av

More readily available traction battery

A battery includes a first terminal, a second terminal, a first battery module, a second battery module, and a third batter module. The first battery module and the second battery module includes a first pole, a second pole, a plurality of battery cells, a charge and disconnect device, a disconnect device, and a bridging device. The third battery module includes a first pole, a second pole, a plurality of battery cells, a first disconnect device, a second disconnect device, and a bridging device. The first and second poles of the first battery module are connected in series with the first terminal and the first pole of the third battery module. The first and second poles of the second battery module are connected in series with the second terminal and the second pole of the third batter module.




av

Battery pack having improved strength

Disclosed herein is a battery pack including a battery cell array including two or more battery cells, each of which has an electrode assembly of a cathode/separator/anode structure disposed in a battery case together with an electrolyte in a sealed state, arranged in a lateral direction, a protection circuit module (PCM) connected to an upper end of the battery cell array to control an operation of the battery pack, a pack case in which the battery cell array and the protection circuit module are disposed, and a plate-shaped reinforcing member mounted between the pack case and the battery cell array to increase mechanical strength of the pack case.




av

Battery voltage detector having pull-up resistor

A battery voltage detector includes, but is not limited to: a voltage detection circuit; and a voltage processor. The voltage detection circuit includes, but is not limited to: a capacitor configured to be charged by a battery cell; a pair of output terminals; an output switch; and a voltage processor. While the capacitor is charged, the output switch is configured to be off-state and insulate the capacitor from the pair of the output terminals. After the capacitor is charged, the output switch is configured to be on-state and connect the capacitor to the pair of the output terminals. The voltage processor is configured to obtain, as a cell voltage, a voltage between the output terminals of the voltage detection circuit while the output switch is on-state. A high-potential output terminal of the pair of the output terminals is connected to a power line via a pull-up resistor.




av

Available charging/discharging current calculation method and power supply device

A method includes steps of dividing resistance R into a physical and chemical resistances Ro and Rp, obtaining corrected open-circuit voltages Vo corresponding to setting currents Ia to Ix, acquiring predicted reaching voltages Va to Vx corresponding to the setting currents Ia to Ix, and creating a current-voltage curve. The corrected open-circuit voltages Vo are obtained to predict available maximum currents I—target in a particular time t2. The predicted reaching voltages Va to Vx are acquired based on corrected physical and chemical resistances Ro and Rp, and the corrected open-circuit voltages Vo. The current-voltage curve is creased based on the setting currents Ia to Ix and the predicted reaching voltages Va to Vx to acquire upper and lower limit voltages Vmax and Vmin, and upper and lower limit currents Imax and Imin at a temperature whereby assigning these limit currents to available maximum currents I—target in charging and discharging operations, respectively.




av

System and method for non-sinusoidal current waveform excitation of electrical generators

An electrical generator includes a stator having fractional-slot concentrated windings and a rotor having field windings. A drive is provided having a circuit to control current flow to the field windings and a controller to input an initial DC field current demand to the circuit to cause the circuit to output an initial DC field current representative of a DC field current demand that would cause an electrical generator having sinusoidal stator windings to output a desired AC power. The controller receives feedback on the magnetic field generated by the initial DC field current, isolates an ideal fundamental component of the magnetic field based on the feedback and to generate a modified DC field current demand, and inputs the modified DC field current demand to the circuit, thereby causing the circuit to output an instantaneous non-sinusoidal current to the field windings to generate a sinusoidal rotating air gap magnetic field.




av

Doubly-fed induction generator wind turbine system having solid-state stator switch

Wind turbine systems and methods are provided. An exemplary system includes a wind driven doubly fed induction generator having a rotor and a stator, the stator providing AC power to a stator bus. The system further includes a power converter coupled to the rotor of the doubly fed induction generator, the power converter providing an output to a line bus, and a transformer coupled to the stator bus. The system further includes a solid-state switch coupled between the stator bus and the transformer.




av

***WITHDRAWN PATENT AS PER THE LATEST USPTO WITHDRAWN LIST***Low friction sheave bracket

An electrically powered mining vehicle including a frame rollingly supported on a surface for movement over the surface. An electric motor is coupled to the frame for proving power to the vehicle. A cable is electrically coupled to the electric motor for supplying electricity thereto and a cable management system is coupled to the frame and arranged to receive and payout the cable as the vehicle moves over the surface. A sheave bracket is coupled to the frame and arranged to direct the cable into the cable management system and includes a lower plate arranged substantially horizontally, a plurality of vertical rollers that are coupled to the lower plate and are arranged to guide the cable into the cable management system, and a horizontal roller that is coupled to the lower plate and arranged to elevate the cable above the lower plate.




av

Aerial cable car system having transportation operating equipment for passenger and/or freight transport

An aerial cable car system including transportation operating equipment for passenger and/or freight transport, wherein electrical consumers are connected for operation thereof to a rechargeable electrical energy store of a transportation operating equipment by a respective power circuit. The transportation operating equipment includes an operating control device connected to measuring devices for dynamically capturing measurement values based on available quantity of energy in the energy store. The operating control device includes a storage module having at least one stored measurement control value and an associated control parameter. The operating control device includes a filter module comparing a captured measurement value to the at least one stored measurement control value and reading out corresponding stored control parameter, based on which power circuits can be selectively coupled or decoupled to the energy store by the operating control device. Electrical consumers in transportation operating equipment can be fed without interruption by the energy store, even during travel.




av

Low friction sheave bracket

An electrically powered mining vehicle including a frame rollingly supported on a surface for movement over the surface. An electric motor is coupled to the frame for proving power to the vehicle. A cable is electrically coupled to the electric motor for supplying electricity thereto and a cable management system is coupled to the frame and arranged to receive and payout the cable as the vehicle moves over the surface. A sheave bracket is coupled to the frame and arranged to direct the cable into the cable management system and includes a lower plate arranged substantially horizontally, a plurality of vertical rollers that are coupled to the lower plate and are arranged to guide the cable into the cable management system, and a horizontal roller that is coupled to the lower plate and arranged to elevate the cable above the lower plate.




av

Water delivery system and method for making hot water available in a domestic hot water installation

A water delivery system is provided, comprising at least one faucet device with a cold water faucet part and a hot water faucet part, a cold water line to the at least one faucet device, a tankless heater device for heating water, a hot water line having a first portion running from an outlet of the tankless heater device to the at least one faucet device and having a second portion running from the at least one faucet device to an inlet of the tankless heater device, and a circulatory pump arranged in the second portion of the hot water line, wherein the circulatory pump has a prefixed first performance level and a prefixed second performance level, wherein the first performance level causes a finite water flow in the hot water line which is below an operation threshold value of the tankless heater device.




av

Water heater having upstream and downstream manifolds

A water heater system comprises a water tank, a burner plenum, a flue, a blower, a combustion air passageway, a dilution air passageway, an upstream manifold, and a downstream manifold. The upstream manifold divides air from the blower so that some air flows through the combustion air passageway to the burner plenum and some air flows through the dilution air passageway to the downstream manifold. The downstream manifold combines the air from the dilution air passageway with combustion products from the flue.




av

Spring whip defensive mechanism having means to permit disassembly thereof

A knock down spring whip assembly including a hollow housing which serves as a handgrip, and also stores a spring subassembly formed of lengths of helically wound springs of sequentially increasingly larger diameter size to move between a telescoped position within the housing and an extended whipping position projecting from one end of the housing with the springs wedgingly engaging each other in an end to end arrangement. A removable closure unit is provided for plugging the other end of the housing to define a storage compartment. The closure unit includes an integral magnet for retaining the spring subassembly in the telescoped position, where the closure unit can be replaced with other types of closure units. The housing includes a tapered end and an annular constriction for providing both a wedging engagement of the projecting springs as well as a positive locking action. Weighted ball bearings can be included within one of the springs for spiral rotation therethrough to provide an additional striking force. The striking spring can be replaced by a solid rod for an increased striking force. Preferably, the tip portion at the striking end is also removable to permit the spring whip assembly to be disassembled into its component parts.




av

Spring whip defensive mechanism having means to permit disassembly thereof

A knock down spring whip assembly including a hollow housing which serves as a handgrip, and also stores a spring subassembly formed of lengths of helically wound springs of sequentially increasingly larger diameter size to move between a telescoped position within the housing and an extended whipping position projecting from one end of the housing with the springs wedgingly engaging each other in an end to end arrangement. A removable closure unit is provided for plugging the other end of the housing to define a storage compartment. The closure unit includes an integral magnet for retaining the spring subassembly in the telescoped position, where the closure unit can be replaced with other types of closure units. The housing includes a tapered end and an annular constriction for providing both a wedging engagement of the projecting springs as well as a positive locking action. Weighted ball bearings can be included within one of the springs for spiral rotation therethrough to provide an additional striking force. The striking spring can be replaced by a solid rod for an increased striking force. Preferably, the tip portion at the striking end is also removable to permit the spring whip assembly to be disassembled into its component parts.




av

Power saw having a dust cleaning system

A table saw includes a base assembly having a base structure and side walls, a table top assembly top surface, and an undercarriage assembly including a motor. The undercarriage assembly is configured to adjust the vertical and angular position of a blade relative to the table top assembly, and includes an undercarriage frame and cover together defining a narrow housing configured and sized to enclose substantially all of an installed blade under the top surface. The housing has an upper pivot for adjusting the angular position of the blade and is configured to have the motor slidably mounted therein to adjust the vertical position of the blade. A removable port structure attached to a bottom portion of the undercarriage assembly has an outlet port at an outer end that is configured to be connected to a vacuum source.




av

Row unit for a seeding machine having active downforce control for the closing wheels

A planter row unit is disclosed having an active downforce control system for the closing wheels. This separate control of the downforce pressure for the closing wheels is provided from the row unit downforce control. A single operator input is used to set a desired downforce for all row units. The control system then operates to produce the desired downforce. Alternatively, the control system may display a downforce load to the operator who then manually makes adjustments as desired.




av

Seeder with metering system having selectively powered metering sections

A metering system for a seeding machine is provided. The metering system includes selectively powered metering sections operable to individually allow or restrict seed dispensation. A damper arrangement is also provided so that pneumatic conveying of the particulate within the machine is consistently maintained when particulate flow is varied between the metering sections.




av

Vibratory ripper having pressure sensor for selectively controlling activation of vibration mechanism

A ripping mechanism for a vehicle has a support frame. A ripping member has an engagement head that is configured for plowing a groove in the ground. The ripping member is preferably positionable in a selected working position and working orientation by adjustment of the support frame. The ripping member is preferably movable relative to the support frame to cause reciprocating movement of the engagement head at least partially longitudinally. A tilt adjustment cylinder is preferably operable to orient the ripping member in the selected orientation. A vibrator mechanism is preferably operatively connected to the ripping member and activatable to cause reciprocating movement of the engagement head at least partially longitudinally.




av

Cultivator with two rows of discs in direction of travel

An agricultural machine (101; 201; 301) comprising two mainly parallel, in the direction of travel, cross-running disc implement rows (102a, 102c; 202a, 202b; 304a, 304b), wherein the orientation of the disc implements (102b, 102d; 203a, 203b; 302a, 302b) contained in the mentioned disc implement rows is arranged so that the fore row (102a; 202a; 304a) has disc implements that are mounted on a frame beam (110; 211; 303) and that are angled outwards and backwards towards the sides of the machine and in a dividing line mainly parallel to the direction of travel of the machine form a first point of change (208a, 304c), and the rear row (102c, 202b; 304b) has disc implements (102d; 203b; 302b) that are mounted on a frame beam (110; 211; 303) and that are angled inwards and backwards from the sides of the machine and in the dividing line form a second point of change (208b, 304a), wherein the fore row is adapted to throw soil from the first point of change outwards towards the sides of the machine and the other row is adapted to throw soil from the sides of the machine inwards towards the second point of change. The dividing line with the first point of change (208a, 304c), and with the second point of change (208b, 304) is arranged at a predetermined distance from the centre line of the machine (101; 201; 301) across the direction of travel.




av

Wavy agricultural tillage blade with sharpened edge

A method of making a tillage blade by obtaining a generally circular sheet metal steel disc having an outer peripheral edge. Waves are made in the outer peripheral edge of a circular steel disc in a predetermined pattern while the steel is cold. The outer peripheral edge is then sharpened at a predetermined acute angle with respect to a first plane by grinding. Then the disc is heat treated to make it harder so it will wear longer. If it is desired to have a concave/convex disc, instead of a coulter, then during the heat treating process the disc is deformed so that the sharpened portions of the peripheral edge remain generally in the first plane but a central portion of the disc is disposed at least partially in a second plane which is parallel to but spaced from the first plane.




av

Drive system having ongoing pull-slip learning

A drive system for a mobile machine is disclosed. The drive system may have a travel speed sensor, at least one traction device speed sensor, and a controller in communication with the travel speed sensor and the at least one traction device speed sensor. The controller may be configured to determine a slip value associated with a traction device of the mobile machine based on signals generated by the travel speed sensor and the at least one traction device speed sensor, and determine a torque output value of the mobile machine. The control may also be configured to make a comparison of the slip value and the torque output value with a pull-slip curve stored in memory, and selectively update the pull-slip curve based on the comparison.




av

OLED display having organic and inorganic encapsulation layers, and manufacturing method thereof

An organic light emitting diode (OLED) display a includes: a substrate; an organic light emitting element on the substrate and including a first electrode, a light emission layer, and a second electrode; and an encapsulation layer on the substrate while covering the organic light emitting element. The encapsulation layer includes an organic layer and an inorganic layer. A mixed area, where organic materials forming the organic layer and inorganic materials forming the inorganic layer co-exist along a plane direction of the encapsulation layer, is formed at the boundary between the organic layer and the inorganic layer.




av

Display device having light emitting elements with red color filters

A display device comprising TFT elements having satisfactory characteristics and being easy to assemble. In the display device, a pixel emitting red light comprises a red color filter. The red color filter forms a light shielding film for the TFT elements in a driver circuit portion or in a pixel portion.




av

Oxide-based semiconductor non-linear element having gate electrode electrically connected to source or drain electrode

A non-linear element (e.g., a diode) with small reverse saturation current is provided. A non-linear element includes a first electrode provided over a substrate, an oxide semiconductor film provided on and in contact with the first electrode, a second electrode provided on and in contact with the oxide semiconductor film, a gate insulating film covering the first electrode, the oxide semiconductor film, and the second electrode, and a third electrode provided in contact with the gate insulating film and adjacent to a side surface of the oxide semiconductor film with the gate insulating film interposed therebetween or a third electrode provided in contact with the gate insulating film and surrounding the second electrode. The third electrode is connected to the first electrode or the second electrode.




av

Light emitting device having an organic light emitting diode that emits white light

The present invention has an object of providing a light-emitting device including an OLED formed on a plastic substrate, which prevents degradation due to penetration of moisture or oxygen. On a plastic substrate, a plurality of films for preventing oxygen or moisture from penetrating into an organic light-emitting layer in the OLED (“barrier films”) and a film having a smaller stress than the barrier films (“stress relaxing film”), the film being interposed between the barrier films, are provided. Owing to a laminate structure, if a crack occurs in one of the barrier films, the other barrier film(s) can prevent moisture or oxygen from penetrating into the organic light emitting layer. The stress relaxing film, which has a smaller stress than the barrier films, is interposed between the barrier films, making it possible to reduce stress of the entire sealing film. Therefore, a crack due to stress hardly occurs.




av

Transistors having features which preclude straight-line lateral conductive paths from a channel region to a source/drain region

Some embodiments include transistors having a channel region under a gate, having a source/drain region laterally spaced from the channel region by an active region, and having one or more dielectric features extending through the active region in a configuration which precludes any straight-line lateral conductive path from the channel region to the source/drain region. The dielectric features may be spaced-apart islands in some configurations. The dielectric features may be multi-branched interlocking structures in some configurations.




av

Select devices including a semiconductive stack having a semiconductive material

Methods, devices, and systems are provided for a select device that can include a semiconductive stack of at least one semiconductive material formed on a first electrode, where the semiconductive stack can have a thickness of about 700 angstroms (Å) or less. Each of the at least one semiconductive material can have an associated band gap of about 4 electron volts (eV) or less and a second electrode can be formed on the semiconductive stack.




av

Convertible ski systems having toe binding mounts and associated quick-release locking mechanisms

A ski system includes a ski, a heel binding provided on an upper surface of the ski, a toe binding mount provided on the upper surface of the ski forward of the heel binding, a toe binding releasably mounted to the toe binding mount, and a quick-release locking mechanism for locking the toe binding to the toe binding mount. The quick-release locking mechanism is configured for release by hand.




av

Foam-in-place interior panels having integrated airbag doors including multi-shot injection molded airbag chute-door assemblies for motor vehicles and methods for making the same

Interior panels having integrated airbag doors for motor vehicles and methods for making such interior panels are provided herein. In one example, an interior panel comprises a substrate having outer and inner surfaces and an opening extending therethrough. A multi-shot injection molded airbag chute-door assembly is mounted to the substrate and comprises a chute wall that at least partially surrounds an interior space. A door flap portion is pivotally connected to the chute wall and at least partially covers the opening. A perimeter flange extends from the chute wall and has a flange section that overlies the outer surface of the substrate. A molded-in lip feature extends from the flange section and contacts the outer surface to form a seal between the flange section and the substrate. A skin covering extends over the substrate and a foam is disposed between the skin covering and the substrate.




av

Behavior control device for a combination vehicle

There is provided a behavior control device for the prevention of a jackknife phenomenon of a combination vehicle including a tractor and a trailer pivotably coupled with the tractor, taking into account that the relative pivoting action of the trailer and tractor varies according to the magnitudes of a vehicle speed or a deceleration. The inventive behavior control device comprises a braking-driving force control portion which controls a braking-driving force of the tractor or the trailer to reduce a difference between a yaw rate of the tractor and a yaw rate of the trailer and a judgment portion which judges whether or not a braking-driving force control of the tractor or the trailer by the braking-driving force control portion is necessary; wherein the judgment portion changes based on a vehicle speed or a deceleration of the vehicle the judgment of whether or not the braking-driving force control is necessary.




av

Luggage with shells having varied depths

A luggage case may include opposing sidewalls forming minor faces, opposing sidewalls forming major faces, and opposing end walls together forming an article defining an enclosed space. A line of separation may be formed in said minor faces and end walls. A first portion of the line of separation may extend along a first portion of opposing minor faces at a location proximate one of said opposing major faces and corresponding one of said opposing end walls positioned therebetween. A second portion of the line of separation may extend along a second portion of said opposing minor faces in a direction away from said one of said opposing major faces and towards other of said opposing major faces.




av

Luggage with shells having varied depths

A luggage case (100, 600, 700, 800, 900) may include opposing sidewalls forming minor faces (105, 106), opposing sidewalls forming major faces (101, 102), and opposing end walls (103, 104) together forming an article defining an enclosed space (109). A line of separation (150) may be formed in said minor faces (105, 160) and end walls (103, 104). A first portion of the line of separation (150) may extend along a first portion of opposing minor faces (105, 106) at a location proximate one of said opposing major faces (101, 102) and corresponding one of said opposing end walls (103, 104) positioned therebetween. A second portion of the line of separation (150) may extend along a second portion of said opposing minor faces (105, 106) in a direction away from said one of said opposing major faces (101, 102) and towards other of said opposing major faces (101, 102).




av

Drill bit assembly having electrically isolated gap joint for measurement of reservoir properties

A drill bit assembly for measuring reservoir formation properties comprises a bit head and a pin body, and an electrically insulated gap joint between two conductive parts of the drill bit assembly. The bit head has a cutting end and an opposite connecting end with an engagement section. The pin body comprises a connecting end with an engagement section. The pin connecting end is connected to the bit head connecting end such that the engagement sections overlap. The electrically insulating gap joint can fill a gap between the bit head and pin body engagement sections such that the bit head and pin body are mechanically connected together at the connecting ends but electrically separated. Alternatively or additionally, the pin body can have two pieces which are separated by an electrically insulating gap joint. An electrical conductor is electrically connected at a first end to the bit head and is communicable at a second end with an alternating current signal to transmit an alternating current into the bit head, thereby inducing an electric current into a reservoir formation adjacent the bit head. Electronic equipment includes measurement circuitry configured to determine the alternating current at the bit head, the alternating current being inversely proportional to a bit resistivity of the formation.




av

Adjustable bent drilling tool having in situ drilling direction change capability

An adjustable bent drilling tool capable of changing in situ drilling direction to facilitate horizontal drilling. The drilling tool may be controlled from the surface and eliminates the need to bring the tool to the surface for reconfiguration. In one embodiment, the drilling tool utilizes a communications module to communicate with upstream sections of the tool. The communications module is connected to a programmable electronic control module which controls an electric motor. A hydraulic valve assembly follows the control module, which receives input signals and controls a pilot piston between two fixed points of a mid-assembly typically located adjacent to and downstream of the hydraulic valve assembly on the drill tool. A lower assembly is attached to the drill tool immediately following the mid-assembly, and provides both a safety release sub-assembly as well as a bendable sub-assembly which directs the adjustable drill tool to change drilling angle and direction.




av

Tools for use in subterranean boreholes having expandable members and related methods

Expandable apparatus for use in subterranean boreholes include at least one member configured to move between a retracted position and an extended position. A latching member disposed in the tubular body may selectively retain the at least one member in the retracted position. Methods of operating an expandable apparatus include securing at least one member of the expandable apparatus in a retracted position by engaging an inner wall of a tubular body with at least one latch member disposed in at least one aperture formed in a latch sleeve.




av

Tools for use in subterranean boreholes having expandable members and related methods

Expandable apparatus for use in subterranean boreholes include at least one member configured to move between a retracted position and an extended position. Components of the expandable apparatus may include at least one surface for removing debris proximate to the tubular body. Components of the expandable apparatus may be configured to enable the expandable apparatus to increase a diameter of a subterranean borehole by greater than twenty percent. Components of the expandable apparatus may be configured to restrict fluid flow to nozzle assemblies. The expandable apparatus may include a protect sleeve having a push sleeve disposed therein. Methods of operating an expandable apparatus may include removing debris with a surface of the expandable apparatus. Methods of operating an expandable apparatus may also include selectively flowing fluid to nozzle assemblies.




av

Bunch length compression method for free electron lasers to avoid parasitic compressions

A method of bunch length compression method for a free electron laser (FEL) that avoids parasitic compressions by 1) applying acceleration on the falling portion of the RF waveform, 2) compressing using a positive momentum compaction (R56>0), and 3) compensating for aberration by using nonlinear magnets in the compressor beam line.




av

Chamber and extreme ultraviolet light generation apparatus

A chamber used in an extreme ultraviolet light generation apparatus that generates extreme ultraviolet light by irradiating a target material with a laser beam may include a chamber receptacle, a heat shield that is disposed within the chamber receptacle between a predetermined region where the target material turns into plasma and the chamber receptacle and that is configured to absorb heat produced at the predetermined region when the target material turns into plasma, and a support portion configured to attach the heat shield to the chamber receptacle, and further, the support portion may include an absorbing portion configured to absorb stress produced in the heat shield deforming due to the heat, by expanding/contracting in response to the thermal deformation of the heat shield.




av

Removable surface-wave networks for in-situ material health monitoring

A system for measuring properties of a surface under test with surface waves includes a surface wave network including a dielectric substrate, a reactive grid of a plurality of metallic patches on a first surface of the dielectric substrate, a plurality of electronic nodes on the first surface of the dielectric substrate, and a ground plane on a second surface of the dielectric substrate permeable to RF fields of the surface waves, and a controller configured for causing a respective one of the electronic nodes to transmit at least one surface wave and configured for collecting data for signals received by at least one other of the plurality of electronic nodes.




av

External cavity laser source

A tunable laser source that includes multiple gain elements and uses a spatial light modulator in an external cavity to produce spectrally tunable output is claimed. Several designs of the external cavity are described, targeting different performance characteristics and different manufacturing costs for the device. Compared to existing devices, the tunable laser source produces high output power, wide tuning range, fast tuning rate, and high spectral resolution.




av

Image sensors having variable voltage-current characteristics and methods of operating the same

Image sensors and methods of operating the same. An image sensor includes a pixel array including a plurality of pixels. Each of the plurality of pixels includes a photo sensor, the voltage-current characteristics of which vary according to energy of incident light, and that generates a sense current determined by the energy of the incident light; a reset unit that is activated to generate a reference current, according to a reset signal for resetting at least one of the plurality of pixels; and a conversion unit that converts the sense current and the reference current into a sense voltage and a reference voltage, respectively.




av

Gasifier having a slag breaker and method of operating the same

A gasifier comprises an internal chamber, a slag collection region, a slag passageway, a slag breaker, and an actuator. The internal chamber comprises a main combustion region that is configured and adapted to gasify fuel. The slag collection region is located beneath the main combustion region. The slag passageway operatively connects the main combustion region to the slag collection region. The slag breaker comprises a face that is movable relative to the internal chamber. The face is configured and adapted to move within the slag passageway in a manner such that the face contacts and mechanically breaks solidified slag into chunks of solidified slag that then fall into the slag collection region. The actuator is connected to the slag breaker and is configured and adapted to move the face of the slag breaker.




av

Apparatus and methods for large particle ash separation from flue gas using screens having semi-elliptical cylinder surfaces

Apparatus for separating ash particles from a flue gas. The apparatus includes a screen that has a plurality of semi-elliptical cylinder surfaces. The semi-elliptical cylinder surfaces having holes through which said flue gas flows and through which the ash particles will not pass. The screen has a single layer for performing the separation in a manner such that the ash particles fall away from the screen and collect outside of the screen. A method of reducing velocity of a flue gas passing through screening apparatus for separating flue gas from ash particles. The method includes replacing a first screen of the screening apparatus with a second screen that has a plurality of semi-elliptical cylinder surfaces.




av

Pulverized coal burner and pulverized coal boiler having it

A pulverized coal burner and a pulverized coal boiler. The coal burner comprises a primary air cylinder (111) and a pulverized coal concentration device (112). The coal concentration device (112) makes the concentration of the coal flow gradually decrease from inside to outside along the radial direction, with respect to an axis (100) of the primary air cylinder (111). The coal burner further comprises a coal separating cylinder (113) and a coal guiding cylinder (114) located downstream of the device (112), the rear end of the cylinder (113) is connected with the front end of the coal guiding cylinder (114). The outlet of the cylinder (114) has a conical expansion portion (1141). The coal burner further comprises a divergent nozzle (115) connected with the rear end of the primary air cylinder (111) and whose cross-sectional area gradually increases along the flow direction of the coal flow.




av

Adapting of an oxy-combustion plant to energy availability and to the amount of CO2 to be trapped

A carbon fuel combustion process, employing an air gas separation unit, a combustion unit operating either with air or with an oxidizer leaner in nitrogen than air, coming from the air gas separation unit, and a unit for compressing and/or purifying the CO2 coming from the combustion flue gas, wherein the power consumed by the air gas separation unit and/or the flow of oxygen produced by the air gas separation unit and/or the capture of the CO2 coming from the combustion flue gas are variable over time is presented.




av

Apparatus for treating a substance with wave energy from plasma and an electrical Arc

An apparatus for synergistically combining a plasma with a comminution means such as a fluid kinetic energy mill (jet mill), preferably in a single reactor and/or in a single process step is provided by the present invention. Within the apparatus of the invention potential energy is converted into kinetic energy and subsequently into angular momentum by means of wave energy, for comminuting, reacting and separation of feed materials. Apparatuss of use of the apparatus in the practice of various processes are also provided by the present invention.




av

Surface treatment equipment including a laser engraving system for treatment of a strip

A surface treatment equipment is designed for forming nickel barriers on a plurality of terminals for preventing solder wicking is disclosed. The surface treatment equipment includes a retractable feeding system, a laser engraving system, an image sensor, and a control system. The retractable feeding system is utilized to transmit a strip that has the terminals. The laser engraving system is utilized to ablate the terminals. The image sensor is utilized to collect a plurality of images of the ablated terminals. The control system receives the images to perform image recognition. When a defective terminal is recognized, the control system controls the retractable feeding system to transmit in reverse and controls the laser engraving system to repeatedly ablate the defective terminal. The defective terminals can be automatically recognized by the image sensor accompanying the control system. Thus, the drawback of a human visual inspection is solved.




av

Method and device for detecting PWM wave

A device for detecting a PWM wave, comprising: a PWM wave generating module, configured to generate the PWM wave; a detecting module coupled to the PWM wave generating module, configured to receive the PWM wave and to determine an electric level of the PWM wave; a timer coupled to the detecting module, configured to start a counting when the detecting module receives the PWM wave, and to interrupt the counting when the counting reaches a predetermined value, the detecting module determining whether the electric level of the PWM wave is a high electric level or a low electric level when the counting is interrupted; and a calculating module coupled to the detecting module, configured to calculate a duty ratio of the PWM wave based on a number of high electric level and a number of low electric level of the PWM wave determined within one period of the PWM wave.




av

Pulse width modulation circuit and pulse width modulation signal generating method having two refresh rates

A PWM circuit that can have two refresh rates, including: a first PWM signal generator and a second PWM signal generator; wherein the first PWM signal generator and the second PWM signal generator respectively control refresh rates in two dimensions of an output data generated from a target apparatus. A PWM signal generation method that can have two refresh rates, including: generating a first PWM signal; generating a second PWM signal; and controlling refresh rates in different dimensions of an output data generated from a target apparatus respectively by using the first PWM signal and the second PWM signal.




av

Communications transmitter having high-efficiency combination modulator

A communications transmitter includes a baseband processor configured to generate amplitude, angle, in-phase and quadrature baseband signals and a combination modulator that is configurable to modulate in the polar domain and, alternatively, in the quadrature domain. The combination modulator includes a quadrature modulator and a separate and distinct angle modulator that is configured to serve as a local oscillator for the quadrature modulator. In one embodiment of the invention the combination modulator is configured to modulate in the quadrature domain when the transmitter is operating according to a first communications condition (e.g., first transmit power level or first modulation scheme) and is configured to modulate in the polar domain when the transmitter is operating according to a second communications condition (e.g., second transmit power level or second modulation scheme).




av

Polar transmitter having frequency modulating path with interpolation in compensating feed input and related method thereof

A frequency modulating path for generating a frequency modulated clock includes a direct feed input arranged for directly modulating frequency of an oscillator, and a compensating feed input arranged for compensating effects of frequency modulating on a phase error; wherein the compensating feed input is resampled by a down-divided clock that is an integer edge division of the oscillator. A reference phase generator for generating a reference phase output includes a resampling circuit, an accumulator and a sampler. The resampling circuit is for resampling a modulating frequency command word (FCW) input to produce a plurality of samples. The accumulator is for accumulating the samples to generate an accumulated result. The sampler is for sampling the accumulated result according to a frequency reference clock, and accordingly generating a sampled result, wherein the reference phase output is updated according to at least the sampled result.