era

LDL subclass lipidomics in atherogenic dyslipidemia:Effect of statin therapy on bioactive lipids and dense LDL

M John Chapman
Apr 15, 2020; 0:jlr.P119000543v1-jlr.P119000543
Patient-Oriented and Epidemiological Research




era

Dietary plant stanol ester supplementation reduces peripheral symptoms in a mouse model of Niemann-Pick type C1 disease.

Inês Magro dos Reis
Apr 14, 2020; 0:jlr.RA120000632v1-jlr.RA120000632
Research Articles




era

Skin barrier lipid enzyme activity in Netherton patients is associated with protease activity and ceramide abnormalities

Jeroen van Smeden
Apr 7, 2020; 0:jlr.RA120000639v1-jlr.RA120000639
Research Articles




era

Comparative profiling and comprehensive quantification of stratum corneum ceramides in humans and mice by LC-MS/MS

Momoko Kawana
Apr 7, 2020; 0:jlr.RA120000671v1-jlr.RA120000671
Research Articles




era

Lipid rafts as a therapeutic target

Dmitri Sviridov
May 1, 2020; 61:687-695
Thematic Reviews




era

Episode 43 - The Internet of Procedural Generation (IoPG)

Join host David Price for a dive into all things tech: Round 43. Things go mobile as Senior Staff Writer at PC Advisor and Macworld UK Henry Burrell tells us why Sky getting into the market is a big deal. Quad-play ahoy. Then fellow Senior Staff Writer Lewis Painter (14 mins) tells us why No Man's Sky is still making the headlines, this time for making stuff up. How far have companies taken false advertising in recent years? Third up is Techworld editor Charlotte Jee (25 mins) to talk about how the government has perhaps avoided taking responsibility when it comes to sex-ed and instead suggested it ban sexting - is that even possible? Listen on to find out.  


See acast.com/privacy for privacy and opt-out information.




era

Episode 44 - The Internet of Police, Camera, Action! (IoPCA!) Pebble, police cameras & Amazon Go

This week Henry Burrell is in the presenter chair and he has brought puns, sing-songs and tenuous Field of Dreams references. First up is producer Chris to discuss the Fitbit acquisition of fellow wearable maker Pebble and why owners are sad. Then online editor at Techworld Tamlin Magee is discussing the Met Police's decision to upload their body camera footage to the cloud and why this could be problematic (12:00). Finally, fellow online editor Scott Carey runs us through the Amazon Go news and how the retail giant is trying to pull off the technology behind its 'just walk out' shopping experience (24:00).  


See acast.com/privacy for privacy and opt-out information.




era

Episode 83 - The Internet of White Rings (IoWR) HomePod, Kingdom Come: Deliverance and no spoiler Black Panther chat

Scott Carey assembles half the Tech Advisor squad to chat about the HomePod's great audio and then all the things that make it a tabloid headline. Jim Martin lets us know if Apple ruined his oak and/or pine.


Lewis Painter chats us through Kingdom Come: Deliverance and all the wacky things you can do in its slow paced but huge world. Dom Preston then lets us know - without spoilers - just how good Black Panther is, Marvel's latest marvel (hopefully).

 

See acast.com/privacy for privacy and opt-out information.




era

Comparative profiling and comprehensive quantification of stratum corneum ceramides in humans and mice by LC-MS/MS [Research Articles]

Ceramides are the predominant lipids in the stratum corneum (SC) and are crucial components for normal skin barrier function. Although the composition of various ceramide classes in the human SC has been reported, that in mice is still unknown, despite mice being widely used as animal models of skin barrier function. Here, we performed LC–MS/MS analyses using recently available ceramide class standards to measure 25 classes of free ceramides and 5 classes of protein-bound ceramides from the human and mouse SC. Phytosphingosine-type ceramides (P-ceramides) and 6-hydroxy sphingosine-type ceramides (H-ceramides), which both contain an additional hydroxyl group, were abundant in human SC (35% and 45% of total ceramides, respectively). In contrast, in mice, P-ceramides and H-ceramides were present at ~1% and undetectable levels, respectively, and sphingosine-type ceramides accounted for ~90%. In humans, ceramides containing α-hydroxy FA were abundant, whereas ceramides containing β-hydroxy FA (B-ceramides) or -hydroxy FA were abundant in mice. The hydroxylated β-carbon in B-ceramides was in the (R)-configuration. Genetic knockout of β-hydroxy acyl-CoA dehydratases in HAP1 cells increased B-ceramide levels, suggesting that β-hydroxy acyl-CoA, an FA-elongation cycle intermediate in the endoplasmic reticulum, is a substrate for B-ceramide synthesis. We anticipate that our methods and findings will help to elucidate the role of each ceramide class in skin barrier formation and in the pathogenesis of skin disorders.




era

Skin barrier lipid enzyme activity in Netherton patients is associated with protease activity and ceramide abnormalities [Research Articles]

Individuals with Netherton syndrome (NTS) have increased serine protease activity, which strongly impacts the barrier function of the skin epidermis and leads to skin inflammation. Here, we investigated how serine protease activity in NTS correlates with changes in the stratum corneum ceramides, which are crucial components of the skin barrier. We examined two key enzymes involved in epidermal ceramide biosynthesis, glucocerebrosidase (GBA) and acid-sphingomyelinase (ASM). We compared in situ expression levels and activities of GBA and ASM between NTS patients and controls and correlated the expression and activities with i) stratum corneum ceramide profiles, ii) in situ serine protease activity, and iii) clinical presentation of patients. Using activity-based probe labeling, we visualized and localized active, epidermal GBA, and a newly developed in situ zymography method enabled us to visualize and localize active ASM. Reduction in active GBA in NTS patients coincided with increased ASM activity, particularly in areas with increased serine protease activity. NTS patients with scaly erythroderma exhibited more pronounced anomalies in GBA and ASM activities than patients with ichthyosis linearis circumflexa. They also displayed a stronger increase in stratum corneum ceramides processed via ASM. We conclude that changes in the localization of active GBA and ASM correlate with i) altered stratum corneum ceramide composition in NTS patients, ii) local serine protease activity, and iii) the clinical manifestation of NTS. 




era

Dietary plant stanol ester supplementation reduces peripheral symptoms in a mouse model of Niemann-Pick type C1 disease. [Research Articles]

Niemann–Pick type C1 (NPC1) disease is a rare genetic condition in which the function of the lysosomal cholesterol transporter NPC1 protein is impaired. Consequently, sphingolipids and cholesterol accumulate in lysosomes of all tissues, triggering a cascade of pathological events that culminate in severe systemic and neurological symptoms. Lysosomal cholesterol accumulation is also a key-factor in the development of atherosclerosis and non-alcoholic steatohepatitis (NASH). In these two metabolic diseases, the administration of plant stanol esters has been shown to ameliorate cellular cholesterol accumulation and inflammation. Given the overlap of pathological mechanisms among atherosclerosis, NASH and NPC1 disease, we sought to investigate whether dietary supplementation with plant stanol esters improves the peripheral features of NPC1 disease. To this end, we used an NPC1 murine model featuring an Npc1 null allele (Npc1nih), creating a dysfunctional NPC1 protein. Npc1nih mice were fed a two or six percent plant stanol esters–enriched diet over the course of 5 weeks. During this period, hepatic and blood lipid and inflammatory profiles were assessed. Npc1nih mice fed the plant stanol–enriched diet exhibited lower hepatic cholesterol accumulation, damage and inflammation than regular chow–fed Npc1nih mice. Moreover, plant stanol consumption shifted circulating T-cells and monocytes in particular towards an anti-inflammatory profile. Overall, these effects were stronger following dietary supplementation with 6% stanols, suggesting a dose-dependent effect. The findings of our study highlight the potential use of plant stanols as an affordable complementary means to ameliorate disorders in hepatic and blood lipid metabolism and reduce inflammation in NPC1 disease.




era

LDL subclass lipidomics in atherogenic dyslipidemia:Effect of statin therapy on bioactive lipids and dense LDL [Patient-Oriented and Epidemiological Research]

Atherogenic LDL particles are physicochemically and metabolically heterogeneous. Can bioactive lipid cargo differentiate LDL subclasses, and thus potential atherogenicity?  What is the effect of statin treatment? Obese, hypertriglyceridemic, hypercholesterolemic males (n=12; Lp(a) <10 mg/dL) received pitavastatin calcium (4mg/day) for 180 days in a single-phase, unblinded study. The lipidomic profiles (23 lipid classes) of five LDL subclasses fractionated from baseline and post-statin plasmas were determined by LC-MS. At baseline and on statin treatment, very small dense LDL (LDL5) was preferentially enriched (up to 3-fold) in specific lysophospholipids (lysophosphatidylcholine (LPC); lysophosphatidylinositol (LPI); lyso-platelet activating factor (LPC(O)); 9,0.2 and 0.14 mol/mol apoB respectively; all p<0.001 versus LDL1-4), suggesting  elevated inflammatory potential per particle. In contrast, lysophosphatidylethanolamine was uniformly distributed among LDL subclasses. Statin treatment markedly reduced absolute plasma concentrations of all LDL subclasses (up to 33.5%), including LPC, LPI and LPC(O) contents (up to -52%), consistent with reduction in cardiovascular risk. Despite such reductions, lipotoxic ceramide load per particle in LDL1-5 (1.5 - 3 mol/mol apoB; 3 - 7 mmol/mol phosphatidylcholine) was either conserved or elevated. Bioactive lipids may constitute biomarkers for the cardiometabolic risk associated with specific LDL subclasses in atherogenic dyslipidemia at baseline, and with residual risk on statin therapy.




era

A simple method for sphingolipid analysis of tissues embedded in optimal cutting temperature compound [Methods]

Mass spectrometry (MS) assisted lipidomic tissue analysis is a valuable tool to assess sphingolipid metabolism dysfunction in disease. These analyses can reveal potential pharmacological targets or direct mechanistic studies to better understand the molecular underpinnings and influence of sphingolipid metabolism alterations on disease etiology. But procuring sufficient human tissues for adequately powered studies can be challenging. Therefore, biorepositories, which hold large collections of cryopreserved human tissues, are an ideal retrospective source of specimens. However, this resource has been vastly underutilized by lipid biologists, as the components of optimal cutting temperature compound (OCT) used in cryopreservation are incompatible with MS analyses. Here, we report results indicating that OCT also interferes with protein quantification assays, and that the presence of OCT impacts the quantification of extracted sphingolipids by LC–ESI–MS/MS. We developed and validated a simple and inexpensive method that removes OCT from OCT-embedded tissues. Our results indicate that removal of OCT from cryopreserved tissues does not significantly affect the accuracy of sphingolipid measurements with LC–ESI–MS/MS. We used the validated method to analyze sphingolipid alterations in tumors compared with normal adjacent uninvolved lung tissues from individuals with lung cancer, and to determine the long-term stability of sphingolipids in OCT-cryopreserved normal lung tissues. We show that lung cancer tumors have significantly altered sphingolipid profiles and that sphingolipids are stable for up to 16 years in OCT-cryopreserved normal lung tissues. This validated sphingolipidomic OCT-removal protocol should be a valuable addition to the lipid biologist’s toolbox.




era

Parenteral lipids shape gut bile acid pools and microbiota profiles in the prevention of cholestasis in preterm pigs [Research Articles]

Multi-component lipid emulsions, rather than soy-oil emulsions, prevent cholestasis by an unknown mechanism. Here, we quantified liver function, bile acid pools, and gut microbial and metabolite profiles in premature, parenterally fed pigs given a soy-oil lipid emulsion, Intralipid (IL); a multi component lipid emulsion, SMOFlipid (SMOF); a novel emulsion with a modified fatty-acid composition (EXP); or a control enteral diet (ENT) for 22 days. We assayed serum cholestasis markers; measured total bile acid levels in plasma, liver, and gut contents; and analyzed colonic bacterial 16S rRNA gene sequences and metabolomic profiles. Serum cholestasis markers (i.e. bilirubin, bile acids, and g-glutamyl transferase) were highest in IL-fed pigs and normalized in those given SMOF, EXP, or ENT. Gut bile acid pools were lowest in the IL treatment and were increased in the SMOF and EXP treatments and comparable to ENT. Multiple bile acids, especially their conjugated forms, were higher in the colon contents of SMOF and EXP than in IL pigs. Colonic microbial communities of SMOF and EXP pigs had lower relative abundance of several Gram-positive anaerobes, including Clostridrium XIVa, and higher abundance of Enterobacteriaceae than those of IL and ENT pigs. Differences in lipid and microbial-derived compounds were also observed in colon metabolite profiles. These results indicate that multi-component lipid emulsions prevent cholestasis and restore enterohepatic bile flow in association with gut microbial and metabolomic changes. We conclude that sustained bile flow induced by multi-component lipid emulsions likely exerts a dominant effect in reducing bile acid–sensitive, Gram-positive bacteria.




era

America's Coronavirus Response Is Shaped By Its Federal Structure

16 March 2020

Dr Leslie Vinjamuri

Dean, Queen Elizabeth II Academy for Leadership in International Affairs; Director, US and the Americas Programme
The apparent capacity of centralized state authority to respond effectively and rapidly is making headlines. In the United States, the opposite has been true.

2020-03-16-Coronavirus-America.jpg

Harvard asked its students to move out of their dorms due to the coronavirus risk, with all classes moving online. Photo by Maddie Meyer/Getty Images.

As coronavirus spreads across the globe, states grapple to find the ideal strategy for coping with the global pandemic. And, in China, Singapore, South Korea, the US, the UK, and Europe, divergent policies are a product of state capacity and legal authority, but they also reveal competing views about the optimal role of centralized state authority, federalism, and the private sector.

Although it is too soon to know the longer-term effects, the apparent capacity of centralized state authority in China, South Korea and Singapore to respond effectively and rapidly is making headlines. In the United States, the opposite has been true. 

America’s response is being shaped by its federal structure, a dynamic private sector, and a culture of civic engagement. In the three weeks since the first US case of coronavirus was confirmed, state leaders, public health institutions, corporations, universities and churches have been at the vanguard of the nation’s effort to mitigate its spread.

Images of safety workers in hazmat suits disinfecting offices of multinational corporations and university campuses populate American Facebook pages. The contrast to the White House effort to manage the message, downplay, then rapidly escalate its estimation of the crisis is stark.

Bewildering response

For European onlookers, the absence of a clear and focused response from the White House is bewildering. By the time President Donald Trump declared a national emergency, several state emergencies had already been called, universities had shifted to online learning, and churches had begun to close.

By contrast, in Italy, France, Spain and Germany, the state has led national efforts to shutter borders and schools. In the UK, schools are largely remaining open as Prime Minister Boris Johnson has declared a strategy defined by herd immunity, which hinges on exposing resilient populations to the virus.

But America has never shared Europe’s conviction that the state must lead. The Center for Disease Control and Prevention, the leading national public health institute and a US federal agency, has attempted to set a benchmark for assessing the crisis and advising the nation. But in this instance, its response has been slowed due to faults in the initial tests it attempted to rollout. The Federal Reserve has moved early to cut interest rates and cut them again even further this week.

But states were the real first movers in America’s response and have been using their authority to declare a state of emergency independent of the declaration of a national emergency. This has allowed states to mobilize critical resources, and to pressure cities into action. After several days delay and intense public pressure, New York Governor Andrew Cuomo forced New York City Mayor Bill de Blasio to close the city’s schools.

Declarations of state emergencies by individual states have given corporations, universities and churches the freedom and legitimacy to move rapidly, and ahead of the federal government, to halt the spread in their communities.

Washington state was the first to declare a state of emergency. Amazon, one of the state’s leading employers, quickly announced a halt to all international travel and, alongside Microsoft, donated $1million to a rapid-response Seattle-based emergency funds. States have nudged their corporations to be first movers in the sector’s coronavirus response. But corporations have willingly taken up the challenge, often getting ahead of state as well as federal action.

Google moved rapidly to announce a move allowing employees to work from home after California declared a state of emergency. Facebook soon followed with an even more stringent policy, insisting employees work from home. Both companies have also met with World Health Organization (WHO) officials to talk about responses, and provided early funding for WHO’s Solidarity Response Fund set up in partnership with the UN Foundation and the Swiss Philanthropy Foundation.

America’s leading research universities, uniquely positioned with in-house public health and legal expertise, have also been driving preventive efforts. Just days after Washington declared a state of emergency, the University of Washington became the first to announce an end to classroom teaching and move courses online. A similar pattern followed at Stanford, Harvard, Princeton and Columbia - each also following the declaration of a state of emergency.

In addition, the decision by the Church of the Latter Day Saints to cancel its services worldwide followed Utah’s declaration of a state of emergency.

The gaping hole in the US response has been the national government. President Trump’s declaration of a national emergency came late, and his decision to ban travel from Europe but - at least initially - exclude the UK, created uncertainty and concern that the White House response is as much driven by politics as evidence.

This may soon change, as the House of Representatives has passed a COVID-19 response bill that the Senate will consider. These moves are vital to supporting state and private efforts to mobilize an effective response to a national and global crisis.

Need for public oversight

In the absence of greater coordination and leadership from the centre, the US response will pale in comparison to China’s dramatic moves to halt the spread. The chaos across America’s airports shows the need for public oversight. As New York State Governor Cuomo pleaded for federal government support to build new hospitals, he said: ‘I can’t do it. You can’t leave it to the states.'

When it comes to global pandemics, we may be discovering that authoritarian states can have a short-term advantage, but already Iran’s response demonstrates that this is not universally the case. Over time, the record across authoritarian states as they tackle the coronavirus will become more apparent, and it is likely to be mixed.

Open societies remain essential. Prevention requires innovation, creativity, open sharing of information, and the ability to inspire and mobilize international cooperation. The state is certainly necessary, but it is not sufficient alone.




era

COVID 19: Assessing Vulnerabilities and Impacts on Iraq

7 April 2020

Dr Renad Mansour

Senior Research Fellow, Middle East and North Africa Programme; Project Director, Iraq Initiative

Dr Mac Skelton

Director, Institute of Regional and International Studies (IRIS), American University of Iraq, Sulaimani; Visiting Fellow, Middle East Centre, London School of Economics

Dr Abdulameer Mohsin Hussein

President of the Iraq Medical Association
Following 17 years of conflict and fragile state-society relations, the war-torn country is particularly vulnerable to the pandemic.

2020-04-07-Iraq-COVID-spray

Disinfecting shops in Baghdad's Bayaa neighbourhood as a preventive measure against the spread of COVID-19. Photo by AHMAD AL-RUBAYE/AFP via Getty Images.

Iraq is a country already in turmoil, suffering fallout from the major military escalation between the US and Iran, mass protests calling for an end to the post-2003 political system, and a violent government crackdown killing more than 600 and wounding almost 30,000 - all presided over by a fragmented political elite unable to agree upon a new prime minister following Adil abd al-Mehdi’s resignation back in November.

COVID-19 introduces yet another threat to the fragile political order, as the virus exposes Iraq’s ineffective public health system dismantled through decades of conflict, corruption and poor governance.

Iraqi doctors are making every effort to prepare for the worst-case scenario, but they do so with huge structural challenges. The Ministry of Health lacks enough ICU beds, human resources, ventilators, and personal protective equipment (PPE). Bogged down in bureaucracy, the ministry is struggling to process procurements of equipment and medications, and some doctors have made purchases themselves.

But individual efforts can only go so far as many Iraqi doctors are concerned the official numbers of confirmed COVID-19 cases do not reflect the complexity of the situation on the ground.

The ministry relies predominately upon patients self-presenting at designated public hospitals and has only just begun community-based testing in areas of suspected clusters. Reliance on self-presentation requires a level of trust between citizens and state institutions, which is at a historic low. This gap in trust – 17 years in the making – puts Iraq’s COVID-19 response particularly at risk.

Iraq’s myriad vulnerabilities

Certain social and political factors leave Iraq uniquely exposed to the coronavirus. The country’s vulnerability is tied directly to its social, religious and economic interconnections with Iran, an epicenter of the pandemic.

Exchanges between Iran and Iraq are concentrated in two regions, with strong cross-border links between Iraqi and Iranian Kurds in the north-east, and Iraqi and Iranian Shia pilgrims in the south. Cross-border circulation of religious pilgrims is particularly concerning, as they can result in mass ritual gatherings.

The high number of confirmed cases in the southern and northern peripheries of the country puts a spotlight on Iraq's failure in managing healthcare. The post-2003 government has failed to either rebuild a robust centralized healthcare system, or to pave the way for a federalized model.

Caught in an ambiguous middle between a centralized and federalized model, coordination across provinces and hospitals during the coronavirus crisis has neither reflected strong management from Baghdad nor robust ownership at the governorate level.

This problem is part of a wider challenge of managing centre-periphery relations and federalism, which since 2003 has not worked effectively. Baghdad has provided all 18 provinces with instructions on testing and treatment, but only a handful have enough resources to put them into practice. Advanced testing capacity is limited to the five provinces with WHO-approved centers, with the remaining 13 sending swabs to Baghdad.

But the greatest challenge to Iraq’s COVID-19 response is the dramatic deterioration of state-society relations. Studies reveal a profound societal distrust of Iraq’s public healthcare institutions, due to corruption and militarization of medical institutions. Numerous videos have recently circulated of families refusing to turn over sick members - particularly women - to medical teams visiting households with confirmed or suspected cases.

As medical anthropologist Omar Dewachi notes, the ‘moral economy of quarantine’ in Iraq is heavily shaped by a history of war and its impact on the relationship between people and the state. Although local and international media often interpret this reluctance to undergo quarantine as a matter of social or tribal norms, distrusting the state leads many families to refuse quarantine because they believe it resembles a form of arrest.

The management of coronavirus relies upon an overt convergence between medical institutions and security forces as the federal police collaborate with the Ministry of Health to impose curfews and enforce quarantine. This means that, troublingly, the same security establishment which violently cracked down on protesters and civil society activists is now the teeth behind Iraq’s COVID-19 response.

Without trust between society and the political class, civil society organizations and protest movements have directed their organizational structure towards awareness-raising across Iraq. Key religious authorities such as Grand Ayatollah Sistani have called for compliance to the curfew and mobilized charitable institutions.

However, such efforts will not be enough to make up for the lack of governance at the level of the state. In the short-term, Iraq’s medical professionals and institutions are in dire need of technical and financial support. In the long-term, COVID-19 is a lesson that Iraq’s once robust public healthcare system needs serious investment and reform.

COVID-19 may prove to be another catalyst challenging the ‘muddle through’ logic of the Iraqi political elite. International actors have largely been complicit in this logic, directing aid and technical support towards security forces and political allies in the interest of short-term stability, and neglecting institutions which Iraqis rely on for health, education, and well-being.

The response to the crisis requires cooperation and buy-in of a population neglected by 17 years of failed governance. This is a seminal event that may push the country to the brink, exposing and stirring underlying tensions in state-society relations.

This analysis was produced as part of the Iraq Initiative.




era

The Hurdles to Developing a COVID-19 Vaccine: Why International Cooperation is Needed

23 April 2020

Professor David Salisbury CB

Associate Fellow, Global Health Programme

Dr Champa Patel

Director, Asia-Pacific Programme
While the world pins its hopes on vaccines to prevent COVID-19, there are scientific, regulatory and market hurdles to overcome. Furthermore, with geopolitical tensions and nationalistic approaches, there is a high risk that the most vulnerable will not get the life-saving interventions they need.

2020-04-23-Covid-Vaccine.jpg

A biologist works on the virus inactivation process in Belo Horizonte, Brazil on 24 March 2020. The Brazilian Ministry of Health convened The Technological Vaccine Center to conduct research on COVID-19 in order to diagnose, test and develop a vaccine. Photo: Getty Images.

On 10 January 2020, Chinese scientists released the sequence of the COVID-19 genome on the internet. This provided the starting gun for scientists around the world to start developing vaccines or therapies. With at least 80 different vaccines in development, many governments are pinning their hopes on a quick solution. However, there are many hurdles to overcome. 

Vaccine development

Firstly, vaccine development is normally a very long process to ensure vaccines are safe and effective before they are used. 

Safety is not a given: a recent dengue vaccine caused heightened disease in vaccinated children when they later were exposed to dengue, while Respiratory Syncytial Virus vaccine caused the same problem. Nor is effectiveness a given. Candidate vaccines that use novel techniques where minute fragments of the viruses’ genetic code are either injected directly into humans or incorporated into a vaccine (as is being pursued, or could be pursued for COVID-19) have higher risks of failure simply because they haven’t worked before. For some vaccines, we know what levels of immunity post-vaccination are likely to be protective. This is not the case for coronavirus. 

Clinical trials will have to be done for efficacy. This is not optional – regulators will need to know extensive testing has taken place before licencing any vaccine. Even if animal tests are done in parallel with early human tests, the remainder of the process is still lengthy. 

There is also great interest in the use of passive immunization, whereby antibodies to SARS-CoV-2 (collected from people who have recovered from infection or laboratory-created) are given to people who are currently ill. Antivirals may prove to be a quicker route than vaccine development, as the testing requirements would be shorter, manufacturing may be easier and only ill people would need to be treated, as opposed to all at-risk individuals being vaccinated.

Vaccine manufacturing

Developers, especially small biotechs, will have to make partnerships with large vaccine manufacturers in order to bring products to market. One notorious bottleneck in vaccine development is getting from proof-of-principle to commercial development: about 95 per cent of vaccines fail at this step. Another bottleneck is at the end of production. The final stages of vaccine production involve detailed testing to ensure that the vaccine meets the necessary criteria and there are always constraints on access to the technologies necessary to finalize the product. Only large vaccine manufacturers have these capacities. There is a graveyard of failed vaccine candidates that have not managed to pass through this development and manufacturing process.

Another consideration is adverse or unintended consequences. Highly specialized scientists may have to defer their work on other new vaccines to work on COVID-19 products and production of existing products may have to be set aside, raising the possibility of shortages of other essential vaccines. 

Cost is another challenge. Vaccines for industrialized markets can be very lucrative for pharmaceutical companies, but many countries have price caps on vaccines. Important lessons have been learned from the 2009 H1N1 flu pandemic when industrialized countries took all the vaccines first. Supplies were made available to lower-income countries at a lower price but this was much later in the evolution of the pandemic. For the recent Ebola outbreaks, vaccines were made available at low or no cost. 

Geopolitics may also play a role. Should countries that manufacture a vaccine share it widely with other countries or prioritize their own populations first? It has been reported that President Trump attempted to purchase CureVac, a German company with a candidate vaccine.  There are certainly precedents for countries prioritizing their own populations. With H1N1 flu in 2009, the Australian Government required a vaccine company to meet the needs of the Australian population first. 

Vaccine distribution

Global leadership and a coordinated and coherent response will be needed to ensure that any vaccine is distributed equitably. There have been recent calls for a G20 on health, but existing global bodies such as the Coalition for Epidemic Preparedness Innovations (CEPI) and GAVI are working on vaccines and worldwide access to them. Any new bodies should seek to boost funding for these entities so they can ensure products reach the most disadvantaged. 

While countries that cannot afford vaccines may be priced out of markets, access for poor, vulnerable or marginalized peoples, whether in developed or developing countries, is of concern. Developing countries are at particular risk from the impacts of COVID-19. People living in conflict-affected and fragile states – whether they are refugees or asylum seekers, internally displaced or stateless, or in detention facilities – are at especially high risk of devastating impacts. 

Mature economies will also face challenges. Equitable access to COVID-19 vaccine will be challenging where inequalities and unequal access to essential services have been compromised within some political systems. 

The need for global leadership 

There is an urgent need for international coordination on COVID-19 vaccines. While the WHO provides technical support and UNICEF acts as a procurement agency, responding to coronavirus needs clarity of global leadership that arches over national interests and is capable of mobilizing resources at a time when economies are facing painful recessions. We see vaccines as a salvation but remain ill-equipped to accelerate their development.

While everyone hopes for rapid availability of safe, effective and affordable vaccines that will be produced in sufficient quantities to meet everyone’s needs, realistically, we face huge hurdles. 




era

WITHDRAWN: Heralds of parallel MS: Data-independent acquisition surpassing sequential identification of data dependent acquisition in proteomics [Research]

This article has been withdrawn by the authors. This article did not comply with the editorial guidelines of MCP. Specifically, single peptide based protein identifications of 9-19% were included in the analysis and discussed in the results and conclusions. We wish to withdraw this article and resubmit a clarified, corrected manuscript for review.




era

Immediate adaptation analysis implicates BCL6 as an EGFR-TKI combination therapy target in NSCLC [Research]

Drug resistance is a major obstacle to curative cancer therapies, and increased understanding of the molecular events contributing to resistance would enable better prediction of therapy response, as well as contribute to new targets for combination therapy. Here we have analyzed the early molecular response to epidermal growth factor receptor (EGFR) inhibition using RNA sequencing data covering 13 486 genes and mass spectrometry data covering 10 138 proteins. This analysis revealed a massive response to EGFR inhibition already within the first 24 hours, including significant regulation of hundreds of genes known to control downstream signaling, such as transcription factors, kinases, phosphatases and ubiquitin E3-ligases. Importantly, this response included upregulation of key genes in multiple oncogenic signaling pathways that promote proliferation and survival, such as ERBB3, FGFR2, JAK3 and BCL6, indicating an early adaptive response to EGFR inhibition. Using a library of more than 500 approved and experimental compounds in a combination therapy screen, we could show that several kinase inhibitors with targets including JAK3 and FGFR2 increased the response to EGFR inhibitors. Further, we investigated the functional impact of BCL6 upregulation in response to EGFR inhibition using siRNA-based silencing of BCL6. Proteomics profiling revealed that BCL6 inhibited transcription of multiple target genes including p53, resulting in reduced apoptosis which implicates BCL6 upregulation as a new EGFR inhibitor treatment escape mechanism. Finally, we demonstrate that combined treatment targeting both EGFR and BCL6 act synergistically in killing lung cancer cells. In conclusion, or data indicates that multiple different adaptive mechanisms may act in concert to blunt the cellular impact of EGFR inhibition, and we suggest BCL6 as a potential target for EGFR inhibitor-based combination therapy.




era

Modulation of natural HLA-B*27:05 ligandome by ankylosing spondylitis-associated endoplasmic reticulum aminopeptidase 2 (ERAP2) [Research]

The human leucocyte antigen (HLA)-B*27:05 allele and the endoplasmic reticulum-resident aminopeptidases are strongly associated with ankylosing spondylitis (AS), a chronic inflammatory spondyloarthropathy. This study examined the effect of endoplasmic reticulum aminopeptidase 2 (ERAP2) in the generation of the natural HLA-B*27:05 ligandome in live cells. Complexes of HLA-B*27:05-bound peptide pools were isolated from human ERAP2-edited cell clones and the peptides were identified using high throughput mass spectrometry analyses. The relative abundance of thousand ligands was established by quantitative tandem mass spectrometry and bioinformatics analysis. The residue frequencies at different peptide position, identified in presence or absence of ERAP2, determined structural features of ligands and their interactions with specific pockets of antigen binding site of HLA-B*27:05 molecule. Sequence alignment of ligands identified with species of bacteria associated with HLA-B*27-dependent reactive arthritis was performed. In the absence of ERAP2, peptides with N-terminal basic residues, and minority canonical P2 residues are enriched in the natural ligandome. Further, alterations of residue frequencies and hydrophobicity profile at P3, P7, and P positions were detected. In addition, several ERAP2-dependent cellular peptides were highly similar to protein sequences of arthritogenic bacteria, including one human HLA-B*27:05 ligand fully conserved in a protein from Campylobacter jejuni. These findings highlight the pathogenic role of this aminopeptidase in the triggering of AS autoimmune disease.




era

A cross-linking mass spectrometry approach defines protein interactions in yeast mitochondria [Research]

Protein cross-linking and the analysis of cross-linked peptides by mass spectrometry is currently receiving much attention. Not only is this approach applied to isolated complexes to provide information about spatial arrangements of proteins but it is also increasingly applied to entire cells and their organelles. As in quantitative proteomics, the application of isotopic labelling further makes it possible to monitor quantitative changes in the protein-protein interactions between different states of a system. Here, we cross-linked mitochondria from Saccharomyces cerevisiae grown on either glycerol- or glucose-containing medium to monitor protein-protein interactions under non-fermentative and fermentative conditions. We investigated qualitatively the protein-protein interactions of the 400 most abundant proteins applying stringent data-filtering criteria, i.e. a minimum of two cross-linked peptide spectrum matches and a cut-off in the spectrum scoring of the used search engine. The cross-linker BS3 proved to be equally suited for connecting proteins in all compartments of mitochondria when compared with its water-insoluble but membrane-permeable derivative DSS. We also applied quantitative cross-linking to mitochondria of both the growth conditions using stable-isotope labelled BS3. Significant differences of cross-linked proteins under glycerol and glucose conditions were detected, however, mainly due to the different copy numbers of these proteins in mitochondria under both the conditions. Results obtained from the glycerol condition indicate that the internal NADH:ubiquinone oxidoreductase Ndi1 is part of an electron transport chain supercomplex. We have also detected several hitherto uncharacterized proteins and identified their interaction partners. Among those, Min8 was found to be associated with cytochrome c oxidase. BN-PAGE analyses of min8 mitochondria suggest that Min8 promotes the incorporation of Cox12 into cytochrome c oxidase.




era

Peptide-based interaction proteomics [Review]

Protein-protein interactions are often mediated by short linear motifs (SLiMs) that are located in intrinsically disordered regions (IDRs) of proteins. Interactions mediated by SLiMs are notoriously difficult to study, and many functionally relevant interactions likely remain to be uncovered. Recently, pull-downs with synthetic peptides in combination with quantitative mass spectrometry emerged as a powerful screening approach to study protein-protein interactions mediated by SLiMs. Specifically, arrays of synthetic peptides immobilized on cellulose membranes provide a scalable means to identify the interaction partners of many peptides in parallel. In this minireview we briefly highlight the relevance of SLiMs for protein-protein interactions, outline existing screening technologies, discuss unique advantages of peptide-based interaction screens and provide practical suggestions for setting up such peptide-based screens.




era

Renewable Energy: Generating Money

1 November 2007 , Number 7

City types are waking up to wind, waves and the sun and their potential to make energy – and money. This is just as new energy policies for Europe emerge with twenty percent targets for renewable energy and greenhouse gas cuts. Add to the mix climate change negotiations which will be back in Bali in December.

Kirsty Hamilton

Associate Fellow, Energy, Environment and Resources Programme

GettyImages-977104176.jpg

Solar panels lined up




era

Power and diplomacy in the post-liberal cyberspace

7 May 2020 , Volume 96, Number 3

André Barrinha and Thomas Renard

It is becoming widely accepted that we have transitioned, or are now transitioning, from an international liberal order to a different reality. Whether that reality is different solely in terms of power dynamics, or also in terms of values and institutions, is up for discussion. The growing body of literature on ‘post-liberalism’ is used as an entry-point for this article, which aims to explore how the post-liberal transition applies to cyberspace. We explore how power dynamics are evolving in cyberspace, as well as how established norms, values and institutions are contested. The article then looks at the emergence of cyber diplomacy as a consequence and response to the post-liberal transition. As it will be argued, if cyberspace was a creation of the liberal order, cyber-diplomacy is a post-liberal world practice. What role it plays in shaping a new order or building bridges between different political visions, and what it means for the future of cyberspace, will constitute key points of discussion.




era

Let's talk about the interregnum: Gramsci and the crisis of the liberal world order

7 May 2020 , Volume 96, Number 3

Milan Babic

The liberal international order (LIO) is in crisis. Numerous publications, debates and events have time and again made it clear that we are in the midst of a grand transformation of world order. While most contributions focus on either what is slowly dying (the LIO) or what might come next (China, multipolarity, chaos?), there is less analytical engagement with what lies in between those two phases of world order. Under the assumption that this period could last years or even decades, a set of analytical tools to understand this interregnum is urgently needed. This article proposes an analytical framework that builds on Gramscian concepts of crisis that will help us understand the current crisis of the LIO in a more systematic way. It addresses a gap in the literature on changing world order by elaborating three Gramsci-inspired crisis characteristics—processuality, organicity and morbidity—that sketch the current crisis landscape in a systematic way. Building on this framework, the article suggests different empirical entry points to the study of the crisis of the LIO and calls for a research agenda that takes this crisis seriously as a distinct period of changing world orders.




era

Japan-Russia Relations in the Abe-Putin Era

Research Event

16 April 2020 - 1:00pm to 2:00pm

Chatham House | 10 St James's Square | London | SW1Y 4LE

Event participants

Alexander Bukh, Senior Lecturer, International Relations, Victoria University, Wellington, New Zealand; Author of These Islands Are Ours: The Social Construction of Territorial Disputes in Northeast Asia (Stanford University Press 2020)
Chair: Mathieu Boulègue, Research Fellow, Russia and Eurasia Programme

Japan and Russia are often referred to as 'distant neighbours'. 

In the early days of Prime Minister Shinzo Abe's second term in 2012, Japan sought to open a new era of bilateral relations with Russia. However, recent negotiations on the Kuril Islands/Northern Territories territorial dispute have stalled. Despite Abe’s extensive efforts to resolve the dispute, no concrete agreement has been reached so far. 

The speaker will provide an overview of the current state of Japan-Russia relations, including the prospect of resolving the territorial dispute during Prime Minister Abe's remaining days in office.

 

Lucy Ridout

Programme Administrator, Asia-Pacific Programme
+44 (0) 207 314 2761




era

Webinar: Russian Disinformation's Golden Moment: Challenges and Responses in the COVID-19 Era

Invitation Only Research Event

7 May 2020 - 3:00pm to 4:30pm

Event participants

Anneli Ahonen, Head, StratCom East Task Force, European External Action Service
Keir Giles, Senior Consulting Fellow, Russia and Eurasia Programme, Chatham House
Thomas Kent, Adjunct Associate Professor, Harriman Institute, Columbia University; Senior Fellow, the Jamestown Foundation
Chairs:
James Nixey, Programme Director, Russia and Eurasia, Chatham House
Glen Howard, President, The Jamestown Foundation
The COVID-19 pandemic provides the ideal environment for malign influence to thrive as it feeds on fear and a vacuum of authoritative information. What are the current challenges posed by Russian disinformation, and how should Western nations be responding?
 
In this discussion, jointly hosted by the Jamestown Foundation and the Chatham House Russia and Eurasia Programme, the speakers will consider what best practice looks like in safeguarding Western societies against the pernicious effects of disinformation. 
 
This event will be held on the record.

Anna Morgan

Administrator, Ukraine Forum
+44 (0)20 7389 3274




era

Effects of omega-O-acylceramide structures and concentrations in healthy and diseased skin barrier lipid membrane models [Research Articles]

Ceramides (Cers) with ultralong (~32-carbon) chains and -esterified linoleic acid, composing a subclass called omega-O-acylceramides (acylCers), are indispensable components of the skin barrier. Normal barriers typically contain acylCer concentrations of ~10 mol%; diminished concentrations, along with altered or missing long periodicity lamellar phase (LPP), and increased permeability accompany an array of skin disorders, including atopic dermatitis, psoriasis, and ichthyoses. We developed model membranes to investigate the effects of the acylCer structure and concentration on skin lipid organization and permeability. The model membrane systems contained six to nine Cer subclasses as well as fatty acids, cholesterol, and cholesterol sulfate; acylCer content—namely, acylCers containing sphingosine (Cer EOS), dihydrosphingosine (Cer EOdS), and phytosphingosine (Cer EOP) ranged from zero to 30 mol%. Systems with normal physiologic concentrations of acylCer mixture mimicked the permeability and nanostructure of human skin lipids (with regard to LPP, chain order, and lateral packing). The models also showed that the sphingoid base in acylCer significantly affects the membrane architecture and permeability and that Cer EOP, notably, is a weaker barrier component than Cer EOS and Cer EOdS. Membranes with diminished or missing acylCers displayed some of the hallmarks of diseased skin lipid barriers (i.e., lack of LPP, less ordered lipids, less orthorhombic chain packing, and increased permeability). These results could inform the rational design of new and improved strategies for the barrier-targeted treatment of skin diseases.




era

A nematode sterol C4{alpha}-methyltransferase catalyzes a new methylation reaction responsible for sterol diversity [Research Articles]

Primitive sterol evolution plays an important role in fossil record interpretation and offers potential therapeutic avenues for human disease resulting from nematode infections. Recognizing that C4-methyl stenol products [8(14)-lophenol] can be synthesized in bacteria while C4-methyl stanol products (dinosterol) can be synthesized in dinoflagellates and preserved as sterane biomarkers in ancient sedimentary rock is key to eukaryotic sterol evolution. In this regard, nematodes have been proposed to convert dietary cholesterol to 8(14)-lophenol by a secondary metabolism pathway that could involve sterol C4 methylation analogous to the C2 methylation of hopanoids (radicle-type mechanism) or C24 methylation of sterols (carbocation-type mechanism). Here, we characterized dichotomous cholesterol metabolic pathways in Caenorhabditis elegans that generate 3-oxo sterol intermediates in separate paths to lophanol (4-methyl stanol) and 8(14)-lophenol (4-methyl stenol). We uncovered alternate C3-sterol oxidation and 7 desaturation steps that regulate sterol flux from which branching metabolite networks arise, while lophanol/8(14)-lophenol formation is shown to be dependent on a sterol C4α-methyltransferse (4-SMT) that requires 3-oxo sterol substrates and catalyzes a newly discovered 3-keto-enol tautomerism mechanism linked to S-adenosyl-l-methionine-dependent methylation. Alignment-specific substrate-binding domains similarly conserved in 4-SMT and 24-SMT enzymes, despite minimal amino acid sequence identity, suggests divergence from a common, primordial ancestor in the evolution of methyl sterols. The combination of these results provides evolutionary leads to sterol diversity and points to cryptic C4-methyl steroidogenic pathways of targeted convergence that mediate lineage-specific adaptations.­­




era

Monitoring the itinerary of lysosomal cholesterol in Niemann-Pick Type C1-deficient cells after cyclodextrin treatment [Research Articles]

Niemann-Pick disease type C (NPC) disease is a lipid-storage disorder that is caused by mutations in the genes encoding NPC proteins and results in lysosomal cholesterol accumulation. 2-Hydroxypropyl-β-cyclodextrin (CD) has been shown to reduce lysosomal cholesterol levels and enhance sterol homeostatic responses, but CD’s mechanism of action remains unknown. Recent work provides evidence that CD stimulates lysosomal exocytosis, raising the possibility that lysosomal cholesterol is released in exosomes. However, therapeutic concentrations of CD do not alter total cellular cholesterol, and cholesterol homeostatic responses at the ER are most consistent with increased ER membrane cholesterol. To address these disparate findings, here we used stable isotope labeling to track the movement of lipoprotein cholesterol cargo in response to CD in NPC1-deficient U2OS cells. Although released cholesterol was detectable, it was not associated with extracellular vesicles. Rather, we demonstrate that lysosomal cholesterol trafficks to the plasma membrane (PM), where it exchanges with lipoprotein-bound cholesterol in a CD-dependent manner. We found that in the absence of suitable extracellular cholesterol acceptors, cholesterol exchange is abrogated, cholesterol accumulates in the PM, and reesterification at the ER is increased. These results support a model in which CD promotes intracellular redistribution of lysosomal cholesterol, but not cholesterol exocytosis or efflux, during the restoration of cholesterol homeostatic responses.




era

Alirocumab, evinacumab, and atorvastatin triple therapy regresses plaque lesions and improves lesion composition in mice [Research Articles]

Atherosclerosis-related CVD causes nearly 20 million deaths annually. Most patients are treated after plaques develop, so therapies must regress existing lesions. Current therapies reduce plaque volume, but targeting all apoB-containing lipoproteins with intensive combinations that include alirocumab or evinacumab, monoclonal antibodies against cholesterol-regulating proprotein convertase subtilisin/kexin type 9 and angiopoietin-like protein 3, may provide more benefit. We investigated the effect of such lipid-lowering interventions on atherosclerosis in APOE*3-Leiden.CETP mice, a well-established model for hyperlipidemia. Mice were fed a Western-type diet for 13 weeks and thereafter matched into a baseline group (euthanized at 13 weeks) and five groups that received diet alone (control) or with treatment [atorvastatin; atorvastatin and alirocumab; atorvastatin and evinacumab; or atorvastatin, alirocumab, and evinacumab (triple therapy)] for 25 weeks. We measured effects on cholesterol levels, plaque composition and morphology, monocyte adherence, and macrophage proliferation. All interventions reduced plasma total cholesterol (37% with atorvastatin to 80% with triple treatment; all P < 0.001). Triple treatment decreased non-HDL-C to 1.0 mmol/l (91% difference from control; P < 0.001). Atorvastatin reduced atherosclerosis progression by 28% versus control (P < 0.001); double treatment completely blocked progression and diminished lesion severity. Triple treatment regressed lesion size versus baseline in the thoracic aorta by 50% and the aortic root by 36% (both P < 0.05 vs. baseline), decreased macrophage accumulation through reduced proliferation, and abated lesion severity. Thus, high-intensive cholesterol-lowering triple treatment targeting all apoB-containing lipoproteins regresses atherosclerotic lesion area and improves lesion composition in mice, making it a promising potential approach for treating atherosclerosis.




era

ANGPTL3, PCSK9, and statin therapy drive remarkable reductions in hyperlipidemia and atherosclerosis in a mouse model [Commentary]




era

Erratum: Unequivocal evidence for endogenous geranylgeranoic acid biosynthesized from mevalonate in mammalian cells [Errata]




era

A novel NanoBiT-based assay monitors the interaction between lipoprotein lipase and GPIHBP1 in real time [Methods]

The hydrolysis of triglycerides in triglyceride-rich lipoproteins by LPL is critical for the delivery of triglyceride-derived fatty acids to tissues, including heart, skeletal muscle, and adipose tissues. Physiologically active LPL is normally bound to the endothelial cell protein glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 (GPIHBP1), which transports LPL across endothelial cells, anchors LPL to the vascular wall, and stabilizes LPL activity. Disruption of LPL-GPIHBP1 binding significantly alters triglyceride metabolism and lipid partitioning. In this study, we modified the NanoLuc® Binary Technology split-luciferase system to develop a novel assay that monitors the binding of LPL to GPIHBP1 on endothelial cells in real time. We validated the specificity and sensitivity of the assay using endothelial lipase and a mutant version of LPL and found that this assay reliably and specifically detected the interaction between LPL and GPIHBP1. We then interrogated various endogenous and exogenous inhibitors of LPL-mediated lipolysis for their ability to disrupt the binding of LPL to GPIHBP1. We found that angiopoietin-like (ANGPTL)4 and ANGPTL3-ANGPTL8 complexes disrupted the interactions of LPL and GPIHBP1, whereas the exogenous LPL blockers we tested (tyloxapol, poloxamer-407, and tetrahydrolipstatin) did not. We also found that chylomicrons could dissociate LPL from GPIHBP1 and found evidence that this dissociation was mediated in part by the fatty acids produced by lipolysis. These results demonstrate the ability of this assay to monitor LPL-GPIHBP1 binding and to probe how various agents influence this important complex.




era

Dynamics of sphingolipids and the serine palmitoyltransferase complex in rat oligodendrocytes during myelination [Research Articles]

Myelin is a unique lipid-rich membrane structure that accelerates neurotransmission and supports neuronal function. Sphingolipids are critical myelin components. Yet sphingolipid content and synthesis have not been well characterized in oligodendrocytes, the myelin-producing cells of the CNS. Here, using quantitative real-time PCR, LC-MS/MS-based lipid analysis, and biochemical assays, we examined sphingolipid synthesis during the peak period of myelination in the postnatal rat brain. Importantly, we characterized sphingolipid production in isolated oligodendrocytes. We analyzed sphingolipid distribution and levels of critical enzymes and regulators in the sphingolipid biosynthetic pathway, with focus on the serine palmitoyltransferase (SPT) complex, the rate-limiting step in this pathway. During myelination, levels of the major SPT subunits increased and oligodendrocyte maturation was accompanied by extensive alterations in the composition of the SPT complex. These included changes in the relative levels of two alternative catalytic subunits, SPTLC2 and -3, in the relative levels of isoforms of the small subunits, ssSPTa and -b, and in the isoform distribution of the SPT regulators, the ORMDLs. Myelination progression was accompanied by distinct changes in both the nature of the sphingoid backbone and the N-acyl chains incorporated into sphingolipids. We conclude that the distribution of these changes among sphingolipid family members is indicative of a selective channeling of the ceramide backbone toward specific downstream metabolic pathways during myelination. Our findings provide insights into myelin production in oligodendrocytes and suggest how dysregulation of the biosynthesis of this highly specialized membrane could contribute to demyelinating diseases.




era

Hepatic monoamine oxidase B is involved in endogenous geranylgeranoic acid synthesis in mammalian liver cells [Research Articles]

Geranylgeranoic acid (GGA) originally was identified in some animals and has been developed as an agent for preventing second primary hepatoma. We previously have also identified GGA as an acyclic diterpenoid in some medicinal herbs. Recently, we reported that in human hepatoma-derived HuH-7 cells, GGA is metabolically labeled from 13C-mevalonate. Several cell-free experiments have demonstrated that GGA is synthesized through geranylgeranial by oxygen-dependent oxidation of geranylgeraniol (GGOH), but the exact biochemical events giving rise to GGA in hepatoma cells remain unclear. Monoamine oxidase B (MOAB) has been suggested to be involved in GGOH oxidation. Here, using two human hepatoma cell lines, we investigated whether MAOB contributes to GGA biosynthesis. Using either HuH-7 cell lysates or recombinant human MAOB, we found that: 1) the MAO inhibitor tranylcypromine dose-dependently downregulates endogenous GGA levels in HuH-7 cells; and 2) siRNA-mediated MAOB silencing reduces intracellular GGA levels in HuH-7 and Hep3B cells. Unexpectedly, however, CRISPR/Cas9-generated MAOB-KO human hepatoma Hep3B cells had GGA levels similar to those in MAOB-WT cells. A sensitivity of GGA levels to siRNA-mediated MAOB downregulation was recovered when the MAOB-KO cells were transfected with a MAOB-expression plasmid, suggesting that MAOB is the enzyme primarily responsible for GGOH oxidation and that some other latent metabolic pathways may maintain endogenous GGA levels in the MAOB-KO hepatoma cells. Along with the previous findings, these results provide critical insights into the biological roles of human MAOB and provide evidence that hepatic MAOB is involved in endogenous GGA biosynthesis via GGOH oxidation.




era

Nanodomains can persist at physiologic temperature in plasma membrane vesicles and be modulated by altering cell lipids [Research Articles]

The formation and properties of liquid-ordered (Lo) lipid domains (rafts) in the plasma membrane are still poorly understood. This limits our ability to manipulate ordered lipid domain-dependent biological functions. Giant plasma membrane vesicles (GPMVs) undergo large-scale phase separations into coexisting Lo and liquid-disordered lipid domains. However, large-scale phase separation in GPMVs detected by light microscopy is observed only at low temperatures. Comparing Förster resonance energy transfer-detected versus light microscopy-detected domain formation, we found that nanodomains, domains of nanometer size, persist at temperatures up to 20°C higher than large-scale phases, up to physiologic temperature. The persistence of nanodomains at higher temperatures is consistent with previously reported theoretical calculations. To investigate the sensitivity of nanodomains to lipid composition, GPMVs were prepared from mammalian cells in which sterol, phospholipid, or sphingolipid composition in the plasma membrane outer leaflet had been altered by cyclodextrin-catalyzed lipid exchange. Lipid substitutions that stabilize or destabilize ordered domain formation in artificial lipid vesicles had a similar effect on the thermal stability of nanodomains and large-scale phase separation in GPMVs, with nanodomains persisting at higher temperatures than large-scale phases for a wide range of lipid compositions. This indicates that it is likely that plasma membrane nanodomains can form under physiologic conditions more readily than large-scale phase separation. We also conclude that membrane lipid substitutions carried out in intact cells are able to modulate the propensity of plasma membranes to form ordered domains. This implies lipid substitutions can be used to alter biological processes dependent upon ordered domains.




era

Lipid rafts as a therapeutic target [Thematic Reviews]

Lipid rafts regulate the initiation of cellular metabolic and signaling pathways by organizing the pathway components in ordered microdomains on the cell surface. Cellular responses regulated by lipid rafts range from physiological to pathological, and the success of a therapeutic approach targeting "pathological" lipid rafts depends on the ability of a remedial agent to recognize them and disrupt pathological lipid rafts without affecting normal raft-dependent cellular functions. In this article, concluding the Thematic Review Series on Biology of Lipid Rafts, we review current experimental therapies targeting pathological lipid rafts, including examples of inflammarafts and clusters of apoptotic signaling molecule-enriched rafts. The corrective approaches include regulation of cholesterol and sphingolipid metabolism and membrane trafficking by using HDL and its mimetics, LXR agonists, ABCA1 overexpression, and cyclodextrins, as well as a more targeted intervention with apoA-I binding protein. Among others, we highlight the design of antagonists that target inflammatory receptors only in their activated form of homo- or heterodimers, when receptor dimerization occurs in pathological lipid rafts. Other therapies aim to promote raft-dependent physiological functions, such as augmenting caveolae-dependent tissue repair. The overview of this highly dynamic field will provide readers with a view on the emerging concept of targeting lipid rafts as a therapeutic strategy.




era

Lipid rafts and neurodegeneration: structural and functional roles in physiologic aging and neurodegenerative diseases [Thematic Reviews]

Lipid rafts are small, dynamic membrane areas characterized by the clustering of selected membrane lipids as the result of the spontaneous separation of glycolipids, sphingolipids, and cholesterol in a liquid-ordered phase. The exact dynamics underlying phase separation of membrane lipids in the complex biological membranes are still not fully understood. Nevertheless, alterations in the membrane lipid composition affect the lateral organization of molecules belonging to lipid rafts. Neural lipid rafts are found in brain cells, including neurons, astrocytes, and microglia, and are characterized by a high enrichment of specific lipids depending on the cell type. These lipid rafts seem to organize and determine the function of multiprotein complexes involved in several aspects of signal transduction, thus regulating the homeostasis of the brain. The progressive decline of brain performance along with physiological aging is at least in part associated with alterations in the composition and structure of neural lipid rafts. In addition, neurodegenerative conditions, such as lysosomal storage disorders, multiple sclerosis, and Parkinson’s, Huntington’s, and Alzheimer’s diseases, are frequently characterized by dysregulated lipid metabolism, which in turn affects the structure of lipid rafts. Several events underlying the pathogenesis of these diseases appear to depend on the altered composition of lipid rafts. Thus, the structure and function of lipid rafts play a central role in the pathogenesis of many common neurodegenerative diseases.




era

Lipid rafts as signaling hubs in cancer cell survival/death and invasion: implications in tumor progression and therapy [Thematic Reviews]

Cholesterol/sphingolipid-rich membrane domains, known as lipid rafts or membrane rafts, play a critical role in the compartmentalization of signaling pathways. Physical segregation of proteins in lipid rafts may modulate the accessibility of proteins to regulatory or effector molecules. Thus, lipid rafts serve as sorting platforms and hubs for signal transduction proteins. Cancer cells contain higher levels of intracellular cholesterol and lipid rafts than their normal non-tumorigenic counterparts. Many signal transduction processes involved in cancer development (insulin-like growth factor system and phosphatidylinositol 3-kinase-AKT) and metastasis [cluster of differentiation (CD)44] are dependent on or modulated by lipid rafts. Additional proteins playing an important role in several malignant cancers (e.g., transmembrane glycoprotein mucin 1) are also being detected in association with lipid rafts, suggesting a major role of lipid rafts in tumor progression. Conversely, lipid rafts also serve as scaffolds for the recruitment and clustering of Fas/CD95 death receptors and downstream signaling molecules leading to cell death-promoting raft platforms. The partition of death receptors and downstream signaling molecules in aggregated lipid rafts has led to the formation of the so-called cluster of apoptotic signaling molecule-enriched rafts, or CASMER, which leads to apoptosis amplification and can be pharmacologically modulated. These death-promoting rafts can be viewed as a linchpin from which apoptotic signals are launched. In this review, we discuss the involvement of lipid rafts in major signaling processes in cancer cells, including cell survival, cell death, and metastasis, and we consider the potential of lipid raft modulation as a promising target in cancer therapy.




era

Problem Notes for SAS®9 - 65900: Registering an Oracle table to the metadata might fail and generate an error

When you register an Oracle table to the metadata, it might fail and generate an error similar to the following: "ERROR: An exception has been encountered...ERROR: Read Access Violation METALIB..."




era

Problem Notes for SAS®9 - 64285: The SCD Type 2 Loader transformation in SAS Data Integration Studio generates "ERROR 22-322: Syntax error, expecting one of the following:..."

If your business key column is a name literal, like " business key "n, a syntax error occurs when that variable name does not follow standard SAS naming conventions.




era

Problem Notes for SAS®9 - 65908: The IMPORT procedure contains a stack-corruption vulnerability

Severity: Medium Description: PROC IMPORT contains a stack-corruption vulnerability. Potential Impact: Under certain circumstances (with use of the DBM




era

Problem Notes for SAS®9 - 65906: The EXPORT procedure contains a stack-corruption vulnerability

Severity: Medium Description: PROC EXPORT contains a stack-corruption vulnerability. Potential Impact: Under certain circumstances, the use of PROC EXP




era

Problem Notes for SAS®9 - 65904: SAS Federation Server stops responding when you run queries against X_OBJECT_PRIVILEGES in SYSCAT and the queries run for hours

The select * from "SYSCAT"."SYSCAT"."X_EFFECTIVE_OBJECT_PRIVILEGES" query runs for hours. In this scenario, SAS Federation Server stops responding, making it unavailable for use. Restarting SAS Federation Server solves t




era

Problem Notes for SAS®9 - 64980: The PRINT procedure contains a buffer-overrun vulnerability

Severity: Medium Description: PROC PRINT might fail with a buffer overrun when you submit it in conjunction with certain malformed SAS statements.



era

Problem Notes for SAS®9 - 64550: SAS Enterprise Case Management contains a cross-site scripting vulnerability in the CASE_ID parameter

Severity: Medium Description: SAS Enterprise Case Management contains a cross-site scripting vulnerability in the CASE_ID parameter. Potential Impact:




era

Problem Notes for SAS®9 - 65893: Custom sorts are sorted incorrectly when they are used in a hierarchy in SAS Visual Analytics Designer

A custom sort might be sorted incorrectly when the data item is used in a custom category, which is then used in a hierarchy. The issue can occur in the following scenario:




era

Problem Notes for SAS®9 - 65835: A series of PROC SQL queries might not generate a distinct set of rows

A set of PROC SQL queries that create a view, contain a constant column, contain a computed column, and a create a table do not generate a unique set of rows in the table that is created.




era

Problem Notes for SAS®9 - 65856: The process of updating a lookup table in SAS Business Rules Manager (running in UNIX operating environments) does not work properly

Under UNIX, the process of updating a lookup table in SAS Business Rules Manager does not work properly. The problem occurs when you perform these steps:  Open a lookup table. Cl