3

Synthesis and structural characterization of a hydrated sodium–caesium tetra­cosa­tungstate(VI), Na5Cs19[W24O84]·21H2O

Crystal formation of penta­sodium nona­deca­cesium tetra­cosa­tungstate(VI) heneikosahydrate, Na5Cs19[W24O84]·21H2O, was successfully achieved by the conversion of [H2W12O42]10− through the addition of excess Cs+. The crystal structure comprising the toroidal isopolyoxidometalate is presented, as well as its Raman spectrum. Na5Cs19(H2O)21W24O84 crystallizes in the rhombohedral space group Roverline{3} with an obverse centering. The title compound represents the addition of a new member to the isopolytungstate family with mixed alkali counter-ions and contains rarely observed five-coordinate tungsten(VI) atoms in the [W24O84]24− anion (site symmetry C3i) arising from the conversion mediated by Cs+ counter-ions.




3

Crystal structure of 1-(1,3-benzo­thia­zol-2-yl)-3-(4-bromo­benzo­yl)thio­urea

The chemical reaction of 4-bromo­benzoyl­chloride and 2-amino­thia­zole in the presence of potassium thio­cyanate yielded a white solid formulated as C15H10BrN3OS2, which consists of 4-bromo­benzamido and 2-benzo­thia­zolyl moieties connected by a thio­urea group. The 4-bromo­benzamido and 2-benzo­thia­zolyl moieties are in a trans conformtion (sometimes also called s-trans due to the single bond) with respect to the N—C bond. The dihedral angle between the mean planes of the 4-bromo­phenyl and the 2-benzo­thia­zolyl units is 10.45 (11)°. The thio­urea moiety, —C—NH—C(=S) —NH— fragment forms a dihedral angle of 8.64 (12)° with the 4-bromo­phenyl ring and is almost coplanar with the 2-benzo­thia­zolyl moiety, with a dihedral angle of 1.94 (11)°. The mol­ecular structure is stabilized by intra­molecular N—H⋯O hydrogen bonds, resulting in the formation of an S(6) ring. In the crystal, pairs of adjacent mol­ecules inter­act via inter­molecular hydrogen bonds of type C—H⋯N, C—H⋯S and N—H⋯S, resulting in mol­ecular layers parallel to the ac plane.




3

Structural characterization of the supra­molecular complex between a tetra­quinoxaline-based cavitand and benzo­nitrile

The structural characterization is reported of the supra­molecular complex between the tetra­quinoxaline-based cavitand 2,8,14,20-tetra­hexyl-6,10:12,16:18,22:24,4-O,O'-tetra­kis­(quinoxaline-2,3-di­yl)calix[4]resorcinarene (QxCav) with benzo­nitrile. The complex, of general formula C84H80N8O8·2C7H5N, crystallizes in the space group Poverline{1} with two independent mol­ecules in the asymmetric unit, displaying very similar geometrical parameters. For each complex, one of the benzo­nitrile mol­ecules is engulfed inside the cavity, while the other is located among the alkyl legs at the lower rim. The host and the guests mainly inter­act through weak C—H⋯π, C—H⋯N and dispersion inter­actions. These inter­actions help to consolidate the formation of supra­molecular chains running along the crystallographic b-axis direction.




3

Synthesis and crystal structure of the cluster (Et4N)[(Tp*)MoFe3S3(μ3-NSiMe3)(N3)3]

The title compound, tetra­ethyl­ammonium tri­azido­tri-μ3-sulfido-[μ3-(tri­methyl­sil­yl)aza­nediido][tris­(3,5-di­methyl­pyrazol-1-yl)hydro­borato]triiron(+2.33)molybdenum(IV), (C8H20N)[Fe3MoS3(C15H22BN6)(C3H9NSi)(N3)3] or (Et4N)[(Tp*)MoFe3S3(μ3-NSiMe3)(N3)3] [Tp* = tris­(3,5-di­methyl­pyrazol-1-yl)hydro­bor­ate(1−)], crystallizes as needle-like black crystals in space group Poverline{1}. In this cluster, the Mo site is in a distorted octa­hedral coordination model, coordinating three N atoms on the Tp* ligand and three μ3-bridging S atoms in the core. The Fe sites are in a distorted tetra­hedral coordination model, coordinating two μ3-bridging S atoms, one μ3-bridging N atom from Me3SiN2−, and another N atom on the terminal azide ligand. This type of heterometallic and heteroleptic single cubane cluster represents a typical example within the Mo–Fe–S cluster family, which may be a good reference for understanding the structure and function of the nitro­genase FeMo cofactor. The residual electron density of disordered solvent mol­ecules in the void space could not be reasonably modeled, thus the SQUEEZE [Spek (2015). Acta Cryst. C71, 9–18] function was applied. The solvent contribution is not included in the reported mol­ecular weight and density.




3

The crystal structures and Hirshfeld surface analysis of three new bromo-substituted 3-methyl-1-(phenyl­sulfon­yl)-1H-indole derivatives

Three new 1H-indole derivatives, namely, 2-(bromo­meth­yl)-3-methyl-1-(phenyl­sulfon­yl)-1H-indole, C16H14BrNO2S, (I), 2-[(E)-2-(2-bromo-5-meth­oxy­phen­yl)ethen­yl]-3-methyl-1-(phenyl­sulfon­yl)-1H-indole, C24H20BrNO3S, (II), and 2-[(E)-2-(2-bromo­phen­yl)ethen­yl]-3-methyl-1-(phenyl­sulfon­yl)-1H-indole, C23H18BrNO2S, (III), exhibit nearly orthogonal orientations of their indole ring systems and sulfonyl-bound phenyl rings. Such conformations are favourable for inter­molecular bonding involving sets of slipped π–π inter­actions between the indole systems and mutual C—H⋯π hydrogen bonds, with the generation of two-dimensional monoperiodic patterns. The latter are found in all three structures, in the form of supra­molecular columns with every pair of successive mol­ecules related by inversion. The crystal packing of the compounds is additionally stabilized by weaker slipped π–π inter­actions between the outer phenyl rings (in II and III) and by weak C—H⋯O, C—H⋯Br and C—H⋯π hydrogen bonds. The structural significance of the different kinds of inter­actions agree with the results of a Hirshfeld surface analysis and the calculated inter­action energies. In particular, the largest inter­action energies (up to −60.8 kJ mol−1) are associated with pairing of anti­parallel indole systems, while the energetics of weak hydrogen bonds and phenyl π–π inter­actions are comparable and account for 13–34 kJ mol−1.




3

Synthesis, crystal structure and thermal properties of a new polymorphic modification of diiso­thio­cyanato­tetra­kis­(4-methyl­pyridine)cobalt(II)

The title compound, [Co(NCS)2(C6H7N)4] or Co(NCS)2(4-methyl­pyridine)4, was prepared by the reaction of Co(NCS)2 with 4-methyl­pyridine in water and is isotypic to one of the polymorphs of Ni(NCS)2(4-methyl­pyridine)4 [Kerr & Williams (1977). Acta Cryst. B33, 3589–3592 and Soldatov et al. (2004). Cryst. Growth Des. 4, 1185–1194]. Comparison of the experimental X-ray powder pattern with that calculated from the single-crystal data proves that a pure phase has been obtained. The asymmetric unit consists of one CoII cation, two crystallographically independent thio­cyanate anions and four independent 4-meth­yl­pyridine ligands, all located in general positions. The CoII cations are sixfold coordinated to two terminally N-bonded thio­cyanate anions and four 4-methyl­pyridine coligands within slightly distorted octa­hedra. Between the complexes, a number of weak C—H⋯N and C—H⋯S contacts are found. This structure represent a polymorphic modification of Co(NCS)2(4-methyl­pyridine)4 already reported in the CCD [Harris et al. (2003). NASA Technical Reports, 211890]. In contrast to this form, the crystal structure of the new polymorph shows a denser packing, indicating that it is thermodynamically stable at least at low temperatures. Thermogravimetric and differential thermoanalysis reveal that the title compound starts to decomposes at about 100°C and that the coligands are removed in separate steps without any sign of a polymorphic transition before decomposition.




3

Synthesis and crystal structures of two racemic 2-heteroaryl-3-phenyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-ones

3-Phenyl-2-(thio­phen-3-yl)-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-one (C17H12N2OS2, 1) and 2-(1H-indol-3-yl)-3-phenyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-one 0.438-hydrate (C21H15N3OS·0.438H2O, 2) crystallize in space groups P21/n and C2/c, respectively. The asymmetric unit in each case is comprised of two parent mol­ecules, albeit of mixed chirality in the case of 1 and of similar chirality in 2 with the enanti­omers occupying the neighboring asymmetric units. Structure 2 also has water mol­ecules (partial occupancies) that form continuous channels along the b-axis direction. The thia­zine rings in both structures exhibit an envelope conformation. Inter­molecular inter­actions in 1 are defined only by C—H⋯O and C—H⋯N hydrogen bonds between crystallographically independent mol­ecules. In 2, hydrogen bonds of the type N—H⋯O between independent mol­ecules and C—H⋯N(π) type, and π–π stacking inter­actions between the pyridine rings of symmetry-related mol­ecules are observed.




3

Syntheses and crystal structures of the five- and sixfold coordinated complexes diiso­seleno­cyanato­tris­(2-methyl­pyridine N-oxide)cobalt(II) and diiso­seleno­cyanato­tetra­kis­(2-methyl­pyridine N-

The reaction of CoBr2, KNCSe and 2-methyl­pyridine N-oxide (C6H7NO) in ethanol leads to the formation of crystals of [Co(NCSe)2(C6H7NO)3] (1) and [Co(NCSe)2(C6H7NO)4] (2) from the same reaction mixture. The asymmetric unit of 1 is built up of one CoII cation, two NCSe− iso­seleno­cyanate anions and three 2-methyl­pyridine N-oxide coligands, with all atoms located on general positions. The asymmetric unit of 2 consists of two cobalt cations, four iso­seleno­canate anions and eight 2-methyl­pyridine N-oxide coligands in general positions, because two crystallographically independent complexes are present. In compound 1, the CoII cations are fivefold coordinated to two terminally N-bonded anionic ligands and three 2-methyl­pyridine N-oxide coligands within a slightly distorted trigonal–bipyramidal coordination, forming discrete complexes with the O atoms occupying the equatorial sites. In compound 2, each of the two complexes is coordinated to two terminally N-bonded iso­seleno­cyanate anions and four 2-methyl­pyridine N-oxide coligands within a slightly distorted cis-CoN2O4 octa­hedral coordination geometry. In the crystal structures of 1 and 2, the complexes are linked by weak C—H⋯Se and C—H⋯O contacts. Powder X-ray diffraction reveals that neither of the two compounds were obtained as a pure crystalline phase.




3

Crystal structures of 1,1'-bis­(carb­oxy­meth­yl)-4,4'-bipyridinium derivatives

The crystal structures of 2-[1'-(carb­oxy­meth­yl)-4,4'-bi­pyridine-1,1'-diium-1-yl]acetate tetra­fluoro­borate, C14H13N2O4+·BF4− or (Hbcbpy)(BF4), and neutral 1,1'-bis­(carboxyl­atometh­yl)-4,4'-bi­pyridine-1,1'-diium (bcbpy), C14H20N2O8, are reported. The asymmetric unit of the (Hbcbpy)(BF4) consists of a Hbcbpy+ monocation, a BF4− anion, and one-half of a water mol­ecule. The BF4− anion is disordered. Two pyridinium rings of the Hbcbpy+ monocation are twisted at a torsion angle of 30.3 (2)° with respect to each other. The Hbcbpy monocation contains a carb­oxy­lic acid group and a deprotonated carboxyl­ate group. Both groups exhibit both a long and a short C—O bond. The cations are linked by inter­molecular hydrogen-bonding inter­actions between the carb­oxy­lic acid and the deprotonated carboxyl­ate group to give one-dimensional zigzag chains. The asymmetric unit of the neutral bcbpy consists of one-half of the bcbpy and two water mol­ecules. In contrast to the Hbcbpy+ monocation, the neutral bcbpy mol­ecule contains two pyridinium rings that are coplanar with each other and a carboxyl­ate group with similar C—O bond lengths. The mol­ecules are connected by inter­molecular hydrogen-bonding inter­actions between water mol­ecules and carboxyl­ate groups, forming a three-dimensional hydrogen-bonding network.




3

Crystal structure and Hirshfeld surface analysis of 6,6'-dimethyl-2,2'-bi­pyridine-1,1'-diium tetra­chlorido­cobaltate(II)

In the title mol­ecular salt, (C12H14N2)[CoCl4], the dihedral angle between the pyridine rings of the cation is 52.46 (9)° and the N—C—C—N torsion angle is −128.78 (14)°, indicating that the ring nitro­gen atoms are in anti-clinal conformation. The Cl—Co—Cl bond angles in the anion span the range 105.46 (3)–117.91 (2)°. In the extended structure, the cations and anions are linked by cation-to-anion N—H⋯Cl and C—H⋯Cl inter­actions, facilitating the formation of R44(18) and R44(20) ring motifs. Furthermore, the crystal structure features weak anion-to-cation Cl⋯π inter­actions [Cl⋯π = 3.4891 (12) and 3.5465 (12) Å]. Hirshfeld two-dimensional fingerprint plots revealed that the most significant inter­actions are Cl⋯H/H⋯Cl (45.5%), H⋯H (29.0%), Cl⋯C/C⋯Cl (7.8%), Cl⋯N/N⋯Cl (3.5%), Cl⋯Cl (1.4) and Co⋯H (1%) contacts.




3

A 1:1 flavone cocrystal with cyclic trimeric perfluoro-o-phenyl­enemercury

The title compound, systematic name tris­(μ2-perfluoro-o-phenyl­ene)(μ2-3-phenyl-4H-chromen-4-one)-triangulo-trimercury, [Hg3(C6F4)3(C15H10O2)], crystallizes in the monoclinic P21/n space group with one flavone (FLA) and one cyclic trimeric perfluoro-o-phenyl­enemercury (TPPM) mol­ecule per asymmetric unit. The FLA mol­ecule is located on one face of the TPPM acceptor and is linked in an asymmetric coordination of its carbonyl oxygen atom with two Hg centers of the TPPM macrocycle. The angular-shaped complexes pack in zigzag chains where they stack via two alternating TPPM–TPPM and FLA–FLA stacking patterns. The distance between the mean planes of the neighboring TPPM macrocycles in the stack is 3.445 (2) Å, and that between the benzo-γ-pyrone moieties of FLA is 3.328 (2) Å. The neighboring stacks are inter­digitated through the shortened F⋯F, CH⋯F and CH⋯π contacts, forming a dense crystal structure.




3

Crystal structures of four gold(I) complexes [AuL2]+[AuX2]− and a by-product (L·LH+)[AuBr2]− (L = substituted pyridine, X = Cl or Br)

Bis(2-methyl­pyridine)­gold(I) di­bromido­aurate(I), [Au(C6H7N)2][AuBr2], (1), crystallizes in space group C2/c with Z = 4. Both gold atoms lie on twofold axes and are connected by an aurophilic contact. A second aurophilic contact leads to infinite chains of alternating cations and anions parallel to the b axis, and the residues are further connected by a short H⋯Au contact and a borderline Br⋯Br contact. Bis(3-methyl­pyridine)­gold(I) di­bromido­aurate(I), [Au(C6H7N)2][AuBr2], (2), crystallizes in space group C2/m with Z = 2. Both gold atoms lie on special positions with symmetry 2/m and are connected by an aurophilic contact; all other atoms except for one methyl hydrogen lie in mirror planes. The extended structure is closely analogous to that of 1, although the structures are formally not isotypic. Bis(3,5-di­methyl­pyridine)­gold(I) di­chlor­ido­aurate(I), [Au(C7H9N)2][AuCl2], (3) crystallizes in space group Poverline{1} with Z = 2. The cation lies on a general position, and there are two independent anions in which the gold atoms lie on inversion centres. The cation and one anion associate via three short H⋯Cl contacts to form a ribbon structure parallel to the b axis; aurophilic contacts link adjacent ribbons. Bis(3,5-di­methyl­pyridine)­gold(I) di­bromido­aurate(I), [Au(C7H9N)2][AuBr2], (4) is isotypic to 3. Attempts to make similar compounds involving 2-bromo­pyridine led instead to 2-bromopyridinium di­bromido­aurate(I)–2-bromo­pyridine (1/1), (C5H5BrN)[AuBr2]·C5H4BrN, (5), which crystallizes in space group Poverline{1} with Z = 2; all atoms lie on general positions. The 2-bromo­pyridinium cation is linked to the 2-bromo­pyridine mol­ecule by an N—H⋯N hydrogen bond. Two formula units aggregate to form inversion-symmetric dimers involving Br⋯Br, Au⋯Br and H⋯Br contacts.




3

Crystal structure of tris­{N,N-diethyl-N'-[(4-nitro­phen­yl)(oxo)meth­yl]carbamimido­thio­ato}cobalt(III)

The synthesis, crystal structure, and a Hirshfeld surface analysis of tris­{N,N-diethyl-N'-[(4-nitro­phen­yl)(oxo)meth­yl]carbamimido­thio­ato}cobalt(III) conducted at 180 K are presented. The complex consists of three N,N-diethyl-N'-[(4-nitro­benzene)(oxo)meth­yl]carbamimido­thio­ato ligands, threefold sym­metric­ally bonded about the CoIII ion, in approximately octa­hedral coordination, which generates a triple of individually near planar metallacyclic (Co—S—C—N—C—O) rings. The overall geometry of the complex is determined by the mutual orientation of each metallacycle about the crystallographically imposed threefold axis [dihedral angles = 81.70 (2)°] and by the dihedral angles between the various planar groups within each asymmetric unit [metallacycle to benzene ring = 13.83 (7)°; benzene ring to nitro group = 17.494 (8)°]. The complexes stack in anti-parallel columns about the overline{3} axis of the space group (Poverline{3}), generating solvent-accessible channels along [001]. These channels contain ill-defined, multiply disordered, partial-occupancy solvent. Atom–atom contacts in the crystal packing predominantly (∼96%) involve hydrogen, the most abundant types being H⋯H (36.6%), H⋯O (31.0%), H⋯C (19.2%), H⋯N (4.8%), and H⋯S (4.4%).




3

Crystal structures of the isomeric dipeptides l-glycyl-l-me­thio­nine and l-me­thionyl-l-glycine

The oxidation of me­thionyl peptides can contribute to increased biological (oxidative) stress and development of various inflammatory diseases. The conformation of peptides has an important role in the mechanism of oxidation and the inter­mediates formed in the reaction. Herein, the crystal structures of the isomeric dipeptides Gly-Met (Gly = glycine and Met = me­thio­nine) and Met-Gly, both C7H14N2O3S, are reported. Both mol­ecules exist in the solid state as zwitterions with nominal proton transfer from the carb­oxy­lic acid to the primary amine group. The Gly-Met mol­ecule has an extended backbone structure, while Met-Gly has two nearly planar regions kinked at the C atom bearing the NH3 group. In the crystals, both structures form extensive three-dimensional hydrogen-bonding networks via N—H⋯O and bifurcated N—H⋯(O,O) hydrogen bonds having N⋯O distances in the range 2.6619 (13)–2.8513 (13) Å for Gly-Met and 2.6273 (8)–3.1465 (8) Å for Met-Gly.




3

Synthesis and crystal structure of bis­(2-aminobenzimidazolium) catena-[metavanadate(V)]

The structure of polymeric catena-poly[2-amino­benzimidazolium [[dioxidovanadium(V)]-μ-oxido]], {(C7H8N3)2[V2O6]}n, has monoclinic symmetry. The title compound is of inter­est with respect to anti­cancer activity. In the crystal structure, infinite linear zigzag vanadate (V2O6)2− chains, constructed from corner-sharing VO4 tetra­hedra and that run parallel to the a axis, are present. Two different protonated 2-amino­benzimidazole mol­ecules are located between the (V2O6)2– chains and form classical N—H⋯O hydrogen bonds with the vanadate oxygen atoms, which contribute to the cohesion of the structure.




3

Crystal structure of hexa­chloro­thallate within a caesium chloride–phospho­tungstate lattice Cs9(TlCl6)(PW12O40)2·9CsCl

Crystal formation of caesium thallium chloride phospho­tungstates, Cs9(TlCl6)(PW12O40)2·9CsCl showcases the ability to capture and crystallize octa­hedral complexes via the use of polyoxometalates (POMs). The large number of caesium chlorides allows for the POM [α-PW12O40]3− to arrange itself in a cubic close-packing lattice extended framework, in which the voids created enable the capture of the [TlCl6]3− complex.




3

Crystal structure and Hirshfeld surface analysis of 2-bromo­ethyl­ammonium bromide – a possible side product upon synthesis of hybrid perovskites

This study presents the synthesis, characterization and Hirshfeld surface analysis of a small organic ammonium salt, C2H7BrN+·Br−. Small cations like the one in the title compound are considered promising components of hybrid perovskites, crucial for optoelectronic and photovoltaic applications. While the incorporation of this organic cation into various hybrid perovskite structures has been explored, its halide salt counterpart remains largely uninvestigated. The obtained structural results are valuable for the synthesis and phase analysis of hybrid perovskites. The title compound crystallizes in the solvent-free form in the centrosymmetric monoclinic space group P21/c, featuring one organic cation and one bromide anion in its asymmetric unit, with a torsion angle of −64.8 (2)° between the ammonium group and the bromine substituent, positioned in a gauche conformation. The crystal packing is predominantly governed by Br⋯H inter­actions, which constitute 62.6% of the overall close atom contacts.




3

Synthesis, spectroscopic analysis and crystal structure of (N-{2-[(2-amino­eth­yl)amino]­eth­yl}-4'-methyl-[1,1'-biphenyl]-4-sulfonamidato)tri­carb­on­ylrhenium(I)

The title compound, [Re(C17H22N3O2S)(CO)3] is a net neutral fac-Re(I)(CO)3 complex of the 4-methyl­biphenyl sulfonamide derivatized di­ethyl­enetri­amine ligand. The NNN-donor monoanionic ligand coordinates with the Re core in tridentate fashion, establishing an inner coordination sphere resulting in a net neutral complex. The complex possesses pseudo-octa­hedral geometry where one face of the octa­hedron is occupied by three carbonyl ligands and the other faces are occupied by one sp2 nitro­gen atom of the sulfonamide group and two sp3 nitro­gen atoms of the dien backbone. The Re—Nsp2 bond distance, 2.173 (4) Å, is shorter than the Re—Nsp3 bond distances, 2.217 (5) and 2.228 (6) Å, and is similar to the range reported for typical Re—Nsp2 bond lengths (2.14 to 2.18 Å).




3

Crystal structure and Hirshfeld surface analysis of dimeth­yl(phen­yl)phosphine sulfide

The title compound, C8H11PS, which melts below room temperature, was crystallized at low temperature. The P—S bond length is 1.9623 (5) Å and the major contributors to the Hirshfeld surface are H⋯H (58.1%), S⋯H/H⋯S (13.4%) and C⋯H/H⋯C contacts (11.7%).




3

Crystal structure of tricarbon­yl[η4-6-exo-(tri­phenyl­phosphino)cyclo­hepta-2,4-dien-1-one]iron(0) tetra­fluoro­borate

The mol­ecular structure of tricarbon­yl[η4-6-exo-(tri­phenyl­phosphino)cyclo­hepta-2,4-dien-1-one]iron(0) tetra­fluoro­borate di­chloro­methane hemisolvate, [Fe(C28H22O4)(CO)3]BF4·0.5CH2Cl2, as determined by single-crystal X-ray diffraction is reported. The two independent tricarbon­yl[η4-6-exo-(tri­phenyl­phosphino)cyclo­hepta-2,4-dien-1-one] iron(0) cations and their corresponding anions form dimers, which constitute the asymmetric unit of the structure parallel to the (100) plane. Solid-state stability within that asymmetric unit as well as between neighboring dimeric units is afforded by C—H⋯O and C—H⋯F hydrogen bonds and C—H⋯π and Y—X⋯π (Y = B, C; X = F, O) inter­actions, which yield diperiodic sheets and a three-dimensional extended network.




3

Crystal structure and Hirshfeld surface analysis of a halogen bond between 2-(allyl­thio)­pyridine and 1,2,4,5-tetra­fluoro-3,6-di­iodo­benzene

The crystal structure of the title 2:1 mol­ecular complex between 2-(allyl­thio)­pyridine and 1,2,4,5-tetra­fluoro-3,6-di­iodo­benzene, C6F4I2·2C8H9NS, at 100 K has been determined in the monoclinic space group P21/c. The most noteworthy characteristic of the complex is the halogen bond between iodine and the pyridine ring with a short N⋯I contact [2.8628 (12) Å]. The Hirshfeld surface analysis shows that the hydrogen⋯hydrogen contacts dominate the crystal packing with a contribution of 32.1%.




3

Crystal structure of 1,2,3,4-tetra­hydro­isoquinolin-2-ium (2S,3S)-3-carb­oxy-2,3-di­hydroxy­propano­ate monohydrate

The crystal structure of 1,2,3,4-tetra­hydro­isoquinolin-2-ium (2S,3S)-3-carb­oxy-2,3-di­hydroxy­propano­ate monohydrate, C9H12N+·C4H5O6−·H2O, at 115 K shows ortho­rhom­bic symmetry (space group P212121). The hydrogen tartrate anions and solvent water mol­ecules form an intricate diperiodic O—H⋯O hydrogen-bond network parallel to (001). The tetra­hydro­isoquinolinium cations are tethered to the anionic hydrogen-bonded layers through N—H⋯O hydrogen bonds. The crystal packing in the third direction is achieved through van der Waals contacts between the hydro­carbon tails of the tetra­hydro­isoquinolinium cations, resulting in hydro­phobic and hydro­philic regions in the crystal structure.




3

Crystal structure and Hirshfeld surface analysis of 1-[6-bromo-2-(4-fluoro­phen­yl)-1,2,3,4-tetra­hydroquinolin-4-yl]pyrrolidin-2-one

In the title compound, C19H18BrFN2O, the pyrrolidine ring adopts an envelope conformation. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O, C—H⋯O, C—H⋯F and C—H⋯Br hydrogen bonds, forming a three-dimensional network. In addition, C—H⋯π inter­actions connect mol­ecules into ribbons along the b-axis direction, consolidating the mol­ecular packing. The inter­molecular inter­actions in the crystal structure were qu­anti­fied and analysed using Hirshfeld surface analysis.




3

Synthesis, structure and Hirshfeld surface analysis of 2-oxo-2H-chromen-4-yl penta­noate

In the title compound, C14H14O4, the dihedral angle between the coumarin ring system (r.m.s deviation = 0.016 Å) and the penta­noate ring is 36.26 (8)°. A short intra­molecular C—H⋯O contact of 2.40 Å is observed. Hirshfeld surface analysis reveals that 46.1% of the inter­molecular inter­actions are from H⋯H contacts, 28.6% are from H⋯O/O⋯H contacts and 14.7% are from H⋯C/C⋯H.




3

Synthesis, crystal structure and thermal properties of catena-poly[[bis­(4-methyl­pyridine)­nickel(II)]-di-μ-thio­cyanato], which shows an alternating all-trans and cis–cis–trans-coordination of the NiS2Np2Nt2 octa­hedra (p = 4-me

The title compound, [Ni(NCS)2(C6H7N)2]n, was prepared by the reaction of Ni(NCS)2 with 4-methyl­pyridine in water. Its asymmetric unit consists of two crystallographically independent NiII cations, of which one is located on a twofold rotational axis whereas the second occupies a center of inversion, two independent thio­cyanate anions and two independent 4-methyl­pyridine co­ligands in general positions. Each NiII cation is octa­hedrally coordinated by two 4-methyl­pyridine coligands as well as two N- and two S-bonded thio­cyanate anions. One of the cations shows an all-trans, the other a cis–cis–trans configuration. The metal centers are linked by pairs of μ-1,3-bridging thio­cyanate anions into [101] chains. X-ray powder diffraction shows that a pure crystalline phase has been obtained and thermogravimetry coupled to differential thermoanalysis reveals that the title compound loses half of the 4-methyl­pyridine coligands and transforms into Ni(NCS)2(C6H7N). Nearly pure samples of this compound can be obtained by thermal annealing and a Rietveld refinement demonstrated that it is isotypic to its recently reported Cd analog [Neumann et al., (2020). CrystEngComm. 22, 184–194] In its crystal structure, the metal cations are linked by one μ-1,3(N,S)- and one μ-1,3,3(N,S,S)-bridging thio­cyanate anion into single chains that condense via the μ-1,3,3(N,S,S)-bridging anionic ligands into double chains.




3

Crystal structure determination and analyses of Hirshfeld surface, crystal voids, inter­molecular inter­action energies and energy frameworks of 1-benzyl-4-(methyl­sulfan­yl)-3a,7a-di­hydro-1H-pyrazolo­[3,4-d]pyrimidine

The pyrazolo­pyrimidine moiety in the title mol­ecule, C13H12N4S, is planar with the methyl­sulfanyl substituent lying essentially in the same plane. The benzyl group is rotated well out of this plane by 73.64 (6)°, giving the mol­ecule an approximate L shape. In the crystal, C—H⋯π(ring) inter­actions and C—H⋯S hydrogen bonds form tubes extending along the a axis. Furthermore, there are π–π inter­actions between parallel phenyl rings with centroid-to-centroid distances of 3.8418 (12) Å. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (47.0%), H⋯N/N⋯H (17.6%) and H⋯C/C⋯H (17.0%) inter­actions. The volume of the crystal voids and the percentage of free space were calculated to be 76.45 Å3 and 6.39%, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the cohesion of the crystal structure is dominated by the dispersion energy contributions.




3

Synthesis, crystal structure and photophysical properties of a dinuclear MnII complex with 6-(di­ethyl­amino)-4-phenyl-2-(pyridin-2-yl)quinoline

A new quinoline derivative, namely, 6-(di­ethyl­amino)-4-phenyl-2-(pyridin-2-yl)quinoline, C24H23N3 (QP), and its MnII complex aqua-1κO-di-μ-chlorido-1:2κ4Cl:Cl-di­chlorido-1κCl,2κCl-bis­[6-(di­ethyl­amino)-4-phenyl-2-(pyridin-2-yl)quinoline]-1κ2N1,N2;2κ2N1,N2-dimanganese(II), [Mn2Cl4(C24H23N3)2(H2O)] (MnQP), were synthesized. Their compositions have been determined with ESI-MS, IR, and 1H NMR spectroscopy. The crystal-structure determination of MnQP revealed a dinuclear complex with a central four-membered Mn2Cl2 ring. Both MnII atoms bind to an additional Cl atom and to two N atoms of the QP ligand. One MnII atom expands its coordination sphere with an extra water mol­ecule, resulting in a distorted octa­hedral shape. The second MnII atom shows a distorted trigonal–bipyramidal shape. The UV–vis absorption and emission spectra of the examined compounds were studied. Furthermore, when investigating the aggregation-induced emission (AIE) properties, it was found that the fluorescent color changes from blue to green and eventually becomes yellow as the fraction of water in the THF/water mixture increases from 0% to 99%. In particular, these color and intensity changes are most pronounced at a water fraction of 60%. The crystal structure contains disordered solvent mol­ecules, which could not be modeled. The SQUEEZE procedure [Spek (2015). Acta Cryst. C71, 9–18] was used to obtain information on the type and qu­antity of solvent mol­ecules, which resulted in 44 electrons in a void volume of 274 Å3, corresponding to approximately 1.7 mol­ecules of ethanol in the unit cell. These ethanol mol­ecules are not considered in the given chemical formula and other crystal data.




3

A monoclinic polymorph of chloro­thia­zide

A new polymorph of the diuretic chloro­thia­zide, 6-chloro-1,1-dioxo-2H-1,2,4-benzo­thia­zine-7-sulfonamide, C7H6ClN3O4S2, is described. Crystallized from basic aqueous solution, this monoclinic polymorph is found to be less thermodynamically favoured than the known triclinic polymorph and to feature only N—H⋯O type inter­molecular hydrogen bonds as opposed to the N—H⋯O and N—H⋯N type hydrogen bonds found in the P1 form.




3

Chiral versus achiral crystal structures of 4-benzyl-1H-pyrazole and its 3,5-di­amino derivative

The crystal structures of 4-benzyl-1H-pyrazole (C10H10N2, 1) and 3,5-di­amino-4-benzyl-1H-pyrazole (C10H12N4, 2) were measured at 150 K. Although its different conformers and atropenanti­omers easily inter­convert in solution by annular tautomerism and/or rotation of the benzyl substituent around the C(pyrazole)—C(CH2) single bond (as revealed by 1H NMR spectroscopy), 1 crystallizes in the non-centrosymmetric space group P21. Within its crystal structure, the pyrazole and phenyl aromatic moieties are organized into alternating bilayers. Both pyrazole and phenyl layers consist of aromatic rings stacked into columns in two orthogonal directions. Within the pyrazole layer, the pyrazole rings form parallel catemers by N—H⋯N hydrogen bonding. Compound 2 adopts a similar bilayer structure, albeit in the centrosymmetric space group P21/c, with pyrazole N—H protons as donors in N—H⋯π hydrogen bonds with neighboring pyrazole rings, and NH2 protons as donors in N—H⋯N hydrogen bonds with adjacent pyrazoles and other NH2 moieties. The crystal structures and supra­molecular features of 1 and 2 are contrasted with the two known structures of their analogs, 3,5-dimethyl-4-benzyl-1H-pyrazole and 3,5-diphenyl-4-benzyl-1H-pyrazole.




3

Synthesis, structural studies and Hirshfeld surface analysis of 2-[(4-phenyl-1H-1,2,3-triazol-1-yl)methyl]pyridin-1-ium hexa­kis­(nitrato-κ2O,O')thorate(IV)

Reaction of thorium(IV) nitrate with 2-[(4-phenyl-1H-1,2,3-triazol-1-yl)meth­yl]pyridine (L) yielded (LH)2[Th(NO3)6] or (C14H13N4)2[Th(NO3)6] (1), instead of the expected mixed-ligand complex [Th(NO3)4L2], which was detected in the mass spectrum of 1. In the structure, the [Th(NO3)6]2− anions display an icosa­hedral coordination geometry and are connected by LH+ cations through C—H⋯O hydrogen bonds. The LH+ cations inter­act via N—H⋯N hydrogen bonds. Hirshfeld surface analysis indicates that the most important inter­actions are O⋯H/H⋯O hydrogen-bonding inter­actions, which represent a 55.2% contribution.




3

Crystal structure of polymeric bis­(3-amino-1H-pyrazole)­cadmium diiodide

The reaction of cadmium iodide with 3-amino­pyrazole (3-apz) in ethano­lic solution leads to tautomerization of the ligand and the formation of crystals of the title compound, catena-poly[[di­iodido­cadmium(II)]-bis­(μ-3-amino-1H-pyrazole)-κ2N2:N3;κ2N3:N2], [CdI2(C3H5N3)2]n or [CdI2(3-apz)2]n. Its asymmetric unit consists of a half of a Cd2+ cation, an iodide anion and a 3-apz mol­ecule. The Cd2+ cations are coordinated by two iodide anions and two 3-apz ligands, generating trans-CdN4I2 octa­hedra, which are linked into chains by pairs of the bridging ligands. In the crystal, the ligand mol­ecules and iodide anions of neighboring chains are linked through inter­chain hydrogen bonds into a di-periodic network. The inter­molecular contacts were qu­anti­fied using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative qu­anti­tative contributions of the weak inter­molecular contacts.




3

Crystal structures of four thio­glycosides involving carbamimido­thio­ate groups

The compounds 2',3',4',6'-tetra-O-acetyl-β-d-gluco­pyranosyl N'-cyano-N-phenyl­carbamimido­thio­ate (C22H25N3O9S, 5a), 2',3',4',6'-tetra-O-acetyl-β-d-galacto­pyranosyl N'-cyano-N-phenyl­carbamimido­thio­ate, (C22H25N3O9S, 5b), 2',3',4',6'-tetra-O-acetyl-β-d-galacto­pyranosyl N'-cyano-N-methyl­carbamimido­thio­ate (C17H23N3O9S, 5c), and 2',3',4',6'-tetra-O-acetyl-β-d-galacto­pyranosyl N'-cyano-N-p-tolyl­carbamimido­thio­ate (C23H27N3O9S, 5d) all crystallize in P212121 with Z = 4. For all four structures, the configuration across the central (formal) C=N(CN) double bond of the carbamimido­thio­ate group is Z. The torsion angles C5—O1—C1—S (standard sugar numbering) are all close to 180°, confirming the β position of the substituent. Compound 5b involves an intra­molecular hydrogen bond N—H⋯O1; in 5c this contact is the weaker branch of a three-centre inter­action, whereas in 5a and 5d the H⋯O distances are much longer and do not represent significant inter­actions. The C—N bond lengths at the central carbon atom of the carbamimido­thio­ate group are almost equal. All C—O—C=O torsion angles of the acetyl groups correspond to a synperiplanar geometry, but otherwise all four mol­ecules display a high degree of conformational flexibility, with many widely differing torsion angles for equivalent groups. In the crystal packing, 5a, 5c and 5d form layer structures involving the classical hydrogen bond N—H⋯Ncyano and a variety of ‘weak’ hydrogen bonds C—H⋯O or C—H⋯S. The packing of 5b is almost featureless and involves a large number of borderline ‘weak’ hydrogen bonds. In an appendix, a potted history of wavelength preferences for structure determination is presented and it is recommended that, even for small organic crystals in non-centrosymmetric space groups, the use of Mo radiation should be considered.




3

Crystal structure of the 1:1 co-crystal 4-(di­methylamino)­pyridin-1-ium 8-hy­droxy­quinoline-5-sulfonate–N,N-di­methyl­pyridin-4-amine

The asymmetric unit of the title compound is composed of two independent ion pairs of 4-(di­methyl­amino)­pyridin-1-ium 8-hy­droxy­quinoline-5-sulfonate (HDMAP+·HqSA−, C7H11N2+·C9H6NO4S−) and neutral N,N-di­methyl­pyridin-4-amine mol­ecules (DMAP, C7H10N2), co-crystallized as a 1:1:1 HDMAP+:HqSA−:DMAP adduct in the monoclinic system, space group Pc. The compound has a layered structure, including cation layers of HDMAP+ with DMAP and anion layers of HqSA− in the crystal. In the cation layer, there are inter­molecular N—H⋯N hydrogen bonds between the protonated HDMAP+ mol­ecule and the neutral DMAP mol­ecule. In the anion layer, each HqSA− is surrounded by other six HqSA−, where the planar network structure is formed by inter­molecular O—H⋯O and C—H⋯O hydrogen bonds. The cation and anion layers are linked by inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions.




3

Structural determination of oleanane-28,13β-olide and taraxerane-28,14β-olide fluoro­lactonization products from the reaction of oleanolic acid with SelectfluorTM

The X-ray crystal structure data of 12-α-fluoro-3β-hy­droxy­olean-28,13β-olide methanol hemisolvate, 2C30H47FO3·CH3OH, (1), and 12-α-fluoro-3β-hy­droxy­taraxer-28,14β-olide methanol hemisolvate, 2C30H47FO3·CH3OH, (2), are described. The fluoro­lactonization of oleanolic acid using SelectfluorTM yielded a mixture of the six-membered δ-lactone (1) and the unusual seven-membered γ-lactone (2) following a 1,2-shift of methyl C-27 from C-14 to C-13.




3

Crystal structure of 4-bromo-5,7-dimeth­oxy-2,3-di­hydro-1H-inden-1-one

In the title mol­ecule, C11H11BrO3, the di­hydro­indene moiety is essentially planar but with a slight twist in the saturated portion of the five-membered ring. The meth­oxy groups lie close to the above plane. In the crystal, π-stacking inter­actions between six-membered rings form stacks of mol­ecules extending along the a-axis direction, which are linked by weak C—H⋯O and C—H⋯Br hydrogen bonds. A Hirshfeld surface analysis was performed showing H⋯H, O⋯H/H⋯O and Br⋯H/H⋯Br contacts make the largest contributions to inter­molecular inter­actions in the crystal.




3

Crystal structure of catena-poly[[methanoldioxidouranium(VI)]-μ-2-[5-(2-oxidophen­yl)-1H-1,2,4-triazol-3-yl]acetato-κ2O:O']

In the title complex, [U(C10H7N3O3)O2(CH3OH)]n, the UVI cation has a typical penta­gonal–bipyramidal environment with the equatorial plane defined by one N and two O atoms of one doubly deprotonated 2-[5-(2-hy­droxy­phen­yl)-1H-1,2,4-triazol-3-yl]acetic acid ligand, a carboxyl­ate O atom of the symmetry-related ligand and the O atom of the methanol mol­ecule [U—N/Oeq 2.256 (4)–2.504 (5) Å]. The axial positions are occupied by two oxide O atoms. The equatorial atoms are almost coplanar, with the largest deviation from the mean plane being 0.121 Å for one of the O atoms. The benzene and triazole rings of the tetra­dentate chelating–bridging ligand are twisted by approximately 21.6 (2)° with respect to each other. The carboxyl­ate group of the ligand bridges two uranyl cations, forming a neutral zigzag chain reinforced by a strong O—H⋯O hydrogen bond. In the crystal, adjacent chains are linked into two-dimensional sheets parallel to the ac plane by C/N—H⋯N/O hydrogen bonding and π–π inter­actions. Further weak C—H⋯O contacts consolidate the three-dimensional supra­molecular architecture. In the solid state, the compound shows a broad medium intensity LMCT transition centred around 463 nm, which is responsible for its red colour.




3

Crystal structure determination and Hirshfeld surface analysis of N-acetyl-N-3-meth­oxy­phenyl and N-(2,5-di­meth­oxy­phen­yl)-N-phenyl­sulfonyl derivatives of N-[1-(phenyl­sulfon­yl)-1H-indol-2-yl]methanamine

Two new [1-(phenyl­sulfon­yl)-1H-indol-2-yl]methanamine derivatives, namely, N-(3-meth­oxy­phen­yl)-N-{[1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}acetamide, C24H22N2O4S, (I), and N-(2,5-di­meth­oxy­phen­yl)-N-{[1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}benzene­sulfonamide, C29H26N2O6S2, (II), reveal a nearly orthogonal orientation of their indole ring systems and sulfonyl-bound phenyl rings. The sulfonyl moieties adopt the anti-periplanar conformation. For both compounds, the crystal packing is dominated by C—H⋯O bonding [C⋯O = 3.312 (4)–3.788 (8) Å], with the structure of II exhibiting a larger number, but weaker bonds of this type. Slipped π–π inter­actions of anti­parallel indole systems are specific for I, whereas the structure of II delivers two kinds of C—H⋯π inter­actions at both axial sides of the indole moiety. These findings agree with the results of Hirshfeld surface analysis. The primary contributions to the surface areas are associated with the contacts involving H atoms. Although II manifests a larger fraction of the O⋯H/H⋯O contacts (25.8 versus 22.4%), most of them are relatively distal and agree with the corresponding van der Waals separations.




3

Crystal and mol­ecular structure of 2-methyl-1,4-phenyl­ene bis­(3,5-di­bromo­benzoate)

The aryl diester compound, 2-methyl-1,4-phenyl­ene bis­(3,5-di­bromo­benzoate), C21H12Br4O4, was synthesized by esterification of methyl hydro­quinone with 3,5-di­bromo­benzoic acid. A crystalline sample was obtained by cooling a sample of the melt (m.p. = 502 K/DSC) to room temperature. The mol­ecular structure consists of a central benzene ring with anti-3,5-di­bromo­benzoate groups symmetrically attached at the 1 and 4 positions and a methyl group attached at the 2 position of the central ring. In the crystal structure (space group Poverline{1}), mol­ecules of the title aryl diester are located on inversion centers imposing disorder of the methyl group and H atom across the central benzene ring. The crystal structure is consolidated by a network of C—H⋯Br hydrogen bonds in addition to weaker and offset π–π inter­actions involving the central benzene rings as well as the rings of the attached 3,5-di­bromo­benzoate groups.




3

Synthesis, mol­ecular and crystal structures of 4-amino-3,5-di­fluoro­benzo­nitrile, ethyl 4-amino-3,5-di­fluoro­benzoate, and diethyl 4,4'-(diazene-1,2-di­yl)bis­(3,5-di­fluoro­benzoate)

The crystal structures of two inter­mediates, 4-amino-3,5-di­fluoro­benzo­nitrile, C7H4F2N2 (I), and ethyl 4-amino-3,5-di­fluoro­benzoate, C9H9F2NO2 (II), along with a visible-light-responsive azo­benzene derivative, diethyl 4,4'-(diazene-1,2-di­yl)bis­(3,5-di­fluoro­benzoate), C18H14F4N2O4 (III), obtained by four-step synthetic procedure, were studied using single-crystal X-ray diffraction. The mol­ecules of I and II demonstrate the quinoid character of phenyl rings accompanied by the distortion of bond angles related to the presence of fluorine substituents in the 3 and 5 (ortho) positions. In the crystals of I and II, the mol­ecules are connected by N—H⋯N, N—H⋯F and N—H⋯O hydrogen bonds, C—H⋯F short contacts, and π-stacking inter­actions. In crystal of III, only stacking inter­actions between the mol­ecules are found.




3

Synthesis, mol­ecular and crystal structure of [(NH2)2CSSC(NH2)2]2[RuBr6]Br2·3H2O

The title compound, bis­[di­thio­bis­(formamidinium)] hexa­bromido­ruthenium dibromide trihydrate, [(NH2)2CSSC(NH2)2]2[RuBr6]Br2·3H2O, crystallizes in the ortho­rhom­bic system, space group Cmcm, Z = 4. The [RuBr6]2− anionic complex has an octa­hedral structure. The Ru—Br distances fall in the range 2.4779 (4)–2.4890 (4) Å. The S—S and C—S distances are 2.0282 (12) and 1.783 (2) Å, respectively. The H2O mol­ecules, Br− ions, and NH2 groups of the cation are linked by hydrogen bonds. The conformation of the cation is consolidated by intra­molecular O—H⋯Br, O—H⋯O, N—H⋯Br and N—H⋯O hydrogen bonds. The [(NH2)2CSSC(NH2)2]2+ cations form a hydrogen-bonded system involving the Br − ions and the water mol­ecules. Two Br − anions form four hydrogen bonds, each with the NH2 groups of two cations, thus linking the cations into a ring. The rings are connected by water mol­ecules, forming N—H⋯O—H⋯Br hydrogen bonds.




3

Crystal structure of bis­[(η5-tert-butyl­cyclo­pentadien­yl)tri­carbonyl­molybdenum(I)](Mo—Mo)

The dinuclear mol­ecule of the title compound, [Mo2(C9H13)2(CO)6] or [Mo(tBuCp)(CO)3]2 where tBu and Cp are tert-butyl and cyclo­penta­dienyl, is centrosymmetric and is characterized by an Mo—Mo bond length of 3.2323 (3) Å. Imposed by inversion symmetry, the tBuCp and the carbonyl ligands are in a transoid arrangement to each other. In the crystal, inter­molecular C—H⋯O contacts lead to the formation of layers parallel to the bc plane.




3

Crystal structures of seven gold(III) complexes of the form LAuX3 (L = substituted pyridine, X = Cl or Br)

The structures of seven gold(III) halide derivatives of general formula LAuX3 (L = methyl­pyridines or di­methyl­pyridines, X = Cl or Br) are presented: tri­chlorido­(2-methyl­pyridine)­gold(III), [AuCl3(C6H7N)], 1 (as two polymorphs 1a and 1b); tri­bromido­(2-methyl­pyridine)­gold(III), [AuBr3(C6H7N)], 2; tri­bromido­(3-methyl­pyridine)­gold(III), [AuBr3(C6H7N)], 3; tri­bromido­(2,4-di­meth­yl­pyridine)­gold(III), [AuBr3(C7H9N)], 4; tri­chlorido­(3,5-di­methylpyridine)­gold(III), [AuCl3(C7H9N)], 5; tri­bromido­(3,5-di­methyl­pyridine)­gold(III), [AuBr3(C7H9N)], 6, and tri­chlorido­(2,6-di­methyl­pyridine)­gold(III), [AuCl3(C7H9N)], 7. Additionally, the structure of 8, the 1:1 adduct of 2 and 6, [AuBr3(C6H7N)]·[AuBr3(C7H9N)], is included. All the structures crystallize solvent-free, and all have Z' = 1 except for 5 and 7, which display crystallographic twofold rotation symmetry, and 4, which has Z' = 2. 1a and 2 are isotypic. The coordination geometry at the gold(III) atoms is, as expected, square-planar. Four of the crystals (1a, 1b, 2 and 8) were non-merohedral twins, and these structures were refined using the ‘HKLF 5’ method. The largest inter­planar angles between the pyridine ring and the coordination plane are observed for those structures with a 2-methyl substituent of the pyridine ring. The Au—N bonds are consistently longer trans to Br (average 2.059 Å) than trans to Cl (average 2.036 Å). In the crystal packing, a frequent feature is the offset-stacked and approximately rectangular dimeric moiety (Au—X)2, with anti­parallel Au—X bonds linked by Au⋯X contacts at the vacant positions axial to the coordination plane. The dimers are connected by further secondary inter­actions (Au⋯X or X⋯X contacts, `weak' C—H⋯X hydrogen bonds) to form chain, double chain (`ladder') or layer structures, and in several cases linked again in the third dimension. Only 1b and 7 contain no offset dimers; these structures instead involve C—H⋯Cl hydrogen bonds combined with Cl⋯Cl contacts (1b) or Cl⋯π contacts (7). The packing patterns of seven further complexes LAuX3 involving simple pyridines (taken from the Cambridge Structural Database) are compared with those of 1–8.




3

Synthesis, crystal structure and Hirshfeld surface of ethyl 2-[2-(methyl­sulfan­yl)-5-oxo-4,4-diphenyl-4,5-di­hydro-1H-imidazol-1-yl]acetate (thio­phenytoin derivative)

The di­hydro­imidazole ring in the title mol­ecule, C20H20N2O3S, is slightly distorted and the lone pair on the tri-coordinate nitro­gen atom is involved in intra-ring π bonding. The methyl­sulfanyl substituent lies nearly in the plane of the five-membered ring while the ester substituent is rotated well out of that plane. In the crystal, C—H⋯O hydrogen bonds form inversion dimers, which are connected along the a- and c-axis directions by additional C—H⋯O hydrogen bonds, forming layers parallel to the ac plane. The major contributors to the Hirshfeld surface are C⋯H/H⋯C, O⋯H/H⋯O and S⋯H/H⋯S contacts at 20.5%, 14.7% and 4.9%, respectively.




3

Synthesis, crystal structure and Hirshfeld surface analysis of [1-(4-bromo­phen­yl)-1H-1,2,3-triazol-4-yl]methyl 2-(4-nitro­phen­oxy)acetate

The title compound, C17H13BrN4O5, was synthesized by a Cu2Br2-catalysed Meldal–Sharpless reaction between 4-nitro­phen­oxy­acetic acid propargyl ether and para-bromo­phenyl­azide, and characterized by X-ray structure determination and 1H NMR spectroscopy. The mol­ecules, with a near-perpendicular orientation of the bromo­phenyl-triazole and nitro­phen­oxy­acetate fragments, are connected into a three-dimensional network by inter­molecular C—H⋯O and C—H⋯N hydrogen bonds (confirmed by Hirshfeld surface analysis), π–π and Br–π inter­actions.




3

Synthesis and crystal structure of 1,3-bis­(acet­oxymeth­yl)-5-{[(4,6-di­methyl­pyridin-2-yl)amino]­methyl}-2,4,6-tri­ethyl­benzene

In the crystal structure of the title compound, C26H36N2O4, the tripodal mol­ecule exists in a conformation in which the substituents attached to the central arene ring are arranged in an alternating order above and below the ring plane. The heterocyclic unit is inclined at an angle of 79.6 (1)° with respect to the plane of the benzene ring. In the crystal, the mol­ecules are connected via N—H⋯O bonds, forming infinite supra­molecular strands. Inter­strand association involves weak C—H⋯O and C—H⋯π inter­actions, with the pyridine ring acting as an acceptor in the latter case.




3

Synthesis and crystal structure of (2E)-1-[3,5-bis­(benz­yloxy)phen­yl]-3-(4-eth­oxy­phen­yl)prop-2-en-1-one

In the title compound, C31H28O4, the phenyl rings of the chalcone unit subtend a dihedral angle of 26.43 (10)°. The phenyl rings of the pendant benz­yloxy groups are orientated at 75.57 (13) and 75.70 (10)° with respect to their attached ring. In the crystal, weak C—H⋯O and C—H⋯π inter­actions link the mol­ecules. The inter­molecular inter­actions were qu­anti­fied and analysed using Hirshfeld surface analysis, which showed a breakdown into H⋯H (49.8%), H⋯C/C⋯H (33.8%) and H⋯O/O⋯H (13.6%) inter­actions with other types making negligible contributions.




3

Crystal structure of hexa­glycinium dodeca­iodo­triplumbate

The crystal structure of hexa­glycinium tetra-μ-iodido-octa­iodido­triplumbate, (C2H6NO2)6[Pb3I12] or (GlyH)6[Pb3I12], is reported. The compound crystallizes in the triclinic space group Poverline{1}. The [Pb3I12]6− anion is discrete and located around a special position: the central Pb ion located on the inversion center is holodirected, while the other two are hemidirected. The supra­molecular nature is mainly based on C—H⋯I, N—H⋯I, O—H⋯I and N—H⋯O hydrogen bonds. Dimeric cations of type (A+⋯A+) for the amino acid glycine are observed for the first time.




3

Crystal structure of bis­(β-alaninium) tetra­bromidoplumbate

The title compound, poly[bis­(β-alaninium) [[di­bromido­plumbate]-di-μ-di­bromido]] {(C2H8NO2)2[PbBr4]}n or (β-AlaH)2PbBr4, crystallizes in the monoclinic space group P21/n. The (PbBr4)2− anion is located on a general position and has a two-dimensional polymeric structure. The Pb center is holodirected. The supra­molecular network is mainly based on O—H⋯Br, N—H⋯Br and N—H⋯O hydrogen bonds.




3

Synthesis, crystal structure and Hirshfeld surface analysis of 1-[(1-octyl-1H-1,2,3-triazol-4-yl)methyl]-3-phenyl-1,2-di­hydro­quinoxalin-2(1H)-one

In the title mol­ecule, C25H29N5O, the di­hydro­quinoxaline unit is not quite planar (r.m.s. deviation = 0.030 Å) as there is a dihedral angle of 2.69 (3)° between the mean planes of the constituent rings and the mol­ecule adopts a hairpin conformation. In the crystal, the polar portions of the mol­ecules are associated through C—H⋯O and C—H⋯N hydrogen bonds and C—H⋯π(ring) and C=O⋯π(ring) inter­actions, forming thick layers parallel to the bc plane and with the n-octyl groups on the outside surfaces.




3

Crystal structure of (1,4,7,10,13,16-hexa­oxa­cycloocta­decane-κ6O)potassium-μ-oxalato-tri­phenylstannate(IV), the first reported 18-crown-6-stabilized potassium salt of tri­phenyl­oxalatostannate

The title complex, (1,4,7,10,13,16-hexa­oxa­cyclo­octa­decane-1κ6O)(μ-oxalato-1κ2O1,O2:2κ2O1',O2')triphenyl-2κ3C-potassium(I)tin(IV), [KSn(C6H5)3(C2O4)(C12H24O6)] or K[18-Crown-6][(C6H5)3SnO4C2], was synthesized. The complex consists of a potassium cation coordinated to the six oxygen atoms of a crown ether mol­ecule and the two oxygen atoms of the oxalatotri­phenyl­stannate anion. It crystallizes in the monoclinic crystal system within the space group P21. The tin atom is coordinated by one chelating oxalate ligand and three phenyl groups, forming a cis-trigonal–bipyramidal geometry around the tin atom. The cations and anions form ion pairs, linked through carbonyl coordination to the potassium atoms. The crystal structure features C—H⋯O hydrogen bonds between the oxygen atoms of the oxalate group and the hydrogen atoms of the phenyl groups, resulting in an infinite chain structure extending along a-axis direction. The primary inter-chain inter­actions are van der Waals forces.