or Black Gold in the Congo: Threat to Stability or Development Opportunity? By feedproxy.google.com Published On :: Wed, 11 Jul 2012 15:20:00 GMT Renewed oil interest in the Democratic Republic of the Congo (DRC) could nurture communal resentments, exacerbate deep-rooted conflict dynamics and weaken national cohesion. Full Article
or Central African Republic: Priorities of the Transition By feedproxy.google.com Published On :: Mon, 10 Jun 2013 22:00:00 GMT The collapse of the state and the disappearance of security forces from a large part of the territory may turn the Central African Republic (CAR) into a source of instability in the heart of Africa.Please note the full report is only available in French. Full Article
or The DRC is a Hornet’s Nest South Africa Should not Kick By feedproxy.google.com Published On :: Sat, 06 Jul 2013 22:00:00 GMT South Africa’s efforts to foster peace and security have placed it centre stage in some of the continent’s most intractable conflicts. This is an inevitable result of the quest to promote “African solutions for African problems”. Full Article
or Centrafrique: Sortir des sentiers battus pour sauver la Centrafrique By feedproxy.google.com Published On :: Thu, 26 Sep 2013 14:06:00 GMT L’indifférence internationale est un facteur aggravant pour les conflits dans les petits pays. Cependant, en ce qui concerne la République centrafricaine (RCA), le contexte est paradoxalement différent. Full Article
or Fields of Bitterness (I): Land Reform in Burundi By feedproxy.google.com Published On :: Wed, 12 Feb 2014 12:57:00 GMT Unless the government revives land governance reform in Burundi, long-term peacebuilding efforts will remain compromised. Full Article
or Central African Republic - Making the Mission Work By feedproxy.google.com Published On :: Tue, 25 Feb 2014 10:12:00 GMT By failing to engage when Crisis Group and others warned that the Central African Republic had become a phantom state, the international community has now had to become much more heavily involved, at much greater expense, after horrifying loss of life and massive displacement, with much greater odds of failure. Full Article
or The Security Challenges of Pastoralism in Central Africa By feedproxy.google.com Published On :: Mon, 31 Mar 2014 22:00:00 GMT Sensible, inclusive regulation of pastoralism that has mitigated tension in parts of the Sahel should be extended to the Democratic Republic of Congo (DRC) and the Central African Republic (CAR), where conflicts have worsened with the southward expansion of pastoralism. Full Article
or AU was set up for an explosive crisis like Burundi; it must act By feedproxy.google.com Published On :: Fri, 13 Nov 2015 23:00:00 GMT The deteriorating situation in Burundi is a perfect storm of much that undermines stability in Africa today — presidents seeking impunity and power through dubious new terms, authoritarian regimes muzzling opposition and independent media, regional rivalries stalemating efforts to bring peace and outside powers unwilling or unable to act. Full Article
or California Moves Toward New Test-Score Reporting By feedproxy.google.com Published On :: Fri, 05 Dec 2014 00:00:00 +0000 Federal law requires states to report student test scores in achievement levels, but leaders in the Golden State want to take a different approach. Full Article Assessment+Accountability+Achievement
or Which States Expect the Most or Least From Students? By feedproxy.google.com Published On :: Tue, 22 May 2018 00:00:00 +0000 Mostly, states are holding to a higher bar for student achievement than they did a decade ago. But Iowa, Texas, and Virginia continue to show large gaps between their state proficiency standards and NAEP's. Full Article Assessment+Accountability+Achievement
or Approval Deferred on ACT for Accountability in Wyo., Wis. By feedproxy.google.com Published On :: Tue, 07 Feb 2017 00:00:00 +0000 The U.S. Education Department says the states need more evidence to use the popular admissions test to measure high school achievement. Full Article Assessment+Accountability+Achievement
or In Some States, ESSA Goals for English-Learners Are 'Purely Symbolic,' Report Finds By feedproxy.google.com Published On :: Fri, 14 Feb 2020 00:00:00 +0000 More than four years after the passage of ESSA, English-language-learner education policies across the country remain "disjointed and inaccessible," a new report concludes. Full Article Assessment+Accountability+Achievement
or Is It Time for the American Approach to Assessment to Change? By feedproxy.google.com Published On :: Wed, 05 Sep 2018 00:00:00 +0000 The U.S. tests its students more than most nations, but is the deluge of data providing the information schools need? Full Article Assessment+Accountability+Achievement
or Education Week American Education News Site of Record - News By feedproxy.google.com Published On :: Sat, 09 May 2020 16:18:37 +0000 News. Full Article Assessment+Accountability+Achievement
or Efficacy of early oral switch with beta-lactams for low-risk Staphylococcus aureus bacteremia. [Clinical Therapeutics] By aac.asm.org Published On :: 2020-02-03T08:23:03-08:00 Objectives. The aim of this study was to assess the safety of early oral switch (EOS) prior to 14 days for low-risk Staphylococcus aureus bacteremia (LR-SAB), which is the primary treatment strategy employed at our institution. Usually recommended therapy is 14 days of intravenous (IV) antibiotics.Methods. All patients with SAB at our hospital were identified between 1 January 2014 and 31 December 2018. Those meeting low-risk criteria (healthcare-associated, no evidence of deep infection or demonstrated involvement of prosthetic material, and no further positive blood cultures after 72-hours) were included in the study. The primary outcome was occurrence of a SAB-related complication within 90 days.Results. There were 469 SAB episodes during the study period, 100 (21%) of whom met inclusion criteria. EOS was performed in 84 patients. In this group, line infection was the source in 79%, methicillin-susceptible S. aureus caused 95% of SABs and 74% of patients received IV flucloxacillin. The median duration of IV and oral antibiotics in the EOS group was 5 (IQR 4-6) and 10 days (IQR 9-14), respectively. Seventy-one percent of patients received flucloxacillin as their EOS agent. Overall, 86% of oral step-down therapy was with beta-lactams. One patient (1%) undergoing EOS had SAB relapse within 90 days. No deaths attributable to SAB occurred within 90 days.Conclusions. In this low MRSA prevalence LR-SAB cohort, EOS was associated with a low incidence of SAB-related complications. This was achieved with oral beta-lactam therapy in most patients. Larger prospective studies are needed to confirm these findings. Full Article
or Assessment of drug resistance during phase 2b clinical trials of presatovir in adults naturally infected with respiratory syncytial virus [Antiviral Agents] By aac.asm.org Published On :: 2020-02-18T08:15:40-08:00 Background: This study summarizes drug resistance analyses in 4 recent phase 2b trials of the respiratory syncytial virus (RSV) fusion inhibitor presatovir in naturally infected adults.Methods: Adult hematopoietic cell transplant (HCT) recipients, lung transplant recipients, or hospitalized patients with naturally acquired, laboratory-confirmed RSV infection were enrolled in 4 randomized, double-blind, placebo-controlled studies with study-specific presatovir dosing. Full-length RSV F sequences amplified from nasal swabs obtained at baseline and postbaseline were analyzed by population sequencing. Substitutions at RSV fusion inhibitor resistance-associated positions are reported.Results: Genotypic analyses were performed on 233 presatovir-treated and 149 placebo-treated subjects. RSV F variant V127A was present in 8 subjects at baseline. Population sequencing detected treatment-emergent substitutions in 10/89 (11.2%) HCT recipients with upper and 6/29 (20.7%) with lower respiratory tract infection, 1/35 (2.9%) lung transplant recipients, and 1/80 (1.3%) hospitalized patients treated with presatovir; placebo-treated subjects had no emergent resistance-associated substitutions. Subjects with substitutions at resistance-associated positions had smaller decreases in viral load during treatment relative to those without, but similar clinical outcomes.Conclusions: Subject population type and dosing regimen may have influenced RSV resistance development during presatovir treatment. Subjects with vs without genotypic resistance development had decreased virologic responses but comparable clinical outcomes. Full Article
or Biochemical Characterization of QPX7728, a New Ultra-Broad-Spectrum Beta-lactamase Inhibitor of Serine and Metallo-Beta-Lactamases [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-03-09T08:34:13-07:00 QPX7728 is a new ultra-broad-spectrum inhibitor of serine and metallo beta-lactamases from a class of cyclic boronates that gave rise to vaborbactam. The spectrum and mechanism of beta-lactamase inhibition by QPX7728 were assessed using purified enzymes from all molecular classes. QPX7728 inhibits class A ESBLs (IC50 range 1-3 nM) and carbapenemases such as KPC (IC50 2.9±0.4 nM) as well as class C P99 (IC50 of 22±8 nM) with a potency that is comparable or higher than recently FDA approved BLIs avibactam, relebactam and vaborbactam. Unlike those other BLIs, QPX7728 is also a potent inhibitor of class D carbapenemases such as OXA-48 from Enterobacteriaceae and OXA enzymes from A. baumannii (OXA-23/24/58, IC50 range 1-2 nM) as well as MBLs such as NDM-1 (IC50 55±25 nM), VIM-1 (IC50 14±4 nM) and IMP-1 (IC50 610±70 nM). Inhibition of serine enzymes by QPX7728 is associated with progressive inactivation with a high efficiency k2/K ranging from of 6.3 x 104 (for P99) to 9.9 x 105 M-1 s-1 (for OXA-23). This inhibition is reversible with variable stability of the QPX7728-beta-lactamase complexes with target residence time ranging from minutes to several hours: 5-20 minutes for OXA carbapenemases from A. baumanii, ~50 minutes for OXA-48 and 2-3 hours for KPC and CTX-M-15. QPX7728 inhibited all tested serine enzymes at 1:1 molar ratio. Metallo-beta-lactamases NDM, VIM, and IMP were inhibited by a competitive mechanism with fast-on-fast-off kinetics, with Kis of 7.5±2.1 nM, 32±14 nM and 240±30 nM for VIM-1, NDM-1 and IMP-1, respectively. QPX7728 ultra-broad-spectrum of BLI inhibition combined with its high potency enables combinations with multiple different beta-lactam antibiotics. Full Article
or In Vitro and In Vivo Characterization of Potent Antileishmanial Methionine Aminopeptidase-1 Inhibitors [Experimental Therapeutics] By aac.asm.org Published On :: 2020-03-16T08:17:37-07:00 Leishmania major is the causative agent of cutaneous leishmaniasis (CL). No human vaccine is available for CL and current drug regimens present several drawbacks such as emerging resistance, severe toxicity, medium effectiveness, and/or high cost. Thus, the need for better treatment options against CL is a priority. In the present study, we validate the enzyme methionine aminopeptidase-1 (MetAP1), a metalloprotease that catalyzes the removal of N-terminal methionine from peptides and proteins, as a chemotherapeutic target against CL infection. The in vitro antileishmanial activity of eight novel MetAP1 inhibitors (OJT001-OJT008) were investigated. Three compounds OJT006, OJT007, and OJT008 demonstrated potent anti-proliferative effect in macrophages infected with L. major amastigotes and promastigotes at submicromolar concentrations, with no cytotoxicity against host cells. Importantly, the leishmanicidal effect was diminished by almost 10-fold in transgenic L. major promastigotes overexpressing MetAP1LM in comparison to wild-type promastigotes. Furthermore, the in vivo activity of OJT006, OJT007, and OJT008 were investigated in L. major-infected BALB/c mice. In comparison to the control group, OJT008 significantly decreased footpad parasite load by 86%, and exhibited no toxicity against in treated mice. We propose MetAP1 inhibitor OJT008 as a potential chemotherapeutic candidate against CL infection caused by L. major infection. Full Article
or A histone methyltransferase inhibitor can reverse epigenetically acquired drug resistance in the malaria parasite Plasmodium falciparum [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-03-16T08:17:37-07:00 Malaria parasites invade and replicate within red blood cells (RBCs), extensively modifying their structure and gaining access to the extracellular environment by placing the plasmodial surface anion channel (PSAC) into the RBC membrane. Expression of members of the cytoadherence linked antigen gene 3 (clag3) family is required for PSAC activity, a process that is regulated epigenetically. PSAC is a well-established route of uptake for large, hydrophilic antimalarial compounds and parasites can acquire resistance by silencing clag3 gene expression, thereby reducing drug uptake. We found that exposure to sub-IC50 concentrations of the histone methyltransferase inhibitor chaetocin caused substantial changes in both clag3 gene expression and RBC permeability, reversing acquired resistance to the antimalarial compound blasticidin S that is transported through PSAC. Chaetocin treatment also altered progression of parasites through their replicative cycle, presumably by changing their ability to modify chromatin appropriately to enable DNA replication. These results indicate that targeting histone modifiers could represent a novel tool for reversing epigenetically acquired drug resistance in P. falciparum. Full Article
or MK-571, a cysteinyl leukotriene receptor-1 antagonist, inhibits hepatitis C virus (HCV) replication [Antiviral Agents] By aac.asm.org Published On :: 2020-03-16T08:17:37-07:00 The quinoline MK-571 is the most commonly used inhibitor of multidrug resistance protein-1 (MRP-1) but was originally developed as a cysteinyl leukotriene receptor 1 (CysLTR1) antagonist. While studying the modulatory effect of MRP-1 on anti-hepatitis C virus (HCV) direct acting-antivirals (DAA) efficiency, we observed an unexpected anti-HCV effect of compound MK-571 alone. This anti-HCV activity was characterized in Huh7.5 cells stably harboring a subgenomic genotype 1b replicon. A dose-dependent decrease of HCV RNA levels was observed upon MK-571 administration, with an EC50 of 9±0.3 μM and a maximum HCV RNA level reduction of approximatively 1 Log10. MK-571 also reduced the replication of the HCV full-length J6/JFH1 model in a dose-dependent manner. However, probenecid and apigenin homodimer (APN), two specific inhibitors of MRP-1, had no effect on HCV replication. In contrast, the CysLTR1 antagonists SR2640 increased HCV-SGR RNA levels in a dose-dependent manner, with a maximum increase of 10-fold. In addition, a combination of natural CysLTR1 agonist (LTD4) or antagonists (zafirlukast, cinalukast, and SR2640) with MK-571 completely reversed its antiviral effect, suggesting its anti-HCV activity is related to CysLTR1 rather to MRP-1 inhibition. In conclusion, we showed that MK-571 inhibits HCV replication in hepatoma cell cultures by acting as a CysLTR1 receptor antagonist, thus unraveling a new host-virus interaction in the HCV life cycle. Full Article
or Comparison of Cefepime/Cefpirome and Carbapenem Therapy for Acinetobacter Bloodstream Infection: A Multicentre Study [Clinical Therapeutics] By aac.asm.org Published On :: 2020-03-16T08:17:37-07:00 Carbapenems are currently the preferred agents for the treatment of serious Acinetobacter infections. However, whether cefepime/cefpirome can be used to treat Acinetobacter bloodstream infection (BSI) if it is active against the causative pathogens is not clear. This study aimed to compare the efficacy of cefepime/cefpirome and carbapenem monotherapy in patients with Acinetobacter BSI. The population included 360 patients with monomicrobial Acinetobacter BSI receiving appropriate antimicrobial therapy admitted to four medical centres in Taiwan in 2012–2017. The predictors of 30-day mortality were determined by Cox regression analysis. The overall 30-day mortality rate in the appropriate antibiotic treatment group was 25.0% (90/360 patients), respectively. The crude 30-day mortality rates for cefepime/cefpirome and carbapenem therapy were 11.5% (7/61 patients) and 26.3% (21/80 patients), respectively. The patients receiving cefepime/cefpirome/carbapenem therapy were infected by Acinetobacter nosocomialis (51.8%), A. baumannii (18.4%) and A. pittii (12.1%). After adjusting for age, Sequential Organ Failure Assessment (SOFA) score, invasive procedures, and underlying diseases, cefepime/cefpirome therapy was not independently associated with a higher or lower 30-day mortality compared to the carbapenem therapy. SOFA score (hazard ratio [HR], 1.324; 95% confidence interval [CI], 1.137–1.543; P < 0.001) and neutropenia (HR, 7.060; 95% CI, 1.607–31.019; P = 0.010) were independent risk factors for 30-day mortality of patients receiving cefepime/cefpirome or carbapenem monotherapy. The incidence density of 30-day mortality for cefepime/cefpirome versus carbapenem therapy was 0.40% versus 1.04%. The therapeutic response of cefepime/cefpirome therapy was comparable to that of carbapenems among patients with Acinetobacter BSI receiving appropriate antimicrobial therapy. Full Article
or ZN148 - a modular synthetic metallo-{beta}-lactamase inhibitor reverses carbapenem-resistance in Gram-negative pathogens in vivo [Experimental Therapeutics] By aac.asm.org Published On :: 2020-03-16T08:17:37-07:00 Carbapenem-resistant Gram-negative pathogens are a critical public health threat and there is an urgent need for new treatments. Carbapenemases (β-lactamases able to inactivate carbapenems) have been identified in both serine β-lactamase (SBL) and metallo β-lactamase (MBL) families. The recent introduction of SBL carbapenemase-inhibitors has provided alternative therapeutic options. Unfortunately, there are no approved inhibitors of MBL-mediated carbapenem-resistance and treatment options for infections caused by MBL-producing Gram-negatives are limited. Here, we present ZN148, a zinc-chelating MBL-inhibitor capable of restoring the bactericidal effect of meropenem and in vitro clinical susceptibility to carbapenems in >98% of a large international collection of MBL-producing clinical Enterobacterales strains (n=234). Moreover, ZN148 was able to potentiate the effect of meropenem against NDM-1-producing Klebsiella pneumoniae in a murine neutropenic peritonitis model. ZN148 showed no inhibition of the human zinc-containing enzyme glyoxylase II at 500 μM and no acute toxicity was observed in an in vivo mouse model with cumulative dosages up to 128 mg/kg. Biochemical analysis showed a time-dependent inhibition of MBLs by ZN148 and removal of zinc ions from the active site. Addition of exogenous zinc after ZN148 exposure only restored MBL activity by ~30%, suggesting an irreversible mechanism of inhibition. Mass-spectrometry and molecular modelling indicated potential oxidation of the active site Cys221 residue. Overall, these results demonstrate the therapeutic potential of a ZN148-carbapenem combination against MBL-producing Gram-negative pathogens and that ZN148 is a highly promising MBL inhibitor, capable of operating in a functional space not presently filled by any clinically approved compound. Full Article
or Combination Therapy with Ibrexafungerp (formerly SCY-078), a First-in-Class Triterpenoid Inhibitor of (1->3)-{beta}-D-Glucan Synthesis, and Isavuconazole for Treatment of Experimental Invasive Pulmonary Aspergillosis [Experimental Therapeutics] By aac.asm.org Published On :: 2020-03-16T08:17:36-07:00 Ibrexafungerp (formerly SCY-078) is a semisynthetic triterpenoid and potent (1->3)-β-D-glucan synthase inhibitor. We investigated the in vitro activity, pharmacokinetics, and in vivo efficacy of ibrexafungerp (SCY) alone and in combination with anti-mould triazole isavuconazole (ISA) against invasive pulmonary aspergillosis (IPA). The combination of ibrexafungerp and isavuconazole in in vitro studies resulted in an additive and synergistic interactions against Aspergillus spp. Plasma concentration-time curves of ibrexafungerp were compatible with linear dose proportional profile. In vivo efficacy was studied in a well established persistently neutropenic NZW rabbit model of experimental IPA. Treatment groups included untreated rabbits (UC) and rabbits receiving ibrexafungerp at 2.5(SCY2.5) and 7.5(SCY7.5) mg/kg/day, isavuconazole at 40(ISA40) mg/kg/day, or combinations of SCY2.5+ISA40 and SCY7.5+ISA40. The combination of SCY+ISA produced in vitro synergistic interaction. There was significant in vivo reduction of residual fungal burden, lung weights, and pulmonary infarct scores in SCY2.5+ISA40, SCY7.5+ISA40, and ISA40-treatment groups vs that of SCY2.5-treated, SCY7.5-treated and UC (p<0.01). Rabbits treated with SCY2.5+ISA40 and SCY7.5+ISA40 had prolonged survival in comparison to that of SCY2.5-, SCY7.5-, ISA40-treated or UC (p<0.05). Serum GMI and (1->3)-β-D-glucan levels significantly declined in animals treated with the combination of SCY7.5+ISA40 in comparison to those treated with SCY7.5 or ISA40 (p<0.05). Ibrexafungerp and isavuconazole combination demonstrated prolonged survival, decreased pulmonary injury, reduced residual fungal burden, lower GMI and (1->3)-β-D-glucan levels in comparison to those of single therapy for treatment of IPA. These findings provide an experimental foundation for clinical evaluation of the combination of ibrexafungerp and an anti-mould triazole for treatment of IPA. Full Article
or A Comparison of Clinical Outcomes among Intensive Care Unit Patients Receiving Ceftriaxone 1 gram daily or 2 grams daily [Clinical Therapeutics] By aac.asm.org Published On :: 2020-03-23T08:47:35-07:00 Background: Intensive care unit (ICU) patients may experience ceftriaxone underexposure but clinical outcomes data are lacking. The objective of this study was to determine the impact of ceftriaxone dosing on clinical outcomes amongst ICU patients without central nervous system (CNS) infection.Methods: A retrospective study of ICU patients receiving intravenous, empiric ceftriaxone for non-CNS infections was conducted. Patients ≥18 years of age who received ≤2 grams of ceftriaxone daily for ≥72 hours were included and categorized as receiving ceftriaxone 1 gram or 2 grams daily. The primary, composite outcome was treatment failure: inpatient mortality and/or antibiotic escalation due to clinical worsening. Propensity score matching was performed based on the probability of receiving ceftriaxone 2 grams daily. Multivariable logistic regression determined the association between ceftriaxone dose and treatment failure in a propensity-matched cohort.Results: A total of 212 patients were included in the propensity-matched cohort. The most common diagnoses (83.0%) were pneumonia and urinary tract infection. Treatment failure occurred in 17.0% and 5.7% of patients receiving 1 gram and 2 grams daily, respectively (p=0.0156). Overall inpatient mortality was 8.5%. Ceftriaxone 2 gram dosing was associated with a reduced likelihood of treatment failure (adjusted odds ratio=0.190; 95% confidence interval: 0.059 – 0.607). Other independent predictors of treatment failure included sequential organ failure assessment score (aOR 1.440, 95% CI 1.254 – 1.653) and creatinine clearance at 72 hours from ceftriaxone initiation (aOR 0.980, 95% CI (0.971 – 0.999).Conclusions: Ceftriaxone 2 grams daily when used as appropriate antimicrobial coverage may be appropriate for ICU patients with lower mortality risk. Full Article
or Fosmanogepix (APX001) is Effective in the Treatment of Pulmonary Murine Mucormycosis Due to Rhizopus arrhizus [Experimental Therapeutics] By aac.asm.org Published On :: 2020-03-23T08:47:35-07:00 Mucormycosis is a life-threatening infection with high mortality that occurs predominantly in immunocompromised patients. Manogepix (MGX) is a novel antifungal that targets Gwt1, an early step in the conserved glycosylphosphotidyl inositol (GPI) post-translational modification pathway of surface proteins in eukaryotic cells. Inhibition of inositol acylation by MGX results in pleiotropic effects including inhibition of maturation of GPI-anchored proteins necessary for growth and virulence. MGX has been previously shown to have in vitro activity against some strains of Mucorales. Here we assessed the in vivo activity of the prodrug fosmanogepix, currently in clinical development for the treatment of invasive fungal infections, against two Rhizopus arrhizus strains with high (4.0 μg/ml) and low (0.25 μg/ml) minimum effective concentration (MEC) values. In both invasive pulmonary infection models, treatment of mice with 78 mg/kg or 104 mg/kg fosmanogepix, along with 1-aminobenzotriazole to enhance the serum half-live of MGX in mice, significantly increased median survival time and prolonged overall survival by day 21 post infection when compared to placebo. In addition, administration of fosmanogepix resulted in a 1-2 log reduction in both lung and kidney fungal burden. For the 104 mg/kg fosmanogepix dose, tissue clearance and survival were comparable to clinically relevant doses of isavuconazole (ISA), which is FDA approved for the treatment of mucormycosis. These results support continued development of fosmanogepix as a first in class treatment for invasive mucormycosis. Full Article
or Telacebec for ultra-short treatment of Buruli ulcer in a mouse model [Clinical Therapeutics] By aac.asm.org Published On :: 2020-03-23T08:47:35-07:00 Telacebec (Q203) is a new anti-tubercular drug with extremely potent activity against Mycobacterium ulcerans. Here, we explored the treatment-shortening potential of Q203 alone or in combination with rifampin (RIF) in a mouse footpad infection model. The first study compared Q203 at 5 and 10 mg/kg doses alone and with rifampin. Q203 alone rendered most mouse footpads culture-negative in 2 weeks. Combining Q203 with rifampin resulted in relapse-free cure 24 weeks after completing 2 weeks of treatment, compared to a 25% relapse rate in mice receiving RIF+clarithromycin, the current standard of care, for 4 weeks.The second study explored the dose-ranging activity of Q203 alone and with RIF, including the extended activity of Q203 after treatment discontinuation. The bactericidal activity of Q203 persisted for ≥ 4 weeks beyond the last dose. All mice receiving just 1 week of Q203 at 2-10 mg/kg were culture-negative 4 weeks after stopping treatment. Mice receiving 2 weeks of Q203 at 0.5, 2 and 10 mg/kg were culture-negative 4 weeks after treatment. RIF did not increase the efficacy of Q203. A pharmacokinetics sub-study revealed that Q203 doses of 2-10 mg/kg in mice produce plasma concentrations similar to those produced by 100-300 mg doses in humans, with no adverse effect of RIF on Q203 concentrations.These results indicate the extraordinary potential of Q203 to reduce the duration of treatment necessary for cure to ≤ 1 week (or 5 doses of 2-10 mg/kg) in our mouse footpad infection model and warrant further evaluation of Q203 in clinical trials. Full Article
or Impact of KPC-production and high-level meropenem resistance on all-cause mortality of ventilator-associated pneumonia in association with Klebisella pneumoniae [Clinical Therapeutics] By aac.asm.org Published On :: 2020-03-23T08:47:35-07:00 Objectives: Carbapenemase-producing Enterobacterales and specifically KPC-producing Klebsiella pneumoniae (KPC-Kp) are rapidly spreading worldwide. The prognosis of ventilator-associated pneumonia (VAP) caused by KPC-producing Klebsiella pneumoniae (KPC-Kp) is not well known. Our study tries to assess whether ventilator-associated pneumonia caused by a KPC-Kp strain is associated with higher all-cause mortality than if caused by carbapenem-susceptible isolates.Study design and methods: This is a retrospective cohort study of patients with VAP due to K. pneumoniae from a 35-bed polyvalent Intensive Care Unit in a university hospital (> 40,000 annual admissions) between January 2012 and December 2016. Adjusted multivariate analysis was used to study the association of KPC-Kp with 30-day all-cause mortality (Cox regression).Results. We analyze 69 cases of K. pneumoniae VAP of which 39 were produced by a KPC-Kp strain with high-level resistance to meropenem (MIC > 16 mg/mL). All-cause mortality at 30 days was 41% in the KPC-Kp group (16/39) and 33.3% in the carbapenem-susceptible cases (10/30). KPC-Kp etiology was not associated with higher mortality when controlled for confounders (adjusted hazard ratio [lsqb]HR[rsqb] 1.25; 95% CI: 0.46–3.41). Adequate targeted therapy (HR 0.03; 95% CI: <0.01–0.23) was associated with all-cause mortality.Conclussion. Assuming the limitations due to the available sample size, the prognosis of VAP caused by KPC-Kp is similar to VAPs caused by carbapenem-susceptible K. pneumoniae when appropriate treatment is used. Full Article
or Metronidazole-Treated Porphyromonas gingivalis Persisters Invade Human Gingival Epithelial Cells and Perturb Innate Responses [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-03-23T08:47:35-07:00 Periodontitis as a biofilm-associated inflammatory disease is highly prevalent worldwide. It severely affects oral health and yet closely links to systemic diseases like diabetes and cardiovascular disease. Porphyromonas gingivalis as a ‘keystone' periodontopathogen drives the shift of microbe-host symbiosis to dysbiosis, and critically contributes to the pathogenesis of periodontitis. Persisters are a tiny subset of biofilm-associated microbes highly tolerant to lethal treatment of antimicrobials, and notably metronidazole-tolerant P. gingivalis persisters have recently been identified by our group. This study further explored the interactive profiles of metronidazole-treated P. gingivalis persisters (M-PgPs) with human gingival epithelial cells (HGECs). P. gingivalis cells (ATCC 33277) at stationary phase were treated with lethal dosage of metronidazole (100 μg/ml, 6 hours) for generating M-PgPs. The interaction of M-PgPs with HGECs was assessed by microscopy, flow cytometry, cytokine profiling and qPCR. We demonstrated that the overall morphology and ultra-cellular structure of M-PgPs remained unchanged. Importantly, M-PgPs maintained the capabilities to adhere to and invade into HGECs. Moreover, M-PgPs significantly suppressed pro-inflammatory cytokine expression in HGECs at a comparable level with the untreated P. gingivalis cells, through the thermo-sensitive components. The present study reveals that P. gingivalis persisters induced by lethal treatment of antibiotics could maintain their capabilities to adhere to and invade into human gingival epithelial cells, and perturb the innate host responses. Novel strategies and approaches need to be developed for tackling P. gingivalis and favourably modulating the dysregulated immuno-inflammatory responses for oral/periodontal health and general wellbeing. Full Article
or Towards harmonization of voriconazole CLSI and EUCAST breakpoints for Candida albicans using a validated in vitro pharmacokinetic/pharmacodynamic model [Susceptibility] By aac.asm.org Published On :: 2020-03-30T10:04:32-07:00 Background. CLSI and EUCAST susceptibility breakpoints for voriconazole and C. albicans differ by one dilution (≤0.125 and ≤0.06 mg/l, respectively) whereas the epidemiological cutoff values (ECOFF/ECV) with both methodologies are the same (0.03 mg/L). We therefore determined the pharmacokinetic-pharmacodynamic (PK/PD) breakpoints of voriconazole against C. albicans for both methodologies with an in vitro PK/PD model, which was validated using existing animal PK/PD data.Methods. Four clinical wild-type and non-wild-type C. albicans isolates (voriconazole MICs 0.008-0.125 mg/l) were tested in an in vitro PK/PD model. For validation purposes, mouse PK were simulated and in vitro PD were compared with in vivo outcome. Human PK were simulated and the exposure-effect relationship fAUC0-24/MIC was described for EUCAST and CLSI24/48h methods. PK/PD breakpoints were determined using the fAUC0-24/MIC associated with half-maximal activity (EI50) and Monte Carlo simulation analysis.Results. The in vitro 24h-PD EI50 of voriconazole against C. albicans were 2.5-5 (1.5-17) fAUC/MIC. However, the 72h-PD were higher, 133 (51-347) fAUC/MIC for EUCAST and 94 (35-252) fAUC/MIC for CLSI. The mean (95% confidence interval) probability of target attainment (PTA) was 100(95-100)%, 97(72-100)%, 83(35-99)%, and 49(8-91)% and 100(97-100)%, 99(85-100)%, 91(52-100)% and 68(17-96)% for EUCAST and CLSI MICs 0.03, 0.06, 0.125, and 0.25 mg/L, respectively. Significantly, >95% PTAs were found for EUCAST/CLSI MICs ≤0.03 mg/ll. For MICs 0.06-0.125 mg/l trough levels 1-4 mg/ll would be required.Conclusion. A PK/PD breakpoint of C. albicans voriconazole at the ECOFF/ECV of 0.03 mg/L was determined for both EUCAST/CLSI methods, indicating the need for breakpoint harmonization for the reference methodologies. Full Article
or Spectrum of Beta-Lactamase Inhibition by the Cyclic Boronate QPX7728, an Ultra-Broad-Spectrum Beta-lactamase Inhibitor of Serine and Metallo Beta-Lactamases: Enhancement of Activity of Multiple Antibiotics Against Isogenic Strains Expressing Single {beta} By aac.asm.org Published On :: 2020-03-30T10:04:32-07:00 QPX7728 is an ultra-broad-spectrum boronic acid beta-lactamase inhibitor with potent inhibition of key serine and metallo beta-lactamases observed in biochemical assays. Microbiological studies using characterized strains were used to provide a comprehensive characterization of the spectrum of beta-lactamase inhibition by QPX7728. The MIC of multiple IV only (ceftazidime, piperacillin, cefepime, ceftolozane and meropenem) and orally bioavailable (ceftibuten, cefpodoxime, tebipenem) antibiotics alone and in combination with QPX7728 (4 μg/ml), as well as comparator agents, were determined against the panels of laboratory strains of P. aeruginosa and K. pneumoniae expressing over 55 diverse serine and metallo beta-lactamases. QPX7728 significantly enhanced the potency of antibiotics against the strains expressing Class A extended spectrum beta-lactamases (CTX-M, SHV, TEM, VEB, PER) and carbapenemases (KPC, SME, NMC-A, BKC-1), consistent with beta-lactamase inhibition demonstrated in biochemical assays. It also inhibits both plasmidic (CMY, FOX, MIR, DHA) and chromosomally encoded (P99, PDC, ADC) Class C beta-lactamases and Class D enzymes including carbapenemases such as OXA-48 from Enterobacteriaceae and OXA enzymes from Acinetobacter baumannii (OXA-23/24/72/58). QPX7728 is also a potent inhibitor of many class B metallo beta-lactamases (NDM, VIM, CcrA1, IMP, GIM but not SPM or L1). Addition of QPX7728 (4 μg/ml) reduced the MICs in a majority of strains to the level observed for the vector alone control, indicative of complete beta-lactamase inhibition. The ultra-broad-spectrum beta-lactamase inhibition profile makes QPX7728 a viable candidate for further development. Full Article
or Emergence of the phenicol exporter gene fexA in Campylobacter coli and Campylobacter jejuni of animal origin [Letters] By aac.asm.org Published On :: 2020-03-30T10:04:32-07:00 Bacteria of the genus Campylobacter are major foodborne pathogens which have become increasingly resistant to clinically important antimicrobial agents (1).... Full Article
or The Impact of Intrinsic Resistance Mechanisms on Potency of QPX7728, a New Ultra-Broad-Spectrum Beta-lactamase Inhibitor of Serine and Metallo Beta-Lactamases in Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii. [Mechanisms of Resis By aac.asm.org Published On :: 2020-03-30T10:04:32-07:00 QPX7728 is an ultra-broad-spectrum boronic acid beta-lactamase inhibitor that demonstrates inhibition of key serine and metallo beta-lactamases at a nano molar range in biochemical assays with purified enzymes. The broad-spectrum inhibitory activity of QPX7728 observed in biochemical experiments translates into enhancement of the potency of many beta-lactams against strains of target pathogens producing beta-lactamases. The impact of bacterial efflux and permeability on inhibitory potency were determined using isogenic panels of KPC-3 producing isogenic strains of K. pneumoniae and P. aeruginosa and OXA-23-producing strains of A. baumannii with various combinations of efflux and porin mutations. QPX7728 was minimally affected by multi-drug resistance efflux pumps in either Enterobacteriaceae, or in non-fermenters such as P. aeruginosa or A. baumannii. In P. aeruginosa, the potency of QPX7728 was further enhanced when the outer membrane is permeabilized. The potency of QPX7728 in P. aeruginosa is not affected by inactivation of the carbapenem porin OprD. While changes in OmpK36 (but not OmpK35) reduced the potency of QPX7728 (8-16-fold), QPX7728 (4 μg/ml) nevertheless completely reversed KPC-mediated meropenem resistance in strains with porin mutations, consistent with a lesser effect of these mutations on the potency of QPX7728 compared to other agents. The ultra-broad-spectrum beta-lactamase inhibition profile combined with enhancement of the activity of multiple beta-lactam antibiotics with varying sensitivity to the intrinsic resistance mechanisms of efflux and permeability indicate QPX7728 is a useful inhibitor for use with multiple beta-lactam antibiotics. Full Article
or OPC-167832, a novel carbostyril derivative with potent anti-tuberculosis activity as a DprE1 inhibitor [Pharmacology] By aac.asm.org Published On :: 2020-03-30T10:04:32-07:00 There is an urgent need for new, potent anti-tuberculosis (TB) drugs with novel mechanisms of action that can be included in new regimens to shorten the treatment period for TB. After screening a library of carbostyrils, we optimized 3, 4-dihydrocarbostyril derivatives and identified OPC-167832 as having potent anti-tuberculosis activity. The minimum inhibitory concentrations of the compound for Mycobacterium tuberculosis ranged from 0.00024 to 0.002 μg/mL. It had bactericidal activity against both growing and intracellular bacilli, and the frequency of spontaneous resistance for Mycobacterium tuberculosis H37Rv was less than 1.91 x 10-7. It did not show antagonistic effects with other anti-TB agents in an in vitro checkerboard assay. Whole genome and targeted sequencing of resistant isolates to OPC-167832 identified the decaprenylphosphoryl-β-D-ribose 2'-oxidase (DprE1), an essential enzyme for cell wall biosynthesis, as the target of this compound, and further studies demonstrated inhibition of the DprE1 enzymatic activity by OPC-167832. In a mouse model of chronic TB, OPC-167832 showed potent bactericidal activities starting at a dose of 0.625 mg/kg. Further, it exhibited significant combination effects in 2-drug combinations with delamanid, bedaquiline, or levofloxacin. Finally, 3-4 drug regimens comprised of delamanid and OPC-167832 as the core along with bedaquiline, moxifloxacin, or linezolid showed superior efficacy in reducing bacterial burden and preventing relapse compared to the standard treatment regimen. In summary, these results suggest that OPC-167832 is a novel and potent anti-TB agent and regimens containing OPC-167832 and new or repurposed anti-TB drugs may have the potential to shorten the duration of treatment for TB. Full Article
or Rapid-Release Griffithsin Fibers for the Dual Prevention of HSV-2 and HIV-1 Infections [Antiviral Agents] By aac.asm.org Published On :: 2020-03-30T10:04:32-07:00 The biologic Griffithsin (GRFT) has recently emerged as a candidate to safely prevent sexually transmitted infections (STIs) including human immunodeficiency virus (HIV-1) and herpes simplex virus 2 (HSV-2). However, to date, there are few delivery platforms that are available to effectively deliver biologics to the female reproductive tract (FRT). The goal of this work was to evaluate rapid-release polyethylene oxide (PEO), polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) fibers, that incorporate GRFT, in in vitro (HIV-1 and HSV-2) and in vivo (HSV-2) infection models. GRFT loading was determined via ELISA, and the bioactivity of GRFT fibers was assessed using in vitro HIV-1 pseudovirus and HSV-2 plaque assays. Afterwards, the efficacy of GRFT fibers was assessed in a murine model of lethal HSV-2 infection. Finally, murine reproductive tracts and vaginal lavages were evaluated for histology and cytokine expression, 24 and 72 hr after fiber administration, to determine safety. All rapid-release formulations achieved high levels of GRFT incorporation and were completely efficacious against in vitro HIV-1 and HSV-2 infections. Importantly, all rapid-release GRFT fibers provided potent protection in a murine model of HSV-2 infection. Moreover, histology and cytokine levels, evaluated from collected murine reproductive tissues and vaginal lavages treated with blank fibers, showed no increased cytokine production or histological aberrations, demonstrating the preliminary safety of rapid-release GRFT fibers in vaginal tissue. Full Article
or Evaluation of the effect of contezolid (MRX-I) on the corrected QTc interval: a randomized, double-blind, placebo- and positive-controlled crossover study in healthy Chinese volunteers [Clinical Therapeutics] By aac.asm.org Published On :: 2020-03-30T10:04:32-07:00 Contezolid (MRX-I), a new oxazolidinone, is an antibiotic in development for treating complicated skin and soft tissue infections (cSSTI) caused by resistant Gram-positive bacteria. This was a thorough QT study conducted in 52 healthy subjects who were administered oral contezolid at a therapeutic (800 mg) dose, a supratherapeutic (1600 mg) dose, placebo, and oral moxifloxacin 400 mg in 4 separate treatment periods. The pharmacokinetic profile of contezolid was also evaluated. Time-point analysis indicated that the upper bounds of the two-sided 90% confidence interval (CI) for placebo-corrected change-from-baseline QTc (QTc) were <10 ms for the contezolid therapeutic dose at each time point. The upper bound of the 90% CI for QTc were slightly more than 10 ms with the contezolid supratherapeutic dose at 3 and 4 hours postdose, and the prolongation effect on the QT/QTc interval was less than that of the positive control, moxifloxacin 400 mg. At 3 and 4 h after the moxifloxacin dose, the moxifloxacin group met the assay sensitivity criteria outlined in ICH Guidance E14 with having a lower confidence bound ≥5 ms. The results of a linear exposure-response model which were similar to that of a time point analysis demonstrated a slightly positive relationship between contezolid plasma levels and QTcF interval with a slope of 0.227 ms per mg/L (90% CI: 0.188 to 0.266). In summary, contezolid did not prolong the QT interval at a therapeutic dose and may have a slight effect on QT interval prolongation at a supratherapeutic dose. Full Article
or Efficacy of bedaquiline, alone or in combination with imipenem, against Mycobacterium abscessus in C3HeB/FeJ mice [Experimental Therapeutics] By aac.asm.org Published On :: 2020-04-06T08:49:26-07:00 Mycobacterium abscessus lung infections remain difficult to treat. Recent studies have recognized the power of new combinations of antibiotics such as bedaquiline and imipenem although in vitro data have questioned this combination. We report that the efficacy of the bedaquiline plus imipenem treatment relies essentially on the activity of bedaquiline in a C3HeB/FeJ mice model of infection with a rough variant of M. abscessus. The addition of imipenem contributed at clearing the infection in the spleen. Full Article
or MgrB inactivation is responsible for acquired resistance to colistin in Enterobacter hormaechei subsp. steigerwaltii [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-04-06T08:49:26-07:00 Multidrug resistant strains belonging to the Enterobacter cloacae complex (ECC) group, and especially those belonging to clusters C-III, C-IV and C-VIII, have increasingly emerged as a leading cause of healthcare-associated infections, with colistin used as one of the last line of treatment. However, colistin-resistant ECC strains have emerged. The aim of this study was to prove that MgrB, the negative regulator of PhoP/PhoQ two-component regulatory system, is involved in colistin resistance in ECC of cluster C-VIII, formerly referred to as Enterobacter hormaechei subsp. steigerwaltii. An in vitro mutant (Eh22-Mut) was selected from a clinical isolate of Eh22. The sequencing analysis of its mgrB gene showed the presence of one nucleotide deletion leading to the formation of a truncated protein of six instead of 47 amino acids. Wild-type mgrB gene from Eh22, as well as that of a clinical strain of Klebsiella pneumoniae used as controls, were cloned and the corresponding recombinant plasmids were used for complementation assays. Results showed a fully restored susceptibility to colistin, and confirmed for the first time that mgrB gene expression plays a key role in acquired resistance to colistin in ECC strains. Full Article
or Novel peptide from commensal Staphylococcus simulans blocks MRSA quorum sensing and protects host skin from damage [Mechanisms of Action] By aac.asm.org Published On :: 2020-04-06T08:49:25-07:00 Recent studies highlight the abundance of commensal coagulase-negative staphylococci (CoNS) on healthy skin. Evidence suggests that CoNS actively shape the skin immunological and microbial milieu to resist colonization or infection by opportunistic pathogens, including methicillin resistant Staphylococcus aureus (MRSA), in a variety of mechanisms collectively termed colonization resistance. One potential colonization resistance mechanism is the application of quorum sensing, also called the Accessory Gene Regulator (agr) system, which is ubiquitous among staphylococci. Common and rare CoNS make autoinducing peptides (AIPs) that function as MRSA agr inhibitors, protecting the host from invasive infection. In a screen of CoNS spent media we found that Staphylococcus simulans, a rare human skin colonizer and frequent livestock colonizer, released potent inhibitors of all classes of MRSA agr signaling. We identified three S. simulans agr classes, and have shown intraspecies cross-talk between non-cognate S. simulans agr types for the first time. The S. simulans AIP-I structure was confirmed, and the novel AIP-II and AIP-III structures were solved via mass spectrometry. Synthetic S. simulans AIPs inhibited MRSA agr signaling with nanomolar potency. S. simulans in competition with MRSA reduced dermonecrotic and epicutaneous skin injury in murine models. Addition of synthetic AIP-I also effectively reduced MRSA dermonecrosis and epicutaneous skin injury in murine models. These results demonstrate potent anti-MRSA quorum sensing inhibition by a rare human skin commensal, and suggest that cross-talk between CoNS and MRSA may be important in maintaining healthy skin homeostasis and preventing MRSA skin damage during colonization or acute infection. Full Article
or Pharmacodynamics of Cefepime Combined with the Novel Extended-Spectrum Beta Lactamase (ESBL) Inhibitor Enmetazobactam for Murine Pneumonia caused by ESBL-Producing Klebsiella pneumoniae [Pharmacology] By aac.asm.org Published On :: 2020-04-06T08:49:25-07:00 Klebsiella pneumoniae that produce extended spectrum beta lactamases (ESBLs) are a persistent public health threat. There are relatively few therapeutic options and there is undue reliance on carbapenems. Alternative therapeutic options are urgently required. A combination of cefepime and the novel beta lactamase inhibitor enmetazobactam is being developed for treatment of serious infections caused by ESBL-producing organisms. The pharmacokinetics-pharmacodynamics (PK-PD) of cefepime-enmetazobactam against ESBL-producing K. pneumoniae was studied in a neutropenic murine pneumonia model. Dose ranging studies were performed. Dose fractionation studies were performed to define the relevant PD index for the inhibitor. The partitioning of cefepime and enmetazobactam into the lung was determined by comparing area under the concentration time curve (AUC) in plasma and epithelial lining fluid. The magnitude of drug exposure for cefepime-enmetazobactam required for logarithmic killing in the lung was defined using 3 ESBL-producing strains. Cefepime 100 mg/kg q8h i.v. had minimal antimicrobial effect. When this background regimen of cefepime was combined with enmetazobactam half-maximal effect was induced with enmetazobactam 4.71 mg/kg q8h i.v. The dose fractionation study suggest both fT>threshold and fAUC:MIC are potentially relevant PD indices. The AUCELF:AUCplasma for cefepime and enmetazobactam was 73.4% and 61.5%, respectively. A ≥2-log kill in the lung was achieved with a plasma and ELF cefepime fT>MIC of ≥20% and enmetazobactam fT>2 mg/L of ≥20% of the dosing interval. These data and analyses provide the underpinning evidence for the combined use of cefepime and enmetazobactam for nosocomial pneumonia. Full Article
or Oral Fosfomycin Treatment for Enterococcal Urinary Tract Infections in a Dynamic In Vitro Model [Pharmacology] By aac.asm.org Published On :: 2020-04-06T08:49:25-07:00 There are limited treatment options for enterococcal urinary tract infections, especially vancomycin-resistant Enterococcus (VRE). Oral fosfomycin is a potential option, although limited data are available guiding dosing and susceptibility. We undertook pharmacodynamic profiling of fosfomycin against E. faecalis and E. faecium isolates using a dynamic in vitro bladder infection model. Eighty-four isolates underwent fosfomycin agar dilution susceptibility testing (E. faecalis MIC50/90 32/64 μg/mL; E. faecium MIC50/90 64/128 μg/mL). Sixteen isolates (including E. faecalis ATCC 29212 and E. faecium ATCC 35667) were chosen to reflect the MIC range and tested in the bladder infection model with synthetic human urine (SHU). Under drug-free conditions, E. faecium demonstrated greater growth restriction in SHU compared to E. faecalis (E. faecium maximal growth 5.8 ± 0.6 log10 CFU/mL; E. faecalis 8.0 ± 1.0 log10 CFU/mL). Isolates were exposed to high and low fosfomycin urinary concentrations after a single dose, and two-doses given daily with low urinary exposure. Simulated concentrations closely matched the target (bias 2.3%). E. faecalis isolates required greater fosfomycin exposure for 3 log10 kill from the starting inoculum compared with E. faecium. The fAUC0-72/MIC and f%T > MIC0-72 for E. faecalis was 672 and 70%, compared to 216 and 51% for E. faecium, respectively. There was no rise in fosfomycin MIC post-exposure. Two doses of fosfomycin with low urinary concentrations resulted in equivalent growth inhibition to a single dose with high urinary concentrations. With this urinary exposure, fosfomycin was effective in promoting suppression of regrowth (>3 log10 kill) in the majority of isolates. Full Article
or Imipenem population pharmacokinetics: therapeutic drug monitoring data collected in critically ill patients with or without extracorporeal membrane oxygenation [Pharmacology] By aac.asm.org Published On :: 2020-04-06T08:49:26-07:00 Carbapenem pharmacokinetic profiles are significantly changed in critically ill patients because of the drastic variability of the patients' physiological parameters. Published population PK studies have mainly focused on specific diseases and the majority of these studies had small sample sizes. The aim of this study was to develop a population PK model of imipenem in critically ill patients that estimated the influence of various clinical and biological covariates and the use of Extracorporeal Membrane Oxygenation (ECMO) and Continuous Renal Replacement Therapy (CRRT). A two-compartment population PK model with Creatinine clearance (CrCL), body weight (WT), and ECMO as fixed effects was developed using the non-linear mixed effect model (NONMEM). A Monte Carlo simulation was performed to evaluate various dosing schemes and different levels of covariates based on the pharmacokinetic/pharmacodynamic index (f%T>MIC) for the range of clinically relevant minimum inhibitory concentrations(MICs). The results showed that there may be insufficient drug use in the clinical routine drug dose regimen, and 750mg Q6h could achieve a higher treatment success rate. The blood concentrations of imipenem in ECMO patients were lower than that of non-ECMO patients, therefore dosage may need to be increased. The dosage may need adjustment for patients with CrCL ≤ 70ml/min, but dose should be lowered carefully to avoid the insufficient drug exposure. Dose adjustment is not necessary for patients within the WT ranging from 50-80 kg. Due to the large variation in PK profile of imipenem in critically ill patients, TDM should be carried out to optimize drug regimens. Full Article
or Repurposing the antiamoebic drug diiodohydroxyquinoline for treatment of Clostridioides difficile infections [Experimental Therapeutics] By aac.asm.org Published On :: 2020-04-06T08:49:25-07:00 Clostridioides difficile, the leading cause of nosocomial infections, is an urgent health threat worldwide. The increased incidence and severity of disease, the high recurrence rates, and the dearth of effective anticlostridial drugs have created an urgent need for new therapeutic agents. In an effort to discover new drugs for treatment of Clostridioides difficile infections (CDIs), we investigated a panel of FDA-approved antiparasitic drugs against C. difficile and identified diiodohydroxyquinoline (DIHQ), an FDA-approved oral antiamoebic drug. DIHQ exhibited potent activity against 39 C. difficile isolates, inhibiting growth of 50% and 90% of these isolates at the concentrations of 0.5 μg/mL and 2 μg/mL, respectively. In a time-kill assay, DIHQ was superior to vancomycin and metronidazole, reducing a high bacterial inoculum by 3-log10 within six hours. Furthermore, DIHQ reacted synergistically with vancomycin and metronidazole against C. difficile in vitro. Moreover, at subinhibitory concentrations, DIHQ was superior to vancomycin and metronidazole in inhibiting two key virulence factors of C. difficile, toxin production and spore formation. Additionally, DIHQ did not inhibit growth of key species that compose the host intestinal microbiota, such as Bacteroides, Bifidobacterium and Lactobacillus spp. Collectively, our results indicate that DIHQ is a promising anticlostridial drug that warrants further investigation as a new therapeutic for CDIs. Full Article
or Development of probiotic formulations for oral candidiasis prevention: Gellan gum as a carrier to deliver Lactobacillus paracasei 28.4 [Experimental Therapeutics] By aac.asm.org Published On :: 2020-04-06T08:49:25-07:00 Probiotics might provide an alternative approach for the control of oral candidiasis. However, studies on the antifungal activity of probiotics in the oral cavity are based on the consumption of yogurt or other dietary products, and there is a necessary to use appropriate biomaterials and specific strains to obtain probiotic formulations targeting local oral administration. In this study, we impregnated gellan gum, a natural biopolymer used as a food-additive, with a probiotic and investigated its antifungal activity against Candida albicans. Lactobacillus paracasei 28.4, a strain recently isolated from the oral cavity of a caries-free individual, was incorporated in several concentrations of gellan gum (0.6% to 1%). All tested concentrations could incorporate L. paracasei cells while maintaining bacterial viability. Probiotic/gellan formulations were stable for 7 days when stored at room temperature or 4°C. Long-term storage of bacteria-impregnated gellan gum was achieved when L. paracasei 28.4 was lyophilized. The probiotic/gellan formulations provided a release of L. paracasei cells over 24 hours that was sufficient to inhibit the growth of C. albicans with effects dependent on the cell concentrations incorporated into gellan gum. The probiotic/gellan formulations also had inhibitory activity against Candida spp. biofilms by reducing the number of Candida spp. cells (p < 0.0001), decreasing the total biomass (p = 0.0003), and impairing hyphae formation (p = 0.0002), compared to the control group which received no treatment. Interestingly, probiotic formulation of 1% w/v gellan gum provided an oral colonization of L. paracasei in mice with approximately 6 log of CFU/mL after 10 days. This formulation inhibited the C. albicans growth (p < 0.0001), prevented the development of candidiasis lesions (p = 0.0013), and suppressed inflammation (p = 0.0006) when compared to the mice not treated in the microscopic analysis of the tongue dorsum. These results indicate that gellan gum is a promising biomaterial and can be used as a carrier system to promote oral colonization for probiotics that prevent oral candidiasis. Full Article
or The Added Value of Longitudinal Imaging for Preclinical In vivo Efficacy Testing of Therapeutic Compounds against Cerebral Cryptococcosis [Experimental Therapeutics] By aac.asm.org Published On :: 2020-04-13T08:15:30-07:00 Brain infections with Cryptococcus neoformans are associated with significant morbidity and mortality. Cryptococcosis typically presents as meningoencephalitis or fungal mass lesions called cryptococcomas. Despite frequent in vitro discoveries of promising novel antifungals, the clinical need for drugs that can more efficiently treat these brain infections remains. A crucial step in drug development is the evaluation of in vivo drug efficacy in animal models. This mainly relies on survival studies or post-mortem analyses in large groups of animals, but these techniques only provide information on specific organs of interest at predefined time points. In this proof-of-concept study, we validated the use of non-invasive preclinical imaging to obtain longitudinal information on the therapeutic efficacy of amphotericin B or fluconazole monotherapy in meningoencephalitis and cryptococcoma mouse models. Bioluminescence imaging (BLI) enabled the rapid in vitro and in vivo evaluation of drug efficacy while complementary high-resolution anatomical information obtained by magnetic resonance imaging (MRI) of the brain allowed a precise assessment of the extent of infection and lesion growth rates. We demonstrated a good correlation between both imaging readouts and the fungal burden in various organs. Moreover, we identified potential pitfalls associated with the interpretation of therapeutic efficacy based solely on post-mortem studies, demonstrating the added value of this non-invasive dual imaging approach compared to standard mortality curves or fungal load endpoints. This novel preclinical imaging platform provides insights in the dynamic aspects of the therapeutic response and facilitates a more efficient and accurate translation of promising antifungal compounds from bench to bedside. Full Article
or Safety, Pharmacokinetics, and Drug:Drug Interaction Potential of Intravenous Durlobactam, a {beta}-lactamase Inhibitor, in Healthy Subjects [Pharmacology] By aac.asm.org Published On :: 2020-04-13T08:15:30-07:00 Durlobactam (DUR, also known as ETX2514) is a novel β-lactamase inhibitor with broad activity against Ambler class A, C, and D β-lactamases. Addition of DUR to sulbactam (SUL) in vitro restores SUL activity against clinical isolates of Acinetobacter baumannii. The safety and pharmacokinetics (PK) of DUR alone and with SUL and/or imipenem/cilastatin (IMI/CIL) were evaluated in healthy subjects. This was a randomized, placebo-controlled study. In Part A, subjects including an elderly cohort (DUR 1 g) received single ascending doses of DUR 0.25-8 g. In Part B, multiple ascending dose of DUR 0.25-2 g were administered every 6 hours (q6h) for 29 doses. In Parts C and D, the drug-drug interaction (DDI) potential, including safety, of DUR (1 g) with SUL (1 g) and/or IMI/CIL (0.5/0.5 g) was investigated after single and multiple doses. Plasma and urine concentrations of DUR, SUL, and IMI/CIL were determined. Among 124 subjects, DUR was generally safe and well tolerated either alone or in combination with SUL and/or IMI/CIL. After single and multiple doses, DUR demonstrated linear dose proportional exposure across the studied dose ranges. Renal excretion was a predominant clearance mechanism. No drug:drug interaction potential was identified between DUR and SUL and/or IMI/CIL. SUL-DUR, 1 g (of each component) administered q6h with a 3 hour IV infusion, is under development for the treatment of serious infections due to A. baumannii. Full Article
or Novel ionophores active against La Crosse virus identified through rapid antiviral screening [Antiviral Agents] By aac.asm.org Published On :: 2020-04-13T08:15:30-07:00 Bunyaviruses are significant human pathogens, causing diseases ranging from hemorrhagic fevers to encephalitis. Among these viruses, La Crosse virus (LACV), a member of the California serogroup, circulates in the eastern and midwestern United States. While LACV infection is often asymptomatic, dozens of cases of encephalitis are reported yearly. Unfortunately, no antivirals have been approved to treat LACV infection. Here, we developed a method to rapidly test potential antivirals against LACV infection. From this screen, we identified several potential antiviral molecules, including known antivirals. Additionally, we identified many novel antivirals that exhibited antiviral activity without affecting cellular viability. Valinomycin, a potassium ionophore, was among our top targets. We found that valinomycin exhibited potent anti-LACV activity in multiple cell types in a dose-dependent manner. Valinomycin did not affect particle stability or infectivity, suggesting that it may preclude virus replication by altering cellular potassium ions, a known determinant of LACV entry. We extended these results to other ionophores and found that the antiviral activity of valinomycin extended to other viral families including bunyaviruses (Rift Valley fever virus, Keystone virus), enteroviruses (Coxsackievirus, rhinovirus), flavirivuses (Zika), and coronaviruses (HCoV-229E and MERS-CoV). In all viral infections, we observed significant reductions in virus titer in valinomycin-treated cells. In sum, we demonstrate the importance of potassium ions to virus infection, suggesting a potential therapeutic target to disrupt virus replication.Importance No antivirals are approved for the treatment of bunyavirus infection. The ability to rapidly screen compounds and identify novel antivirals is one means to accelerate drug discovery for viruses with no approved treatments. We used this approach to screen hundreds of compounds against La Crosse virus, an emerging bunyavirus that causes significant disease, including encephalitis. We identified several known and previously unidentified antivirals. We focused on a potassium ionophore, valinomycin, due to its promising in vitro antiviral activity. We demonstrate that valinomycin, as well as a selection of other ionophores, exhibits activity against La Crosse virus as well as several other distantly related bunyaviruses. We finally observe that valinomycin has activity against a wide array of human viral pathogens, suggesting that disrupting potassium ion homeostasis with valinomycin may be a potent host pathway to target to quell virus infection. Full Article
or Phase 2a Pharmacokinetic, Safety, and Exploratory Efficacy Evaluation of Oral Gepotidacin (GSK2140944) in Female Participants With Uncomplicated Urinary Tract Infection (Acute Uncomplicated Cystitis) [Clinical Therapeutics] By aac.asm.org Published On :: 2020-04-13T08:15:31-07:00 Gepotidacin, a triazaacenaphthylene bacterial type II topoisomerase inhibitor, is in development for treatment of uncomplicated urinary tract infection (uUTI). This Phase 2a study in female participants with uUTI evaluated the pharmacokinetics (primary objective), safety, and exploratory efficacy of gepotidacin. Eligible participants (N = 22) were confined to the clinic at baseline, received oral gepotidacin 1,500 mg twice daily for 5 days (on-therapy; Days 1 to 5), and returned to the clinic for test-of-cure (Days 10 to 13) and follow-up (Day 28±3). Pharmacokinetic, safety, clinical, and microbiological assessments were performed. Maximum plasma concentrations were observed approximately 1.5 to 2 hours postdose. Steady state was attained by Day 3. Urinary exposure over the dosing interval increased from 3,742 μg.h/ml (Day 1) to 5,973 μg.h/ml (Day 4), with trough concentrations of 322 to 352 μg/ml from Day 3 onward. Gepotidacin had an acceptable safety-risk profile with no treatment-limiting adverse events and no clinically relevant safety trends. Clinical success was achieved in 19 (86%) and 18 (82%) of 22 participants at test-of-cure and follow-up, respectively. Eight participants had a qualifying baseline uropathogen (growth; ≥105 CFU/ml). A therapeutic (combined clinical and microbiological [no growth; <103 CFU/ml]) successful response was achieved in 6 (75%) and 5 (63%) of 8 participants at test-of-cure and follow-up, respectively. Plasma area under the free-drug concentration-time curve over 24 hours at steady state divided by the MIC (fAUC0-24/MIC) and urine AUC0-24/MIC ranged from 6.99 to 90.5 and 1,292 to 121,698, respectively. Further evaluation of gepotidacin in uUTI is warranted. (NCT03568942) Full Article
or A novel deletion mutation in pmrB contributes to concurrent colistin resistance in carbapenem resistant E. coli ST 405 of clinical origin [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-04-13T08:15:30-07:00 We report the first clinical Escherichia. coli strain EC3000 with concomitant chromosomal colistin and carbapenem resistance. A novel in-frame deletion, 6-11(RPISLR), in pmrB contributing to colistin resistance was verified using recombinant DNA techniques. Although decreased fitness compared to the wild-type (WT) strain or EC3000 revertant (chromosomal replacement of WT pmrB in EC3000), a portion of serially passaged EC3000 strains preserving colistin resistance without selective pressure raises the concern for further spread. Full Article
or Therapeutic efficacy of a mixed formulation of conventional and PEGylated liposomes containing meglumine antimoniate, combined with allopurinol, in dogs naturally infected with Leishmania infantum [Experimental Therapeutics] By aac.asm.org Published On :: 2020-04-13T08:15:31-07:00 Treatment of dogs naturally infected with Leishmania infantum using meglumine antimoniate (MA) encapsulated in conventional liposomes (LC) in association with allopurinol has been previously reported to promote marked reduction in the parasite burden in the main infection sites. Here, a new assay in naturally infected dogs was performed using a novel liposome formulation of MA consisting of a mixture of conventional and long-circulating (PEGylated) liposomes (LCP), with expected broader distribution among affected tissues of the mononuclear phagocyte system. Experimental groups of naturally infected dogs were as follows: LCP+Allop, receiving LCP intravenously as 2 cycles of 6 doses (6.5 mg Sb/kg/dose) at 4-day intervals, plus allopurinol at 30 mg/kg/12 h p.o. during 130 days; LC+Allop, receiving LC intravenously as 2 cycles of 6 doses (6.5 mg Sb/kg/dose), plus allopurinol during 130 days; Allop, treated with allopurinol only; non-treated control. Parasite loads were evaluated by quantitative PCR in liver, spleen and bone marrow and by immunohistochemistry in the ear skin, before, just after treatment and 4 months later. LCP+Allop and LC+Allop groups, but not the Allop group, showed significant suppression of the parasites in the liver, spleen and bone marrow 4 months after treatment, compared to the pre-treatment period or the control group. Only LCP+Allop group showed significantly lower parasite burden in the skin, in comparison to the control group. On the basis of clinical staging and parasitological evaluations, LCP formulation exhibited a more favorable therapeutic profile, when compared to LC one, being therefore promising for treatment of canine visceral leishmaniasis. Full Article
or A genotype-phenotype correlation study of SHV {beta}-lactamases - new insight into SHV resistance profiles [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-04-13T08:15:31-07:00 The SHV β-lactamases (BLs) have undergone strong allele diversification that changed their substrate specificities. Based on 147 NCBI entries for SHV alleles, in silico mathematical models predicted five positions as relevant for the β-lactamase inhibitor (BLI) resistant (2br) phenotype, 12 as relevant for the extended-spectrum BL (ESBL) (2be) phenotype, and two positions were related to solely the narrow spectrum (2b) phenotype. These positions and additional 6 positions described in other studies (including one promoter mutation), were systematically substituted and investigated for their substrate specificities in a BL-free E. coli background, representing, to our knowledge, the most comprehensive substrate and substitution analysis for SHV alleles to date. An in vitro analysis confirmed the essentiality of the positions 238 and 179 for the 2be phenotype and 69 for the 2br phenotype. The substitutions E240K and E240R, which do not occur alone in known 2br SHV variants, led to a 2br phenotype, indicating a latent BLI-resistance potential of these substitutions. The substitutions M129V, A234G, S271I and R292Q conferred latent resistance to cefotaxime. In addition, 7 positions that were found to be not always associated with the ESBL phenotype resulted in increased resistance to ceftaroline. We also observed that coupling of a strong promoter (IS26) to a A146V mutant with the 2b phenotype resulted in a highly increased resistance to BLIs, cefepime and ceftaroline but not to 3rd generation cephalosporins, indicating that SHV enzymes represent an underestimated risk for empirical therapies that use piperacillin/tazobactam or cefepime to treat different infectious diseases caused by gram-negatives. Full Article