydraulic presses. At least one of the hard metal anvils is a free moving anvil (6) having clearances of at least 0.01 mm up to 0.2 mm towards the neighboring hard metal anvils (5, 8), so that no wall friction occurs between the free moving anvil and the neighboring anvils. This allows for high critical current densities Jc at reduced pressure applied to the hard metal anvils.




rc

3-coaxial superconducting power cable and cable's structure

Provided are a three-phase coaxial superconducting power cable and a structure thereof. A certain space is formed between adjacent superconducting wires of a superconducting layer (disposed at an outer portion) having more superconducting wires among a plurality of superconducting layers, and another wire is disposed in the space, or the superconducting wires of the respective superconducting layers are disposed to have different critical currents. Accordingly, a waste of superconducting wires is prevented, and the optimized three-phase coaxial superconducting power cable is provided.




rc

Method of producing superconducting conductor, superconducting conductor, and substrate for superconducting conductor

A method for producing a superconductive conductor includes: a base material preparation process of preparing a base material having a groove formed on at least one face thereof; a superconducting layer formation process of forming a superconducting layer on a surface of the base material at a side at which the groove is formed; and a cutting process of cutting completely through the base material along the groove.




rc

Cryocooler system and superconducting magnet apparatus having the same

A cryocooler system and a superconducting magnet apparatus having the cryocooler system include a cryocooler having a cool stage that cools a heat shielding unit and a thermal inertia that thermally contacts the cool stage of the cryocooler and has a high heat capacity. The cryocooler system reduces a temperature-increasing rate in a current lead by using the thermal inertia member when the temperature in the current lead is increased due to heat generated when an electrical current applied to a superconducting coil is ramped-up or ramped-down.




rc

Layered superconductor device

A layered superconductor device includes multiple layers of a single crystal superconducting material having intermittent layers of superconducting material dispersed in a pattern with a second material such that each layer of the multiple layers a single crystal superconducting material are interconnected via superconducting material, allowing for a continuous current path, and a thickness of the superconducting material never exceeds a first predetermined thickness.




rc

Oxide superconductor, oriented oxide thin film, and method for manufacturing oxide superconductor

According to one embodiment, an oxide superconductor includes an oriented superconductor layer and an oxide layer. The oriented superconductor layer contains fluorine at 2.0×1016-5.0×1019 atoms/cc and carbon at 1.0×1018-5.0×1020 atoms/cc. The superconductor layer contains in 90% or more a portion oriented along c-axis with an in-plane orientation degree (Δφ) of 10 degrees or less, and contains a LnBa2Cu3O7-x superconductor material (Ln being yttrium or a lanthanoid except cerium, praseodymium, promethium, and lutetium). The oxide layer is provided in contact with a lower surface of the superconductor layer and oriented with an in-plane orientation degree (Δφ) of 10 degrees or less with respect to one crystal axis of the superconductor layer. Area of a portion of the lower surface of the superconductor layer in contact with the oxide layer is 0.3 or less of area of a region directly below the superconductor layer.