red AHA News: Predicting Heart Disease, Stroke Could Be as Easy as a Blood Test By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: AHA News: Predicting Heart Disease, Stroke Could Be as Easy as a Blood TestCategory: Health NewsCreated: 4/29/2019 12:00:00 AMLast Editorial Review: 4/30/2019 12:00:00 AM Full Article
red Newly Discovered Illness May Cause Nearly 1 in 5 Dementias, Experts Say By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Newly Discovered Illness May Cause Nearly 1 in 5 Dementias, Experts SayCategory: Health NewsCreated: 4/30/2019 12:00:00 AMLast Editorial Review: 5/1/2019 12:00:00 AM Full Article
red Red Tape Means Many Cancer Patients Get Radiation Treatments Late By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Red Tape Means Many Cancer Patients Get Radiation Treatments LateCategory: Health NewsCreated: 5/2/2019 12:00:00 AMLast Editorial Review: 5/3/2019 12:00:00 AM Full Article
red Pepcid Ingredient Famotidine Being Tested as COVID-19 Treatment By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Pepcid Ingredient Famotidine Being Tested as COVID-19 TreatmentCategory: Health NewsCreated: 4/27/2020 12:00:00 AMLast Editorial Review: 4/27/2020 12:00:00 AM Full Article
red He Recovered From COVID-19. Can His Blood Help Others? By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: He Recovered From COVID-19. Can His Blood Help Others?Category: Health NewsCreated: 4/27/2020 12:00:00 AMLast Editorial Review: 4/27/2020 12:00:00 AM Full Article
red Interest in Unproven COVID Drugs Soared After Trump Gave Thumbs Up By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Interest in Unproven COVID Drugs Soared After Trump Gave Thumbs UpCategory: Health NewsCreated: 4/29/2020 12:00:00 AMLast Editorial Review: 4/30/2020 12:00:00 AM Full Article
red Mental Health Problems After First Baby Reduce Likelihood of More Children: Study By www.medicinenet.com Published On :: Mon, 6 Apr 2020 00:00:00 PDT Title: Mental Health Problems After First Baby Reduce Likelihood of More Children: StudyCategory: Health NewsCreated: 4/3/2020 12:00:00 AMLast Editorial Review: 4/6/2020 12:00:00 AM Full Article
red Vaginal Bacteria Could Help Predict Risk of Premature Birth: Study By www.medicinenet.com Published On :: Thu, 9 Apr 2020 00:00:00 PDT Title: Vaginal Bacteria Could Help Predict Risk of Premature Birth: StudyCategory: Health NewsCreated: 4/8/2020 12:00:00 AMLast Editorial Review: 4/9/2020 12:00:00 AM Full Article
red Key Areas of the Brain Triggered in Recent Heart Attack Survivors By www.medicinenet.com Published On :: Wed, 6 May 2020 00:00:00 PDT Title: Key Areas of the Brain Triggered in Recent Heart Attack SurvivorsCategory: Health NewsCreated: 5/5/2020 12:00:00 AMLast Editorial Review: 5/6/2020 12:00:00 AM Full Article
red FDA OKs Farxiga for Heart Failure With Reduced Ejection Fraction By www.medicinenet.com Published On :: Thu, 7 May 2020 00:00:00 PDT Title: FDA OKs Farxiga for Heart Failure With Reduced Ejection FractionCategory: Health NewsCreated: 5/6/2020 12:00:00 AMLast Editorial Review: 5/7/2020 12:00:00 AM Full Article
red Ten Years After: PMC Milestone Featured in NLM in Focus! By www.ncbi.nlm.nih.gov Published On :: Mon, 28 Feb 2011 08:00:00 EST PMC marked its 10th anniversary in 2010 with a celebratory event at its annual Advisory Committee meeting, held at the National Library of Medicine last June. This milestone event was recently featured in the February 17th edition of NLM In Focus, in an article NLM Milestones: The Hits Just Keep on Coming. For more information on the ten years of PMC, see the article in the May-June issue of the NLM Technical Bulletin. Full Article
red Intense Exercise Can Trigger Heart Trouble in the Unprepared By www.medicinenet.com Published On :: Tue, 3 Mar 2020 00:00:00 PDT Title: Intense Exercise Can Trigger Heart Trouble in the UnpreparedCategory: Health NewsCreated: 3/2/2020 12:00:00 AMLast Editorial Review: 3/3/2020 12:00:00 AM Full Article
red Can AI Predict Who Will Develop Diabetes? By www.medicinenet.com Published On :: Tue, 31 Mar 2020 00:00:00 PDT Title: Can AI Predict Who Will Develop Diabetes?Category: Health NewsCreated: 3/31/2020 12:00:00 AMLast Editorial Review: 3/31/2020 12:00:00 AM Full Article
red U.S. Primary Care Docs Unprepared for Surge in Alzheimer's Cases By www.medicinenet.com Published On :: Wed, 11 Mar 2020 00:00:00 PDT Title: U.S. Primary Care Docs Unprepared for Surge in Alzheimer's CasesCategory: Health NewsCreated: 3/11/2020 12:00:00 AMLast Editorial Review: 3/11/2020 12:00:00 AM Full Article
red Which Foods Might Reduce Your Odds for Dementia? By www.medicinenet.com Published On :: Tue, 14 Apr 2020 00:00:00 PDT Title: Which Foods Might Reduce Your Odds for Dementia?Category: Health NewsCreated: 4/14/2020 12:00:00 AMLast Editorial Review: 4/14/2020 12:00:00 AM Full Article
red Second HIV Patient Reportedly 'Cured' By www.medicinenet.com Published On :: Tue, 10 Mar 2020 00:00:00 PDT Title: Second HIV Patient Reportedly 'Cured'Category: Health NewsCreated: 3/9/2020 12:00:00 AMLast Editorial Review: 3/10/2020 12:00:00 AM Full Article
red After 2nd Patient Cured of HIV, Hope Revives for an End to AIDS By www.medicinenet.com Published On :: Wed, 11 Mar 2020 00:00:00 PDT Title: After 2nd Patient Cured of HIV, Hope Revives for an End to AIDSCategory: Health NewsCreated: 3/10/2020 12:00:00 AMLast Editorial Review: 3/11/2020 12:00:00 AM Full Article
red Endometriosis Risk Can Be Predicted in Young Girls: Study By www.medicinenet.com Published On :: Tue, 10 Mar 2020 00:00:00 PDT Title: Endometriosis Risk Can Be Predicted in Young Girls: StudyCategory: Health NewsCreated: 3/10/2020 12:00:00 AMLast Editorial Review: 3/10/2020 12:00:00 AM Full Article
red Study Links Menopausal Night Sweats to Impaired Thinking By www.medicinenet.com Published On :: Wed, 25 Sep 2019 00:00:00 PDT Title: Study Links Menopausal Night Sweats to Impaired ThinkingCategory: Health NewsCreated: 9/25/2019 12:00:00 AMLast Editorial Review: 9/25/2019 12:00:00 AM Full Article
red Helping Seniors Manage Meds After Hospital Reduces Readmission: Study By www.medicinenet.com Published On :: Wed, 4 Mar 2020 00:00:00 PDT Title: Helping Seniors Manage Meds After Hospital Reduces Readmission: StudyCategory: Health NewsCreated: 3/3/2020 12:00:00 AMLast Editorial Review: 3/4/2020 12:00:00 AM Full Article
red AHA News: Dropping Blood Pressure May Predict Frailty, Falls in Older People By www.medicinenet.com Published On :: Tue, 31 Mar 2020 00:00:00 PDT Title: AHA News: Dropping Blood Pressure May Predict Frailty, Falls in Older PeopleCategory: Health NewsCreated: 3/30/2020 12:00:00 AMLast Editorial Review: 3/31/2020 12:00:00 AM Full Article
red Health Tip: Planning a Stress-Reducing Vacation By www.medicinenet.com Published On :: Fri, 18 Oct 2019 00:00:00 PDT Title: Health Tip: Planning a Stress-Reducing VacationCategory: Health NewsCreated: 10/18/2019 12:00:00 AMLast Editorial Review: 10/18/2019 12:00:00 AM Full Article
red Yorkshire Geological Society Registered Charity No. 220014 Society Proceedings 2018 By pygs.lyellcollection.org Published On :: 2019-11-22T06:43:26-08:00 Full Article
red Redefining Medical Competencies for an Oral Medicine Specialty Training Curriculum Using a Modified Delphi Technique By www.jdentaled.org Published On :: 2019-12-01T06:00:19-08:00 This article describes the development of medical competencies for oral medicine specialty training in the UK and Ireland by a collaborative working group using a modified Delphi technique. The current specialty training curriculum for oral medicine (OM) in the UK was developed by a working group including members of the British Society for Oral Medicine (BSOM) and members of the Specialty Advisory Committee for Additional Dental Specialties (SACADS) and adopted by the UK General Dental Council (GDC) in 2010. When the curriculum was developed, the entry requirements for specialty training in OM included undergraduate degrees in both dentistry and medicine. At the time of adoption, the requirement for a medical degree was removed. Medical competencies were assumed to have been delivered in medical undergraduate and postgraduate training. Accordingly, there was a need to define the medical competencies for OM specialty training to benefit trainees, trainers, and assessors. In 2018, a group comprising specialty trainers, recent former specialty trainees, and current specialty trainees in OM held face-to-face meetings in addition to email discussions and developed an updated curriculum document to better reflect the medical competencies required in specialty training. A collaborative modified Delphi approach was used to evaluate medical foundation competencies and to include only those that were considered relevant to OM specialty training. A list of relevant and achievable medical competencies was determined that has been approved by SACADS and will be incorporated into a revised OM curriculum from the UK GDC. The newly agreed-upon document for medical competencies in OM specialty training will serve as a reference for trainees, trainers, and assessors and reflects a successful use of a modified Delphi approach. Full Article
red Examining the Case for Dental Hygienists Teaching Predoctoral Dental Students: A Two-Part Study By www.jdentaled.org Published On :: 2019-12-01T06:00:18-08:00 Dental students in North American dental schools are exposed to faculty members with various professional backgrounds. These faculty members may include dentists, dental hygienists, and scientists without clinical dental credentials. The practice of dental hygienists’ educating predoctoral dental students has not been well documented. The aims of this two-part study were to investigate the parameters of didactic, preclinical, and clinical instruction of dental students by dental hygienist faculty members in North American dental schools and to explore dental students’ perceptions of this form of teaching. In part one, a survey was sent electronically to the clinical or academic affairs deans of all 76 American Dental Education Association (ADEA) member dental schools in 2017. Twenty-nine responded, for a 38.2% response rate. In 76% of the responding schools, dental hygienists were teaching dental students. Most respondents reported that, in their schools, the minimum degree required to teach didactically was a master’s, while a bachelor’s degree was required for preclinical and clinical courses. There was no significant association between dental hygienists’ instructing dental students and having a dental hygiene educational program at the institution. In part two of the study, a questionnaire was completed by 102 graduating dental students (85% response rate) at one U.S. university to evaluate the impact of dental hygienist educators. Among the respondents, 87% reported feeling that dental hygienists were very effective educators. There were no significant differences in responses between traditional and advanced standing international dental students. This study found that dental hygienists were educating dental students in many North American dental schools and were doing so in curricular content beyond periodontics and that their educational contributions at a sample school were valued by the dental students there. Full Article
red Mycobacterium tuberculosis Reactivates HIV-1 via Exosome-Mediated Resetting of Cellular Redox Potential and Bioenergetics By mbio.asm.org Published On :: 2020-03-03T01:30:27-08:00 ABSTRACT The synergy between Mycobacterium tuberculosis and human immunodeficiency virus-1 (HIV-1) interferes with therapy and facilitates the pathogenesis of both human pathogens. Fundamental mechanisms by which M. tuberculosis exacerbates HIV-1 infection are not clear. Here, we show that exosomes secreted by macrophages infected with M. tuberculosis, including drug-resistant clinical strains, reactivated HIV-1 by inducing oxidative stress. Mechanistically, M. tuberculosis-specific exosomes realigned mitochondrial and nonmitochondrial oxygen consumption rates (OCR) and modulated the expression of host genes mediating oxidative stress response, inflammation, and HIV-1 transactivation. Proteomics analyses revealed the enrichment of several host factors (e.g., HIF-1α, galectins, and Hsp90) known to promote HIV-1 reactivation in M. tuberculosis-specific exosomes. Treatment with a known antioxidant—N-acetyl cysteine (NAC)—or with inhibitors of host factors—galectins and Hsp90—attenuated HIV-1 reactivation by M. tuberculosis-specific exosomes. Our findings uncover new paradigms for understanding the redox and bioenergetics bases of HIV-M. tuberculosis coinfection, which will enable the design of effective therapeutic strategies. IMPORTANCE Globally, individuals coinfected with the AIDS virus (HIV-1) and with M. tuberculosis (causative agent of tuberculosis [TB]) pose major obstacles in the clinical management of both diseases. At the heart of this issue is the apparent synergy between the two human pathogens. On the one hand, mechanisms induced by HIV-1 for reactivation of TB in AIDS patients are well characterized. On the other hand, while clinical findings clearly identified TB as a risk factor for HIV-1 reactivation and associated mortality, basic mechanisms by which M. tuberculosis exacerbates HIV-1 replication and infection remain poorly characterized. The significance of our research is in identifying the role of fundamental mechanisms such as redox and energy metabolism in catalyzing HIV-M. tuberculosis synergy. The quantification of redox and respiratory parameters affected by M. tuberculosis in stimulating HIV-1 will greatly enhance our understanding of HIV-M. tuberculosis coinfection, leading to a wider impact on the biomedical research community and creating new translational opportunities. Full Article
red Host Mucin Is Exploited by Pseudomonas aeruginosa To Provide Monosaccharides Required for a Successful Infection By mbio.asm.org Published On :: 2020-03-03T01:30:27-08:00 ABSTRACT One of the primary functions of the mucosal barrier, found lining epithelial cells, is to serve as a first-line of defense against microbial pathogens. The major structural components of mucus are heavily glycosylated proteins called mucins. Mucins are key components of the innate immune system as they aid in the clearance of pathogens and can decrease pathogen virulence. It has also been recently reported that individual mucins and derived glycans can attenuate the virulence of the human pathogen Pseudomonas aeruginosa. Here, we show data indicating that mucins not only play a role in host defense but that they can also be subverted by P. aeruginosa to cause disease. We found that the mucin MUL-1 and mucin-derived monosaccharides N-acetyl-galactosamine and N-acetylglucosamine are required for P. aeruginosa killing of Caenorhabditis elegans. We also found that the defective adhesion of P. aeruginosa to human lung alveolar epithelial cells, deficient in the mucin MUC1, can be reversed by the addition of individual monosaccharides. The monosaccharides identified in this study are found in a wide range of organisms where they act as host factors required for bacterial pathogenesis. While mucins in C. elegans lack sialic acid caps, which makes their monosaccharides readily available, they are capped in other species. Pathogens such as P. aeruginosa that lack sialidases may rely on enzymes from other bacteria to utilize mucin-derived monosaccharides. IMPORTANCE One of the first lines of defense present at mucosal epithelial tissues is mucus, which is a highly viscous material formed by mucin glycoproteins. Mucins serve various functions, but importantly they aid in the clearance of pathogens and debris from epithelial barriers and serve as innate immune factors. In this study, we describe a requirement of host monosaccharides, likely derived from host mucins, for the ability of Pseudomonas aeruginosa to colonize the intestine and ultimately cause death in Caenorhabditis elegans. We also demonstrate that monosaccharides alter the ability of bacteria to bind to both Caenorhabditis elegans intestinal cells and human lung alveolar epithelial cells, suggesting that there are conserved mechanisms underlying host-pathogen interactions in a range of organisms. By gaining a better understanding of pathogen-mucin interactions, we can develop better approaches to protect against pathogen infection. Full Article
red CO2/HCO3- Accelerates Iron Reduction through Phenolic Compounds By mbio.asm.org Published On :: 2020-03-10T01:30:41-07:00 ABSTRACT Iron is a vital mineral for almost all living organisms and has a pivotal role in central metabolism. Despite its great abundance on earth, the accessibility for microorganisms is often limited, because poorly soluble ferric iron (Fe3+) is the predominant oxidation state in an aerobic environment. Hence, the reduction of Fe3+ is of essential importance to meet the cellular demand of ferrous iron (Fe2+) but might become detrimental as excessive amounts of intracellular Fe2+ tend to undergo the cytotoxic Fenton reaction in the presence of hydrogen peroxide. We demonstrate that the complex formation rate of Fe3+ and phenolic compounds like protocatechuic acid was increased by 46% in the presence of HCO3– and thus accelerated the subsequent redox reaction, yielding reduced Fe2+. Consequently, elevated CO2/HCO3– levels increased the intracellular Fe2+ availability, which resulted in at least 50% higher biomass-specific fluorescence of a DtxR-based Corynebacterium glutamicum reporter strain, and stimulated growth. Since the increased Fe2+ availability was attributed to the interaction of HCO3– and chemical iron reduction, the abiotic effect postulated in this study is of general relevance in geochemical and biological environments. IMPORTANCE In an oxygenic environment, poorly soluble Fe3+ must be reduced to meet the cellular Fe2+ demand. This study demonstrates that elevated CO2/HCO3– levels accelerate chemical Fe3+ reduction through phenolic compounds, thus increasing intracellular Fe2+ availability. A number of biological environments are characterized by the presence of phenolic compounds and elevated HCO3– levels and include soil habitats and the human body. Fe2+ availability is of particular interest in the latter, as it controls the infectiousness of pathogens. Since the effect postulated here is abiotic, it generally affects the Fe2+ distribution in nature. Full Article
red In Vivo Targeting of Clostridioides difficile Using Phage-Delivered CRISPR-Cas3 Antimicrobials By mbio.asm.org Published On :: 2020-03-10T01:30:41-07:00 ABSTRACT Clostridioides difficile is an important nosocomial pathogen that causes approximately 500,000 cases of C. difficile infection (CDI) and 29,000 deaths annually in the United States. Antibiotic use is a major risk factor for CDI because broad-spectrum antimicrobials disrupt the indigenous gut microbiota, decreasing colonization resistance against C. difficile. Vancomycin is the standard of care for the treatment of CDI, likely contributing to the high recurrence rates due to the continued disruption of the gut microbiota. Thus, there is an urgent need for the development of novel therapeutics that can prevent and treat CDI and precisely target the pathogen without disrupting the gut microbiota. Here, we show that the endogenous type I-B CRISPR-Cas system in C. difficile can be repurposed as an antimicrobial agent by the expression of a self-targeting CRISPR that redirects endogenous CRISPR-Cas3 activity against the bacterial chromosome. We demonstrate that a recombinant bacteriophage expressing bacterial genome-targeting CRISPR RNAs is significantly more effective than its wild-type parent bacteriophage at killing C. difficile both in vitro and in a mouse model of CDI. We also report that conversion of the phage from temperate to obligately lytic is feasible and contributes to the therapeutic suitability of intrinsic C. difficile phages, despite the specific challenges encountered in the disease phenotypes of phage-treated animals. Our findings suggest that phage-delivered programmable CRISPR therapeutics have the potential to leverage the specificity and apparent safety of phage therapies and improve their potency and reliability for eradicating specific bacterial species within complex communities, offering a novel mechanism to treat pathogenic and/or multidrug-resistant organisms. IMPORTANCE Clostridioides difficile is a bacterial pathogen responsible for significant morbidity and mortality across the globe. Current therapies based on broad-spectrum antibiotics have some clinical success, but approximately 30% of patients have relapses, presumably due to the continued perturbation to the gut microbiota. Here, we show that phages can be engineered with type I CRISPR-Cas systems and modified to reduce lysogeny and to enable the specific and efficient targeting and killing of C. difficile in vitro and in vivo. Additional genetic engineering to disrupt phage modulation of toxin expression by lysogeny or other mechanisms would be required to advance a CRISPR-enhanced phage antimicrobial for C. difficile toward clinical application. These findings provide evidence into how phage can be combined with CRISPR-based targeting to develop novel therapies and modulate microbiomes associated with health and disease. Full Article
red Gamma Interferon Is Required for Chlamydia Clearance but Is Dispensable for T Cell Homing to the Genital Tract By mbio.asm.org Published On :: 2020-03-17T01:30:14-07:00 ABSTRACT While there is no effective vaccine against Chlamydia trachomatis infection, previous work has demonstrated the importance of C. trachomatis-specific CD4+ T cells (NR1 T cells) in pathogen clearance. Specifically, NR1 T cells have been shown to be protective in mice, and this protection depends on the host’s ability to sense the cytokine gamma interferon (IFN-). However, it is unclear what role NR1 production or sensing of IFN- plays in T cell homing to the genital tract or T cell-mediated protection against C. trachomatis. Using two-photon microscopy and flow cytometry, we found that naive wild-type (WT), IFN-–/–, and IFN-R–/– NR1 T cells specifically home to sections in the genital tract that contain C. trachomatis. We also determined that protection against infection requires production of IFN- from either NR1 T cells or endogenous cells, further highlighting the importance of IFN- in clearing C. trachomatis infection. IMPORTANCE Chlamydia trachomatis is an important mucosal pathogen that is the leading cause of sexually transmitted bacterial infections in the United States. Despite this, there is no vaccine currently available. In order to develop such a vaccine, it is necessary to understand the components of the immune response that can lead to protection against this pathogen. It is well known that antigen-specific CD4+ T cells are critical for Chlamydia clearance, but the contexts in which they are protective or not protective are unknown. Here, we aimed to characterize the importance of gamma interferon production and sensing by T cells and the effects on the immune response to C. trachomatis. Our work here helps to define the contexts in which antigen-specific T cells can be protective, which is critical to our ability to design an effective and protective vaccine against C. trachomatis. Full Article
red Evolution of Host Specificity by Malaria Parasites through Altered Mechanisms Controlling Genome Maintenance By mbio.asm.org Published On :: 2020-03-17T01:30:15-07:00 ABSTRACT The protozoan parasites that cause malaria infect a wide variety of vertebrate hosts, including birds, reptiles, and mammals, and the evolutionary pressures inherent to the host-parasite relationship have profoundly shaped the genomes of both host and parasite. Here, we report that these selective pressures have resulted in unexpected alterations to one of the most basic aspects of eukaryotic biology, the maintenance of genome integrity through DNA repair. Malaria parasites that infect humans continuously generate genetic diversity within their antigen-encoding gene families through frequent ectopic recombination between gene family members, a process that is a crucial feature of the persistence of malaria globally. The continuous generation of antigen diversity ensures that different parasite isolates are antigenically distinct, thus preventing extensive cross-reactive immunity and enabling parasites to maintain stable transmission within human populations. However, the molecular basis of the recombination between gene family members is not well understood. Through computational analyses of the antigen-encoding, multicopy gene families of different Plasmodium species, we report the unexpected observation that malaria parasites that infect rodents do not display the same degree of antigen diversity as observed in Plasmodium falciparum and appear to undergo significantly less ectopic recombination. Using comparative genomics, we also identify key molecular components of the diversification process, thus shedding new light on how malaria parasites balance the maintenance of genome integrity with the requirement for continuous genetic diversification. IMPORTANCE Malaria remains one of the most prevalent and deadly infectious diseases of the developing world, causing approximately 228 million clinical cases and nearly half a million deaths annually. The disease is caused by protozoan parasites of the genus Plasmodium, and of the five species capable of infecting humans, infections with P. falciparum are the most severe. In addition to the parasites that infect people, there are hundreds of additional species that infect birds, reptiles, and other mammals, each exquisitely evolved to meet the specific challenges inherent to survival within their respective hosts. By comparing the unique strategies that each species has evolved, key insights into host-parasite interactions can be gained, including discoveries regarding the pathogenesis of human disease. Here, we describe the surprising observation that closely related parasites with different hosts have evolved remarkably different methods for repairing their genomes. This observation has important implications for the ability of parasites to maintain chronic infections and for the development of host immunity. Full Article
red Adaptive Evolution of Geobacter sulfurreducens in Coculture with Pseudomonas aeruginosa By mbio.asm.org Published On :: 2020-04-07T01:31:16-07:00 ABSTRACT Interactions between microorganisms in mixed communities are highly complex, being either syntrophic, neutral, predatory, or competitive. Evolutionary changes can occur in the interaction dynamics between community members as they adapt to coexistence. Here, we report that the syntrophic interaction between Geobacter sulfurreducens and Pseudomonas aeruginosa coculture change in their dynamics over evolutionary time. Specifically, Geobacter sp. dominance increases with adaptation within the cocultures, as determined through quantitative PCR and fluorescence in situ hybridization. This suggests a transition from syntrophy to competition and demonstrates the rapid adaptive capacity of Geobacter spp. to dominate in cocultures with P. aeruginosa. Early in coculture establishment, two single-nucleotide variants in the G. sulfurreducens fabI and tetR genes emerged that were strongly selected for throughout coculture evolution with P. aeruginosa phenazine wild-type and phenazine-deficient mutants. Sequential window acquisition of all theoretical spectra-mass spectrometry (SWATH-MS) proteomics revealed that the tetR variant cooccurred with the upregulation of an adenylate cyclase transporter, CyaE, and a resistance-nodulation-division (RND) efflux pump notably known for antibiotic efflux. To determine whether antibiotic production was driving the increased expression of the multidrug efflux pump, we tested Pseudomonas-derived phenazine-1-carboxylic acid (PHZ-1-CA) for its potential to inhibit Geobacter growth and drive selection of the tetR and fabI genetic variants. Despite its inhibitory properties, PHZ-1-CA did not drive variant selection, indicating that other antibiotics may drive overexpression of the efflux pump and CyaE or that a novel role exists for these proteins in the context of this interaction. IMPORTANCE Geobacter and Pseudomonas spp. cohabit many of the same environments, where Geobacter spp. often dominate. Both bacteria are capable of extracellular electron transfer (EET) and play important roles in biogeochemical cycling. Although they recently in 2017 were demonstrated to undergo direct interspecies electron transfer (DIET) with one another, the genetic evolution of this syntrophic interaction has not been examined. Here, we use whole-genome sequencing of the cocultures before and after adaptive evolution to determine whether genetic selection is occurring. We also probe their interaction on a temporal level and determine whether their interaction dynamics change over the course of adaptive evolution. This study brings to light the multifaceted nature of interactions between just two microorganisms within a controlled environment and will aid in improving metabolic models of microbial communities comprising these two bacteria. Full Article
red "Candidatus Ethanoperedens," a Thermophilic Genus of Archaea Mediating the Anaerobic Oxidation of Ethane By mbio.asm.org Published On :: 2020-04-21T01:31:26-07:00 ABSTRACT Cold seeps and hydrothermal vents deliver large amounts of methane and other gaseous alkanes into marine surface sediments. Consortia of archaea and partner bacteria thrive on the oxidation of these alkanes and its coupling to sulfate reduction. The inherently slow growth of the involved organisms and the lack of pure cultures have impeded the understanding of the molecular mechanisms of archaeal alkane degradation. Here, using hydrothermal sediments of the Guaymas Basin (Gulf of California) and ethane as the substrate, we cultured microbial consortia of a novel anaerobic ethane oxidizer, "Candidatus Ethanoperedens thermophilum" (GoM-Arc1 clade), and its partner bacterium "Candidatus Desulfofervidus auxilii," previously known from methane-oxidizing consortia. The sulfate reduction activity of the culture doubled within one week, indicating a much faster growth than in any other alkane-oxidizing archaea described before. The dominance of a single archaeal phylotype in this culture allowed retrieval of a closed genome of "Ca. Ethanoperedens," a sister genus of the recently reported ethane oxidizer "Candidatus Argoarchaeum." The metagenome-assembled genome of "Ca. Ethanoperedens" encoded a complete methanogenesis pathway including a methyl-coenzyme M reductase (MCR) that is highly divergent from those of methanogens and methanotrophs. Combined substrate and metabolite analysis showed ethane as the sole growth substrate and production of ethyl-coenzyme M as the activation product. Stable isotope probing demonstrated that the enzymatic mechanism of ethane oxidation in "Ca. Ethanoperedens" is fully reversible; thus, its enzymatic machinery has potential for the biotechnological development of microbial ethane production from carbon dioxide. IMPORTANCE In the seabed, gaseous alkanes are oxidized by syntrophic microbial consortia that thereby reduce fluxes of these compounds into the water column. Because of the immense quantities of seabed alkane fluxes, these consortia are key catalysts of the global carbon cycle. Due to their obligate syntrophic lifestyle, the physiology of alkane-degrading archaea remains poorly understood. We have now cultivated a thermophilic, relatively fast-growing ethane oxidizer in partnership with a sulfate-reducing bacterium known to aid in methane oxidation and have retrieved the first complete genome of a short-chain alkane-degrading archaeon. This will greatly enhance the understanding of nonmethane alkane activation by noncanonical methyl-coenzyme M reductase enzymes and provide insights into additional metabolic steps and the mechanisms underlying syntrophic partnerships. Ultimately, this knowledge could lead to the biotechnological development of alkanogenic microorganisms to support the carbon neutrality of industrial processes. Full Article
red Study: Drivers who drink but arent legally impaired cause thousands of deaths By thenationshealth.aphapublications.org Published On :: 2020-05-01T05:00:17-07:00 Drivers with blood-alcohol levels below legal limits cause 15% of all crash deaths that involve alcohol, a study in the March issue of the American Journal of Preventive Medicine finds. Full Article
red Building local connections could help reduce violent encounters between police, black men By thenationshealth.aphapublications.org Published On :: 2020-05-01T05:00:17-07:00 Finding common ground and building trust between local stakeholders could help prevent violent encounters between police and young black men, new research finds. Full Article
red Many people face high risk of PTSD after being injured, research finds By thenationshealth.aphapublications.org Published On :: 2020-05-01T05:00:17-07:00 A significant number of injury survivors experience post-traumatic stress disorder, and better screening practices could help connect them to mental health services. Full Article
red Federal funding for gun violence prevention research sparks hopes: Priorities, direction being explored By thenationshealth.aphapublications.org Published On :: 2020-05-01T05:00:17-07:00 After more than 20 years of minimal funding, the U.S. is opening its purse strings to research on gun violence prevention. Full Article
red Phosphomimetic T335D Mutation of Hydroxypyruvate Reductase 1 Modifies Cofactor Specificity and Impacts Arabidopsis Growth in Air By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 Photorespiration is an essential process in oxygenic photosynthetic organisms triggered by the oxygenase activity of Rubisco. In peroxisomes, photorespiratory HYDROXYPYRUVATE REDUCTASE1 (HPR1) catalyzes the conversion of hydroxypyruvate to glycerate together with the oxidation of a pyridine nucleotide cofactor. HPR1 regulation remains poorly understood; however, HPR1 phosphorylation at T335 has been reported. By comparing the kinetic properties of phosphomimetic (T335D), nonphosphorylatable (T335A), and wild-type recombinant Arabidopsis (Arabidopsis thaliana) HPR1, it was found that HPR1-T335D exhibits reduced NADH-dependent hydroxypyruvate reductase activity while showing improved NADPH-dependent activity. Complementation of the Arabidopsis hpr1-1 mutant by either wild-type HPR1 or HPR1-T335A fully complemented the photorespiratory growth phenotype of hpr1-1 in ambient air, whereas HPR1-T335D-containing hpr1-1 plants remained smaller and had lower photosynthetic CO2 assimilation rates. Metabolite analyses indicated that these phenotypes were associated with subtle perturbations in the photorespiratory cycle of HPR1-T335D-complemented hpr1-1 rosettes compared to all other HPR1-containing lines. Therefore, T335 phosphorylation may play a role in the regulation of HPR1 activity in planta, although it was not required for growth under ambient air controlled conditions. Furthermore, improved NADP-dependent HPR1 activities in peroxisomes could not compensate for the reduced NADH-dependent HPR1 activity. Full Article
red Dehydroascorbate Reductases and Glutathione Set a Threshold for High-Light-Induced Ascorbate Accumulation By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 Plants require a high concentration of ascorbate as a redox buffer for survival under stress conditions, such as high light. Dehydroascorbate reductases (DHARs) are enzymes that catalyze the reduction of DHA to ascorbate using reduced glutathione (GSH) as an electron donor, allowing rapid ascorbate recycling. However, a recent study using an Arabidopsis (Arabidopsis thaliana) triple mutant lacking all three DHAR genes (herein called dhar) did not find evidence for their role in ascorbate recycling under oxidative stress. To further study the function of DHARs, we generated dhar Arabidopsis plants as well as a quadruple mutant line combining dhar with an additional vtc2 mutation that causes ascorbate deficiency. Measurements of ascorbate in these mutants under low- or high-light conditions indicated that DHARs have a nonnegligible impact on full ascorbate accumulation under high light, but that they are dispensable when ascorbate concentrations are low to moderate. Because GSH itself can reduce DHA nonenzymatically, we used the pad2 mutant that contains ~30% of the wild-type GSH level. The pad2 mutant accumulated ascorbate at a wild-type level under high light; however, when the pad2 mutation was combined with dhar, there was near-complete inhibition of high-light–dependent ascorbate accumulation. The lack of ascorbate accumulation was consistent with a marked increase in the ascorbate degradation product threonate. These findings indicate that ascorbate recycling capacity is limited in dhar pad2 plants, and that both DHAR activity and GSH content set a threshold for high-light–induced ascorbate accumulation. Full Article
red What Are the Roles for Dehydroascorbate Reductases and Glutathione in Sustaining Ascorbate Accumulation? By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 Full Article
red A clinically significant bronchodilator response in children: how should it be measured? By erj.ersjournals.com Published On :: 2020-05-07T01:15:55-07:00 We thank F. Guezguez and H. Ben Saad for raising important questions on recommendations for assessing a bronchodilator response (BDR) in children. The authors summarise how recommended outcome measures and cut-offs for BDR in children vary between guidelines, and raise questions about our study [1]. Full Article
red Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: a prospective cohort study By erj.ersjournals.com Published On :: 2020-05-07T01:15:55-07:00 The aim of this study was to identify factors associated with the death of patients with COVID-19 pneumonia caused by the novel coronavirus SARS-CoV-2. All clinical and laboratory parameters were collected prospectively from a cohort of patients with COVID-19 pneumonia who were hospitalised to Wuhan Pulmonary Hospital (Wuhan City, Hubei Province, China) between 25 December 2019 and 7 February 2020. Univariate and multivariate logistic regression was performed to investigate the relationship between each variable and the risk of death of COVID-19 pneumonia patients. In total, 179 patients with COVID-19 pneumonia (97 male and 82 female) were included in the present prospective study, of whom 21 died. Univariate and multivariate logistic regression analysis revealed that age ≥65 years (OR 3.765, 95% CI 1.146-17.394; p=0.023), pre-existing concurrent cardiovascular or cerebrovascular diseases (OR 2.464, 95% CI 0.755-8.044; p=0.007), CD3+CD8+ T-cells ≤75 cells·μL–1 (OR 3.982, 95% CI 1.132-14.006; p<0.001) and cardiac troponin I ≥0.05 ng·mL–1 (OR 4.077, 95% CI 1.166-14.253; p<0.001) were associated with an increase in risk of mortality from COVID-19 pneumonia. In a sex-, age- and comorbid illness-matched case–control study, CD3+CD8+ T-cells ≤75 cells·μL–1 and cardiac troponin I ≥0.05 ng·mL–1 remained as predictors for high mortality from COVID-19 pneumonia. We identified four risk factors: age ≥65 years, pre-existing concurrent cardiovascular or cerebrovascular diseases, CD3+CD8+ T-cells ≤75 cells·μL–1 and cardiac troponin I ≥0.05 ng·mL–1. The latter two factors, especially, were predictors for mortality of COVID-19 pneumonia patients. Full Article
red A rational approach to e-cigarettes: challenging ERS policy on tobacco harm reduction By erj.ersjournals.com Published On :: 2020-05-07T01:15:55-07:00 We wish to thank J. Britton and co-workers for responding to our editorial and giving us an opportunity to clarify our position as well as correct a few misunderstandings. We definitely share the same goal, which is to relieve Europe and the rest of the world from the terrible results of the tobacco epidemic. We also do not "blankly oppose e-cigarettes"; however, we strongly advocate against a harm reduction strategy including e-cigarettes as well as heated tobacco products [1]. As clinicians we all see reluctant smokers where e-cigarettes can be tried as a last resort for getting off cigarette smoking, but that is of little relevance for a general harm reduction strategy. We also agree that the UK has achieved a lot in the area of smoking cessation but would argue that this has been achieved by impressive tobacco control, not by the use of e-cigarettes, and that a country such as Australia, which has banned nicotine-containing e-cigarettes, has achieved similar results. Full Article
red A rational approach to e-cigarettes: challenging ERS policy on tobacco harm reduction By erj.ersjournals.com Published On :: 2020-05-07T01:15:55-07:00 The respiratory community is united in its desire to reduce and eliminate the harm caused by tobacco smoking, which is at present on course to kill one billion people in the 21st century. The stated policy of the European Respiratory Society is to strive "constantly to promote strong and evidence-based policies to reduce the burden of tobacco related diseases". In our view, the recent ERS Tobacco Control Committee statement on tobacco harm reduction [1], though well-intentioned, appears to be based on a number of false premises and draws its conclusions from a partial account of available data. It also presents a false dichotomy between the provision of "conventional" tobacco control and harm reduction approaches. We therefore respond, in turn, to the seven arguments presented against the adoption of harm reduction in the Committee's statement. Full Article
red Obstructive sleep apnoea treatment and blood pressure: which phenotypes predict a response? A systematic review and meta-analysis By erj.ersjournals.com Published On :: 2020-05-07T01:15:55-07:00 The treatment for obstructive sleep apnoea (OSA) with continuous positive airway pressure (CPAP) or mandibular advancement devices (MADs) is associated with blood pressure (BP) reduction; however, the overall effect is modest. The aim of this systematic review and meta-analysis of randomised controlled trials (RCTs) comparing the effect of such treatments on BP was to identify subgroups of patients who respond best to treatment. The article search was performed in three different databases with specific search terms and selection criteria. From 2289 articles, we included 68 RCTs that compared CPAP or MADs with either passive or active treatment. When all the studies were pooled together, CPAP and MADs were associated with a mean BP reduction of –2.09 (95% CI –2.78– –1.40) mmHg for systolic BP and –1.92 (95% CI –2.40– –1.43) mmHg for diastolic BP and –1.27 (95% CI –2.34– –0.20) mmHg for systolic BP and –1.11 (95% CI –1.82– –0.41) mmHg for diastolic BP, respectively. The subgroups of patients who showed a greater response were those aged <60 years (systolic BP –2.93 mmHg), with uncontrolled BP at baseline (systolic BP –4.14 mmHg) and with severe oxygen desaturations (minimum arterial oxygen saturation measured by pulse oximetry <77%) at baseline (24-h systolic BP –7.57 mmHg). Although this meta-analysis shows that the expected reduction of BP by CPAP/MADs is modest, it identifies specific characteristics that may predict a pronounced benefit from CPAP in terms of BP control. These findings should be interpreted with caution; however, they are particularly important in identifying potential phenotypes associated with BP reduction in patients treated for OSA. Full Article
red Dominance Effects and Functional Enrichments Improve Prediction of Agronomic Traits in Hybrid Maize [Genomic Prediction] By www.genetics.org Published On :: 2020-05-05T06:43:41-07:00 Single-cross hybrids have been critical to the improvement of maize (Zea mays L.), but the characterization of their genetic architectures remains challenging. Previous studies of hybrid maize have shown the contribution of within-locus complementation effects (dominance) and their differential importance across functional classes of loci. However, they have generally considered panels of limited genetic diversity, and have shown little benefit from genomic prediction based on dominance or functional enrichments. This study investigates the relevance of dominance and functional classes of variants in genomic models for agronomic traits in diverse populations of hybrid maize. We based our analyses on a diverse panel of inbred lines crossed with two testers representative of the major heterotic groups in the U.S. (1106 hybrids), as well as a collection of 24 biparental populations crossed with a single tester (1640 hybrids). We investigated three agronomic traits: days to silking (DTS), plant height (PH), and grain yield (GY). Our results point to the presence of dominance for all traits, but also among-locus complementation (epistasis) for DTS and genotype-by-environment interactions for GY. Consistently, dominance improved genomic prediction for PH only. In addition, we assessed enrichment of genetic effects in classes defined by genic regions (gene annotation), structural features (recombination rate and chromatin openness), and evolutionary features (minor allele frequency and evolutionary constraint). We found support for enrichment in genic regions and subsequent improvement of genomic prediction for all traits. Our results suggest that dominance and gene annotations improve genomic prediction across diverse populations in hybrid maize. Full Article
red Identifying and Classifying Shared Selective Sweeps from Multilocus Data [Population and Evolutionary Genetics] By www.genetics.org Published On :: 2020-05-05T06:43:41-07:00 Positive selection causes beneficial alleles to rise to high frequency, resulting in a selective sweep of the diversity surrounding the selected sites. Accordingly, the signature of a selective sweep in an ancestral population may still remain in its descendants. Identifying signatures of selection in the ancestor that are shared among its descendants is important to contextualize the timing of a sweep, but few methods exist for this purpose. We introduce the statistic SS-H12, which can identify genomic regions under shared positive selection across populations and is based on the theory of the expected haplotype homozygosity statistic H12, which detects recent hard and soft sweeps from the presence of high-frequency haplotypes. SS-H12 is distinct from comparable statistics because it requires a minimum of only two populations, and properly identifies and differentiates between independent convergent sweeps and true ancestral sweeps, with high power and robustness to a variety of demographic models. Furthermore, we can apply SS-H12 in conjunction with the ratio of statistics we term and to further classify identified shared sweeps as hard or soft. Finally, we identified both previously reported and novel shared sweep candidates from human whole-genome sequences. Previously reported candidates include the well-characterized ancestral sweeps at LCT and SLC24A5 in Indo-Europeans, as well as GPHN worldwide. Novel candidates include an ancestral sweep at RGS18 in sub-Saharan Africans involved in regulating the platelet response and implicated in sudden cardiac death, and a convergent sweep at C2CD5 between European and East Asian populations that may explain their different insulin responses. Full Article
red De Novo Purine Biosynthesis Is Required for Intracellular Growth of Staphylococcus aureus and for the Hypervirulence Phenotype of a purR Mutant [Cellular Microbiology: Pathogen-Host Cell Molecular Interactions] By iai.asm.org Published On :: 2020-04-20T08:00:39-07:00 Staphylococcus aureus is a noted human and animal pathogen. Despite decades of research on this important bacterium, there are still many unanswered questions regarding the pathogenic mechanisms it uses to infect the mammalian host. This can be attributed to it possessing a plethora of virulence factors and complex virulence factor and metabolic regulation. PurR, the purine biosynthesis regulator, was recently also shown to regulate virulence factors in S. aureus, and mutations in purR result in derepression of fibronectin binding proteins (FnBPs) and extracellular toxins, required for a so-called hypervirulent phenotype. Here, we show that hypervirulent strains containing purR mutations can be attenuated with the addition of purine biosynthesis mutations, implicating the necessity for de novo purine biosynthesis in this phenotype and indicating that S. aureus in the mammalian host experiences purine limitation. Using cell culture, we showed that while purR mutants are not altered in epithelial cell binding, compared to that of wild-type (WT) S. aureus, purR mutants have enhanced invasion of these nonprofessional phagocytes, consistent with the requirement of FnBPs for invasion of these cells. This correlates with purR mutants having increased transcription of fnb genes, resulting in higher levels of surface-exposed FnBPs to promote invasion. These data provide important contributions to our understanding of how the pathogenesis of S. aureus is affected by sensing of purine levels during infection of the mammalian host. Full Article
red Induction of Protective Antiplague Immune Responses by Self-Adjuvanting Bionanoparticles Derived from Engineered Yersinia pestis [Microbial Immunity and Vaccines] By iai.asm.org Published On :: 2020-04-20T08:00:38-07:00 A Yersinia pestis mutant synthesizing an adjuvant form of lipid A (monophosphoryl lipid A, MPLA) displayed increased biogenesis of bacterial outer membrane vesicles (OMVs). To enhance the immunogenicity of the OMVs, we constructed an Asd-based balanced-lethal host-vector system that oversynthesized the LcrV antigen of Y. pestis, raised the amounts of LcrV enclosed in OMVs by the type II secretion system, and eliminated harmful factors like plasminogen activator (Pla) and murine toxin from the OMVs. Vaccination with OMVs containing MPLA and increased amounts of LcrV with diminished toxicity afforded complete protection in mice against subcutaneous challenge with 8 x 105 CFU (80,000 50% lethal dose [LD50]) and intranasal challenge with 5 x 103 CFU (50 LD50) of virulent Y. pestis. This protection was significantly superior to that resulting from vaccination with LcrV/alhydrogel or rF1-V/alhydrogel. At week 4 postimmunization, the OMV-immunized mice showed more robust titers of antibodies against LcrV, Y. pestis whole-cell lysate (YPL), and F1 antigen and more balanced IgG1:IgG2a/IgG2b-derived Th1 and Th2 responses than LcrV-immunized mice. Moreover, potent adaptive and innate immune responses were stimulated in the OMV-immunized mice. Our findings demonstrate that self-adjuvanting Y. pestis OMVs provide a novel plague vaccine candidate and that the rational design of OMVs could serve as a robust approach for vaccine development. Full Article
red Procedural justice training reduces police use of force and complaints against officers [Social Sciences] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 Existing research shows that distrust of the police is widespread and consequential for public safety. However, there is a shortage of interventions that demonstrably reduce negative police interactions with the communities they serve. A training program in Chicago attempted to encourage 8,480 officers to adopt procedural justice policing strategies. These... Full Article