ul

Culture notes: Europe's broken promises to Africa

Culture notes: Europe's broken promises to Africa The World Today mhiggins.drupal 1 August 2022

Europe’s ‘gas grab’ in Africa is just the latest abuse of its relationship with the continent, says Catherine Fieschi.

When Emmanuel Macron made one of his first visits to Africa as France’s recently elected young president in 2017, his speech at Ouagadougou University in Burkina Faso was designed to set the tone for a new relationship between his country and African countries. 

‘There no longer is a French policy for Africa,’ he said.

This was a signal away from ‘la Françafrique’, with its post-colonial accents and the propping up of regimes friendly to France, to something that was more strategic, equitable and transparent – more partnership and less tutelage. 

And Europe seemed to be following suit. In March 2020 the European Union and Africa decided that they would redefine their relationship. The European Commission unveiled its vision for a ‘comprehensive strategy with Africa’. The roadmap would give Africa significantly more say over the nature and extent of the relationship, more choice and more political agency.

Despite repeated statements, Europe seems to be saying one thing and doing another when it comes to Africa

But what, today, is left of these aspirations? Despite repeated statements, Europe seems to be saying one thing and doing another. 

Earlier this year, after the long-awaited 6th annual EU-African Union summit in Brussels, South African president Cyril Ramaphosa was frank when he summed up the gap between stated ambitions and the current relationship. The pandemic-weary Global South had reason to be wary. Ramaphosa laid out missed opportunities, disappointment and the low expectations that act as self-fulfilling prophecies. 

Europe’s changing focus in Africa 

From the apparent high point of the Ouagadougou speech, Macron has now turned to the Organization Internationale de la Francophonie (OIF) in Africa for geopolitical purposes. His primary aim is to combat the rise of Islamist militants and terrorism in the Sahel as well as to tackle the growing influence of China and Russia in the region. 

Russian inroads – via the security firm Wagner in Mali, for instance – have given France further cause to use the OIF to counter destabilization activities. Both the United Kingdom and France train African military in the Sahel, but now, with the end of France’s anti-insurgent Operation Barkhane in Mali, the subsequent withdrawal of French troops and the increasingly established presence of the Wagner group, the security situation in the region is expected to deteriorate dramatically and become increasingly impermeable to European interests and forces.

As for development aid, Britain’s Integrated Review of Security, Defence, Development and Foreign Policy makes no bones about the fact that Asia is now a priority over Africa.

The relationship between Africa and Britain is being transformed as a result, most obviously through the cuts in development aid, with African aid cut by 66 per cent in 2021. But the nature of the relationship, which has become both more conditional and more transactional, has also changed. 

The UK is emphasizing human rights and ‘free societies’, but also pushing for free market principles rather than the kind of state involvement that some African countries often prefer as a road to accelerated and more autonomous development. 

The future of energy exports and COP27

The issue of energy exports points to what will most likely trigger the greatest disappointment in the next few years – climate and climate finance. 

Green energy deals, like the $8.5 billion COP26 package from the EU, United States and UK to South Africa, look far more problematic now in the light of Europe’s African gas-grab. Indeed, Europe is importing as much African gas as it can after the invasion of Ukraine by Russia reduced supplies. Yet African countries are still being told to curb their own use of ‘dirty’ energy. 

As an illustration, Nigeria holds 3 per cent of the world’s gas reserves, but has barely tapped them, while 40 per cent of its output is exported to Europe. In April, Italy closed deals to buy gas from Angola and the Republic of Congo, while Germany did the same with Senegal.
 

At COP15 in Copenhagen in 2009, developed countries pledged an annual $100 billion in climate finance to developing countries for both adaptation and mitigation. But pledges have never really materialized. The aid agency Oxfam estimates that only about a third of the money has been delivered. Climate finance was again the main focus of COP26 – and dismissed by Greta Thunberg as more ‘blah, blah, blah’.

This series of repeated resets, pledges and disappointments tells a story – indeed, several stories. First and foremost, it is one of arrogance and betrayal. That much is obvious. But it is also a story about stories – about how the narratives elaborated by various European countries and leaders never amount to more than a sum of transactions. 

Climate change places Europe, and other rich nations, at a crossroads in its relationship with Africa: the former holds the wealth, but also some of the keys and threats to the transition. COP27, to be held in Egypt in November, will be the next chapter in the story. 




ul

Africa-Japan relations and evolving multilateralism

Africa-Japan relations and evolving multilateralism 23 November 2022 — 9:00AM TO 10:30AM Anonymous (not verified) 17 November 2022 Online

This panel discussion reflects on the outcomes of TICAD 8 in 2022 and looks forward to TICAD 9 in 2025.

The eighth edition of the Tokyo International Conference on African Development (TICAD), held in Tunisia from 27–28 August 2022, marked the second time that Japan’s now-triennial summit was hosted in an African country, after TICAD 6 was held in Kenya in 2016.

The summit was attended by 48 representatives of African countries and at least 20 heads of state and government and included a pledge by the Japanese government to commit $30 billion in public and private finance to Africa over the next three years.

In reaffirming the three pillars of TICAD 8 – revolving around the economy, societal resilience, and peace and stability – the newly adopted Tunis Declaration (28 August 2022) also outlined some of the key projects underpinning Japan’s pledge, including a $4 billion fund for a Green Growth Initiative with Africa (GGA).

2023 will mark 30 years since the inception of TICAD in 1993 and ten years since the African Union (AU)’s adoption of its flagship Agenda 2063, on which the Tunis Declaration placed distinct emphasis.

This panel discussion reflects on the outcomes of TICAD 8 in 2022 and looks forward to TICAD 9 in 2025, exploring wider developments in summitry, Africa-Asia relations, and modes of multilateralism.

Questions explored include:

  • How has international summitry evolved over the past three decades since the inception of TICAD in 1993, which represented the first periodic high-level summit engagement with Africa by a ‘non-traditional’ partner?
  • Looking ahead to TICAD 9 in 2025, what are the priorities for enforcing the stated tenets of TICAD – ‘African ownership, international partnership, inclusivity and openness’ – in cooperation efforts?
  • What lessons can be drawn from TICAD’s co-partnership approach (with the African Union Commission and others) – particularly given increasing calls for AU membership of the G20 and Prime Minister Kishida’s pledge at TICAD 8 to support a permanent African UNSC seat during its non-permanent membership in 2023–24? Beyond membership, what are the priorities for furthering agency?
  • How are Africa-Asia relations evolving and diverging? How are Japan and other Asian countries perceived by different African countries?

This event is the third in the Chatham House – Japan House London webinar series (2022-2023). The series is held in partnership with Japan House London. You can watch previous webinars from the series here.




ul

Impact of 18F-FDG PET/MRI on Therapeutic Management of Women with Newly Diagnosed Breast Cancer: Results from a Prospective Double-Center Trial

Visual Abstract




ul

Improved Localization of Insulinomas Using 68Ga-NODAGA-Exendin-4 PET/CT

Visual Abstract




ul

MIRD Pamphlet No. 31: MIRDcell V4--Artificial Intelligence Tools to Formulate Optimized Radiopharmaceutical Cocktails for Therapy

Visual Abstract




ul

Clinical, Pathologic, and Imaging Variables Associated with Prostate Cancer Detection by PSMA PET/CT and Multiparametric MRI

Visual Abstract




ul

Changed Regulation Enables Pragmatic Solution for Cancer Patients




ul

Re: Decompression alone or with fusion for degenerative lumbar spondylolisthesis (Nordsten-DS): five year follow-up of a randomised, multicentre, non-inferiority trial




ul

Citrus Vascular Proteomics Highlights the Role of Peroxidases and Serine Proteases during Huanglongbing Disease Progression

Jessica Y. Franco
Dec 1, 2020; 19:1936-1951
Research




ul

Novel Proteomic Profiling of Epididymal Extracellular Vesicles in the Domestic Cat Reveals Proteins Related to Sequential Sperm Maturation with Differences Observed between Normospermic and Teratospermic Individuals

Tricia Rowlison
Dec 1, 2020; 19:2090-2103
Research




ul

A Mouse Brain-based Multi-omics Integrative Approach Reveals Potential Blood Biomarkers for Ischemic Stroke

Alba Simats
Dec 1, 2020; 19:1921-1935
Research




ul

Multi-sample mass spectrometry-based approach for discovering injury markers in chronic kidney disease

Ji Eun Kim
Dec 20, 2020; 0:RA120.002159v1-mcp.RA120.002159
Research




ul

Kinome Profiling of Primary Endometrial Tumors Using Multiplexed Inhibitor Beads and Mass Spectrometry Identifies SRPK1 as Candidate Therapeutic Target

Alison M. Kurimchak
Dec 1, 2020; 19:2068-2089
Research




ul

Thyroglobulin interactome profiling defines altered proteostasis topology associated with thyroid dyshormonogenesis

Madison T Wright
Nov 18, 2020; 0:RA120.002168v1-mcp.RA120.002168
Research




ul

A proteomic approach to understand the clinical significance of acute myeloid leukemia-derived extracellular vesicles reflecting essential characteristics of leukemia

Ka-Won Kang
Nov 30, 2020; 0:RA120.002169v1-mcp.RA120.002169
Research




ul

The Mechanism of NEDD8 Activation of CUL5 Ubiquitin E3 Ligases

Ryan J Lumpkin
Dec 2, 2020; 0:RA120.002414v1-mcp.RA120.002414
Research




ul

PTM-Shepherd: analysis and summarization of post-translational and chemical modifications from open search results

Daniel J. Geiszler
Dec 1, 2020; 0:TIR120.002216v1-mcp.TIR120.002216
Technological Innovation and Resources




ul

ReactomeGSA - Efficient Multi-Omics Comparative Pathway Analysis

Johannes Griss
Dec 1, 2020; 19:2115-2124
Technological Innovation and Resources




ul

Mutation-independent Proteomic Signatures of Pathological Progression in Murine Models of Duchenne Muscular Dystrophy

Tirsa L. E. van Westering
Dec 1, 2020; 19:2047-2067
Research




ul

ProAlanase is an Effective Alternative to Trypsin for Proteomics Applications and Disulfide Bond Mapping

Diana Samodova
Dec 1, 2020; 19:2139-2156
Technological Innovation and Resources




ul

Pluripotency of embryonic stem cells lacking clathrin-mediated endocytosis cannot be rescued by restoring cellular stiffness [Molecular Biophysics]

Mouse embryonic stem cells (mESCs) display unique mechanical properties, including low cellular stiffness in contrast to differentiated cells, which are stiffer. We have previously shown that mESCs lacking the clathrin heavy chain (Cltc), an essential component for clathrin-mediated endocytosis (CME), display a loss of pluripotency and an enhanced expression of differentiation markers. However, it is not known whether physical properties such as cellular stiffness also change upon loss of Cltc, similar to what is seen in differentiated cells, and if so, how these altered properties specifically impact pluripotency. Using atomic force microscopy (AFM), we demonstrate that mESCs lacking Cltc display higher Young's modulus, indicative of greater cellular stiffness, compared with WT mESCs. The increase in stiffness was accompanied by the presence of actin stress fibers and accumulation of the inactive, phosphorylated, actin-binding protein cofilin. Treatment of Cltc knockdown mESCs with actin polymerization inhibitors resulted in a decrease in the Young's modulus to values similar to those obtained with WT mESCs. However, a rescue in the expression profile of pluripotency factors was not obtained. Additionally, whereas WT mouse embryonic fibroblasts could be reprogrammed to a state of pluripotency, this was inhibited in the absence of Cltc. This indicates that the presence of active CME is essential for the pluripotency of embryonic stem cells. Additionally, whereas physical properties may serve as a simple readout of the cellular state, they may not always faithfully recapitulate the underlying molecular fate.




ul

VBP1 modulates Wnt/{beta}-catenin signaling by mediating the stability of the transcription factors TCF/LEFs [Signal Transduction]

The Wnt/β-catenin pathway is one of the major pathways that regulates embryonic development, adult homeostasis, and stem cell self-renewal. In this pathway, transcription factors T-cell factor and lymphoid enhancer factor (TCF/LEF) serve as a key switch to repress or activate Wnt target gene transcription by recruiting repressor molecules or interacting with the β-catenin effector, respectively. It has become evident that the protein stability of the TCF/LEF family members may play a critical role in controlling the activity of the Wnt/β-catenin signaling pathway. However, factors that regulate the stability of TCF/LEFs remain largely unknown. Here, we report that pVHL binding protein 1 (VBP1) regulates the Wnt/β-catenin signaling pathway by controlling the stability of TCF/LEFs. Surprisingly, we found that either overexpression or knockdown of VBP1 decreased Wnt/β-catenin signaling activity in both cultured cells and zebrafish embryos. Mechanistically, VBP1 directly binds to all four TCF/LEF family members and von Hippel-Lindau tumor-suppressor protein (pVHL). Either overexpression or knockdown of VBP1 increases the association between TCF/LEFs and pVHL and then decreases the protein levels of TCF/LEFs via proteasomal degradation. Together, our results provide mechanistic insights into the roles of VBP1 in controlling TCF/LEFs protein stability and regulating Wnt/β-catenin signaling pathway activity.




ul

Functions of Gle1 are governed by two distinct modes of self-association [Gene Regulation]

Gle1 is a conserved, essential regulator of DEAD-box RNA helicases, with critical roles defined in mRNA export, translation initiation, translation termination, and stress granule formation. Mechanisms that specify which, where, and when DDXs are targeted by Gle1 are critical to understand. In addition to roles for stress-induced phosphorylation and inositol hexakisphosphate binding in specifying Gle1 function, Gle1 oligomerizes via its N-terminal domain in a phosphorylation-dependent manner. However, a thorough analysis of the role for Gle1 self-association is lacking. Here, we find that Gle1 self-association is driven by two distinct regions: a coiled-coil domain and a novel 10-amino acid aggregation-prone region, both of which are necessary for proper Gle1 oligomerization. By exogenous expression in HeLa cells, we tested the function of a series of mutations that impact the oligomerization domains of the Gle1A and Gle1B isoforms. Gle1 oligomerization is necessary for many, but not all aspects of Gle1A and Gle1B function, and the requirements for each interaction domain differ. Whereas the coiled-coil domain and aggregation-prone region additively contribute to competent mRNA export and stress granule formation, both self-association domains are independently required for regulation of translation under cellular stress. In contrast, Gle1 self-association is dispensable for phosphorylation and nonstressed translation initiation. Collectively, we reveal self-association functions as an additional mode of Gle1 regulation to ensure proper mRNA export and translation. This work also provides further insight into the mechanisms underlying human gle1 disease mutants found in prenatally lethal forms of arthrogryposis.




ul

Angiostatic cues from the matrix: Endothelial cell autophagy meets hyaluronan biology [Glycobiology and Extracellular Matrices]

The extracellular matrix encompasses a reservoir of bioactive macromolecules that modulates a cornucopia of biological functions. A prominent body of work posits matrix constituents as master regulators of autophagy and angiogenesis and provides molecular insight into how these two processes are coordinated. Here, we review current understanding of the molecular mechanisms underlying hyaluronan and HAS2 regulation and the role of soluble proteoglycan in affecting autophagy and angiogenesis. Specifically, we assess the role of proteoglycan-evoked autophagy in regulating angiogenesis via the HAS2-hyaluronan axis and ATG9A, a novel HAS2 binding partner. We discuss extracellular hyaluronan biology and the post-transcriptional and post-translational modifications that regulate its main synthesizer, HAS2. We highlight the emerging group of proteoglycans that utilize outside-in signaling to modulate autophagy and angiogenesis in cancer microenvironments and thoroughly review the most up-to-date understanding of endorepellin signaling in vascular endothelia, providing insight into the temporal complexities involved.




ul

Cell adhesion molecule IGPR-1 activates AMPK connecting cell adhesion to autophagy [Cell Biology]

Autophagy plays critical roles in the maintenance of endothelial cells in response to cellular stress caused by blood flow. There is growing evidence that both cell adhesion and cell detachment can modulate autophagy, but the mechanisms responsible for this regulation remain unclear. Immunoglobulin and proline-rich receptor-1 (IGPR-1) is a cell adhesion molecule that regulates angiogenesis and endothelial barrier function. In this study, using various biochemical and cellular assays, we demonstrate that IGPR-1 is activated by autophagy-inducing stimuli, such as amino acid starvation, nutrient deprivation, rapamycin, and lipopolysaccharide. Manipulating the IκB kinase β activity coupled with in vivo and in vitro kinase assays demonstrated that IκB kinase β is a key serine/threonine kinase activated by autophagy stimuli and that it catalyzes phosphorylation of IGPR-1 at Ser220. The subsequent activation of IGPR-1, in turn, stimulates phosphorylation of AMP-activated protein kinase, which leads to phosphorylation of the major pro-autophagy proteins ULK1 and Beclin-1 (BECN1), increased LC3-II levels, and accumulation of LC3 punctum. Thus, our data demonstrate that IGPR-1 is activated by autophagy-inducing stimuli and in response regulates autophagy, connecting cell adhesion to autophagy. These findings may have important significance for autophagy-driven pathologies such cardiovascular diseases and cancer and suggest that IGPR-1 may serve as a promising therapeutic target.




ul

Human pancreatic cancer cells under nutrient deprivation are vulnerable to redox system inhibition [Cell Biology]

Large regions in tumor tissues, particularly pancreatic cancer, are hypoxic and nutrient-deprived because of unregulated cell growth and insufficient vascular supply. Certain cancer cells, such as those inside a tumor, can tolerate these severe conditions and survive for prolonged periods. We hypothesized that small molecular agents, which can preferentially reduce cancer cell survival under nutrient-deprived conditions, could function as anticancer drugs. In this study, we constructed a high-throughput screening system to identify such small molecules and screened chemical libraries and microbial culture extracts. We were able to determine that some small molecular compounds, such as penicillic acid, papyracillic acid, and auranofin, exhibit preferential cytotoxicity to human pancreatic cancer cells under nutrient-deprived compared with nutrient-sufficient conditions. Further analysis revealed that these compounds target to redox systems such as GSH and thioredoxin and induce accumulation of reactive oxygen species in nutrient-deprived cancer cells, potentially contributing to apoptosis under nutrient-deprived conditions. Nutrient-deficient cancer cells are often deficient in GSH; thus, they are susceptible to redox system inhibitors. Targeting redox systems might be an attractive therapeutic strategy under nutrient-deprived conditions of the tumor microenvironment.




ul

The amphipathic helices of Arfrp1 and Arl14 are sufficient to determine subcellular localizations [Cell Biology]

The subcellular localization of Arf family proteins is generally thought to be determined by their corresponding guanine nucleotide exchange factors. By promoting GTP binding, guanine nucleotide exchange factors induce conformational changes of Arf proteins exposing their N-terminal amphipathic helices, which then insert into the membranes to stabilize the membrane association process. Here, we found that the N-terminal amphipathic motifs of the Golgi-localized Arf family protein, Arfrp1, and the endosome- and plasma membrane–localized Arf family protein, Arl14, play critical roles in spatial determination. Exchanging the amphipathic helix motifs between these two Arf proteins causes the switch of their localizations. Moreover, the amphipathic helices of Arfrp1 and Arl14 are sufficient for cytosolic proteins to be localized into a specific cellular compartment. The spatial determination mediated by the Arfrp1 helix requires its binding partner Sys1. In addition, the residues that are required for the acetylation of the Arfrp1 helix and the myristoylation of the Arl14 helix are important for the specific subcellular localization. Interestingly, Arfrp1 and Arl14 are recruited to their specific cellular compartments independent of GTP binding. Our results demonstrate that the amphipathic motifs of Arfrp1 and Arl14 are sufficient for determining specific subcellular localizations in a GTP-independent manner, suggesting that the membrane association and activation of some Arf proteins are uncoupled.




ul

Integrin and autocrine IGF2 pathways control fasting insulin secretion in {beta}-cells [Signal Transduction]

Elevated levels of fasting insulin release and insufficient glucose-stimulated insulin secretion (GSIS) are hallmarks of diabetes. Studies have established cross-talk between integrin signaling and insulin activity, but more details of how integrin-dependent signaling impacts the pathophysiology of diabetes are needed. Here, we dissected integrin-dependent signaling pathways involved in the regulation of insulin secretion in β-cells and studied their link to the still debated autocrine regulation of insulin secretion by insulin/insulin-like growth factor (IGF) 2–AKT signaling. We observed for the first time a cooperation between different AKT isoforms and focal adhesion kinase (FAK)–dependent adhesion signaling, which either controlled GSIS or prevented insulin secretion under fasting conditions. Indeed, β-cells form integrin-containing adhesions, which provide anchorage to the pancreatic extracellular matrix and are the origin of intracellular signaling via FAK and paxillin. Under low-glucose conditions, β-cells adopt a starved adhesion phenotype consisting of actin stress fibers and large peripheral focal adhesion. In contrast, glucose stimulation induces cell spreading, actin remodeling, and point-like adhesions that contain phospho-FAK and phosphopaxillin, located in small protrusions. Rat primary β-cells and mouse insulinomas showed an adhesion remodeling during GSIS resulting from autocrine insulin/IGF2 and AKT1 signaling. However, under starving conditions, the maintenance of stress fibers and the large adhesion phenotype required autocrine IGF2-IGF1 receptor signaling mediated by AKT2 and elevated FAK-kinase activity and ROCK-RhoA levels but low levels of paxillin phosphorylation. This starved adhesion phenotype prevented excessive insulin granule release to maintain low insulin secretion during fasting. Thus, deregulation of the IGF2 and adhesion-mediated signaling may explain dysfunctions observed in diabetes.




ul

Site-specific contacts enable distinct modes of TRPV1 regulation by the potassium channel Kv{beta}1 subunit [Molecular Biophysics]

Transient receptor potential vanilloid 1 (TRPV1) channel is a multimodal receptor that is responsible for nociceptive, thermal, and mechanical sensations. However, which biomolecular partners specifically interact with TRPV1 remains to be elucidated. Here, we used cDNA library screening of genes from mouse dorsal root ganglia combined with patch-clamp electrophysiology to identify the voltage-gated potassium channel auxiliary subunit Kvβ1 physically interacting with TRPV1 channel and regulating its function. The interaction was validated in situ using endogenous dorsal root ganglia neurons, as well as a recombinant expression model in HEK 293T cells. The presence of Kvβ1 enhanced the expression stability of TRPV1 channels on the plasma membrane and the nociceptive current density. Surprisingly, Kvβ1 interaction also shifted the temperature threshold for TRPV1 thermal activation. Using site-specific mapping, we further revealed that Kvβ1 interacted with the membrane-distal domain and membrane-proximal domain of TRPV1 to regulate its membrane expression and temperature-activation threshold, respectively. Our data therefore suggest that Kvβ1 is a key element in the TRPV1 signaling complex and exerts dual regulatory effects in a site-specific manner.




ul

Dysregulation of hsa-miR-34a and hsa-miR-449a leads to overexpression of PACS-1 and loss of DNA damage response (DDR) in cervical cancer [Cell Biology]

We have observed overexpression of PACS-1, a cytosolic sorting protein in primary cervical tumors. Absence of exonic mutations and overexpression at the RNA level suggested a transcriptional and/or posttranscriptional regulation. University of California Santa Cruz genome browser analysis of PACS-1 micro RNAs (miR), revealed two 8-base target sequences at the 3' terminus for hsa-miR-34a and hsa-miR-449a. Quantitative RT-PCR and Northern blotting studies showed reduced or loss of expression of the two microRNAs in cervical cancer cell lines and primary tumors, indicating dysregulation of these two microRNAs in cervical cancer. Loss of PACS-1 with siRNA or exogenous expression of hsa-miR-34a or hsa-miR-449a in HeLa and SiHa cervical cancer cell lines resulted in DNA damage response, S-phase cell cycle arrest, and reduction in cell growth. Furthermore, the siRNA studies showed that loss of PACS-1 expression was accompanied by increased nuclear γH2AX expression, Lys382-p53 acetylation, and genomic instability. PACS-1 re-expression through LNA-hsa-anti-miR-34a or -449a or through PACS-1 cDNA transfection led to the reversal of DNA damage response and restoration of cell growth. Release of cells post 24-h serum starvation showed PACS-1 nuclear localization at G1-S phase of the cell cycle. Our results therefore indicate that the loss of hsa-miR-34a and hsa-miR-449a expression in cervical cancer leads to overexpression of PACS-1 and suppression of DNA damage response, resulting in the development of chemo-resistant tumors.




ul

Interrogation of kinase genetic interactions provides a global view of PAK1-mediated signal transduction pathways [Gene Regulation]

Kinases are critical components of intracellular signaling pathways and have been extensively investigated with regard to their roles in cancer. p21-activated kinase-1 (PAK1) is a serine/threonine kinase that has been previously implicated in numerous biological processes, such as cell migration, cell cycle progression, cell motility, invasion, and angiogenesis, in glioma and other cancers. However, the signaling network linked to PAK1 is not fully defined. We previously reported a large-scale yeast genetic interaction screen using toxicity as a readout to identify candidate PAK1 genetic interactions. En masse transformation of the PAK1 gene into 4,653 homozygous diploid Saccharomyces cerevisiae yeast deletion mutants identified ∼400 candidates that suppressed yeast toxicity. Here we selected 19 candidate PAK1 genetic interactions that had human orthologs and were expressed in glioma for further examination in mammalian cells, brain slice cultures, and orthotopic glioma models. RNAi and pharmacological inhibition of potential PAK1 interactors confirmed that DPP4, KIF11, mTOR, PKM2, SGPP1, TTK, and YWHAE regulate PAK1-induced cell migration and revealed the importance of genes related to the mitotic spindle, proteolysis, autophagy, and metabolism in PAK1-mediated glioma cell migration, drug resistance, and proliferation. AKT1 was further identified as a downstream mediator of the PAK1-TTK genetic interaction. Taken together, these data provide a global view of PAK1-mediated signal transduction pathways and point to potential new drug targets for glioma therapy.




ul

Clearance of intracellular tau protein from neuronal cells via VAMP8-induced secretion [Cell Biology]

In Alzheimer's disease (AD), tau, a microtubule-associated protein (MAP), becomes hyperphosphorylated, aggregates, and accumulates in the somato-dendritic compartment of neurons. In parallel to its intracellular accumulation in AD, tau is also released in the extracellular space, as revealed by its increased presence in cerebrospinal fluid (CSF). Consistent with this, recent studies, including ours, have reported that neurons secrete tau, and several therapeutic strategies aim to prevent the intracellular tau accumulation. Previously, we reported that late endosomes were implicated in tau secretion. Here, we explore the possibility of preventing intracellular tau accumulation by increasing tau secretion. Using neuronal models, we investigated whether overexpression of the vesicle-associated membrane protein 8 (VAMP8), an R-SNARE found on late endosomes, could increase tau secretion. The overexpression of VAMP8 significantly increased tau secretion, decreasing its intracellular levels in the neuroblastoma (N2a) cell line. Increased tau secretion by VAMP8 was also observed in murine hippocampal slices. The intracellular reduction of tau by VAMP8 overexpression correlated to a decrease of acetylated tubulin induced by tau overexpression in N2a cells. VAMP8 staining was preferentially found on late endosomes in N2a cells. Using total internal reflection fluorescence (TIRF) microscopy, the fusion of VAMP8-positive vesicles with the plasma membrane was correlated to the depletion of tau in the cytoplasm. Finally, overexpression of VAMP8 reduced the intracellular accumulation of tau mutants linked to frontotemporal dementia with parkinsonism and α-synuclein by increasing their secretion. Collectively, the present data indicate that VAMP8 could be used to increase tau and α-synuclein clearance to prevent their intracellular accumulation.




ul

Mycobacterium tuberculosis infection up-regulates MFN2 expression to promote NLRP3 inflammasome formation [Cell Biology]

Tuberculosis (TB), caused by the infection of Mycobacterium tuberculosis (MTB), is one of the leading causes of death worldwide, especially in children. However, the mechanisms by which MTB infects its cellular host, activates an immune response, and triggers inflammation remain unknown. Mitochondria play important roles in the initiation and activation of the nucleotide-binding oligomerization domain-like receptor with a pyrin domain 3 (NLRP3) inflammasome, where mitochondria-associated endoplasmic reticulum membranes (MAMs) may serve as the platform for inflammasome assembly and activation. Additionally, mitofusin 2 (MFN2) is implicated in the formation of MAMs, but, the roles of mitochondria and MFN2 in MTB infection have not been elucidated. Using mircroarry profiling of TB patients and in vitro MTB stimulation of macrophages, we observed an up-regulation of MFN2 in the peripheral blood mononuclear cells of active TB patients. Furthermore, we found that MTB stimulation by MTB-specific antigen ESAT-6 or lysate of MTB promoted MFN2 interaction with NLRP3 inflammasomes, resulting in the assembly and activation of the inflammasome and, subsequently, IL-1β secretion. These findings suggest that MFN2 and mitochondria play important role in the pathogen-host interaction during MTB infection.




ul

AggreCount: an unbiased image analysis tool for identifying and quantifying cellular aggregates in a spatially defined manner [Methods and Resources]

Protein quality control is maintained by a number of integrated cellular pathways that monitor the folding and functionality of the cellular proteome. Defects in these pathways lead to the accumulation of misfolded or faulty proteins that may become insoluble and aggregate over time. Protein aggregates significantly contribute to the development of a number of human diseases such as amyotrophic lateral sclerosis, Huntington's disease, and Alzheimer's disease. In vitro, imaging-based, cellular studies have defined key biomolecular components that recognize and clear aggregates; however, no unifying method is available to quantify cellular aggregates, limiting our ability to reproducibly and accurately quantify these structures. Here we describe an ImageJ macro called AggreCount to identify and measure protein aggregates in cells. AggreCount is designed to be intuitive, easy to use, and customizable for different types of aggregates observed in cells. Minimal experience in coding is required to utilize the script. Based on a user-defined image, AggreCount will report a number of metrics: (i) total number of cellular aggregates, (ii) percentage of cells with aggregates, (iii) aggregates per cell, (iv) area of aggregates, and (v) localization of aggregates (cytosol, perinuclear, or nuclear). A data table of aggregate information on a per cell basis, as well as a summary table, is provided for further data analysis. We demonstrate the versatility of AggreCount by analyzing a number of different cellular aggregates including aggresomes, stress granules, and inclusion bodies caused by huntingtin polyglutamine expansion.




ul

Visualizing, quantifying, and manipulating mitochondrial DNA in vivo [Methods and Resources]

Mitochondrial DNA (mtDNA) encodes proteins and RNAs that support the functions of mitochondria and thereby numerous physiological processes. Mutations of mtDNA can cause mitochondrial diseases and are implicated in aging. The mtDNA within cells is organized into nucleoids within the mitochondrial matrix, but how mtDNA nucleoids are formed and regulated within cells remains incompletely resolved. Visualization of mtDNA within cells is a powerful means by which mechanistic insight can be gained. Manipulation of the amount and sequence of mtDNA within cells is important experimentally and for developing therapeutic interventions to treat mitochondrial disease. This review details recent developments and opportunities for improvements in the experimental tools and techniques that can be used to visualize, quantify, and manipulate the properties of mtDNA within cells.




ul

Transcription factor NF-{kappa}B promotes acute lung inȷury via microRNA-99b-mediated PRDM1 down-regulation [Developmental Biology]

Acute lung injury (ALI), is a rapidly progressing heterogenous pulmonary disorder that possesses a high risk of mortality. Accumulating evidence has implicated the activation of the p65 subunit of NF-κB [NF-κB(p65)] activation in the pathological process of ALI. microRNAs (miRNAs), a group of small RNA molecules, have emerged as major governors due to their post-transcriptional regulation of gene expression in a wide array of pathological processes, including ALI. The dysregulation of miRNAs and NF-κB activation has been implicated in human diseases. In the current study, we set out to decipher the convergence of miR-99b and p65 NF-κB activation in ALI pathology. We measured the release of pro-inflammatory cytokines (IL-1β, IL-6, and TNFα) in bronchoalveolar lavage fluid using ELISA. MH-S cells were cultured and their viability were detected with cell counting kit 8 (CCK8) assays. The results showed that miR-99b was up-regulated, while PRDM1 was down-regulated in a lipopolysaccharide (LPS)-induced murine model of ALI. Mechanistic investigations showed that NF-κB(p65) was enriched at the miR-99b promoter region, and further promoted its transcriptional activity. Furthermore, miR-99b targeted PRDM1 by binding to its 3'UTR, causing its down-regulation. This in-creased lung injury, as evidenced by increased wet/dry ratio of mouse lung, myeloperoxidase activity and pro-inflammatory cytokine secretion, and enhanced infiltration of inflammatory cells in lung tissues. Together, our findings indicate that NF-κB(p65) promotion of miR-99b can aggravate ALI in mice by down-regulating the expression of PRDM1.




ul

PTPN2 regulates the activation of KRAS and plays a critical role in proliferation and survival of KRAS-driven cancer cells [Signal Transduction]

RAS genes are the most commonly mutated in human cancers and play critical roles in tumor initiation, progression, and drug resistance. Identification of targets that block RAS signaling is pivotal to develop therapies for RAS-related cancer. As RAS translocation to the plasma membrane (PM) is essential for its effective signal transduction, we devised a high-content screening assay to search for genes regulating KRAS membrane association. We found that the tyrosine phosphatase PTPN2 regulates the plasma membrane localization of KRAS. Knockdown of PTPN2 reduced the proliferation and promoted apoptosis in KRAS-dependent cancer cells, but not in KRAS-independent cells. Mechanistically, PTPN2 negatively regulates tyrosine phosphorylation of KRAS, which, in turn, affects the activation KRAS and its downstream signaling. Consistently, analysis of the TCGA database demonstrates that high expression of PTPN2 is significantly associated with poor prognosis of patients with KRAS-mutant pancreatic adenocarcinoma. These results indicate that PTPN2 is a key regulator of KRAS and may serve as a new target for therapy of KRAS-driven cancer.




ul

Therapeutic targeting of pancreatic cancer stem cells by dexamethasone modulation of the MKP-1-JNK axis [Cell Biology]

Postoperative recurrence from microscopic residual disease must be prevented to cure intractable cancers, including pancreatic cancer. Key to this goal is the elimination of cancer stem cells (CSCs) endowed with tumor-initiating capacity and drug resistance. However, current therapeutic strategies capable of accomplishing this are insufficient. Using in vitro models of CSCs and in vivo models of tumor initiation in which CSCs give rise to xenograft tumors, we show that dexamethasone induces expression of MKP-1, a MAPK phosphatase, via glucocorticoid receptor activation, thereby inactivating JNK, which is required for self-renewal and tumor initiation by pancreatic CSCs as well as for their expression of survivin, an anti-apoptotic protein implicated in multidrug resistance. We also demonstrate that systemic administration of clinically relevant doses of dexamethasone together with gemcitabine prevents tumor formation by CSCs in a pancreatic cancer xenograft model. Our study thus provides preclinical evidence for the efficacy of dexamethasone as an adjuvant therapy to prevent postoperative recurrence in patients with pancreatic cancer.




ul

BMP-9 and LDL crosstalk regulates ALK-1 endocytosis and LDL transcytosis in endothelial cells [Signal Transduction]

Bone morphogenetic protein-9 (BMP-9) is a circulating cytokine that is known to play an essential role in the endothelial homeostasis and the binding of BMP-9 to the receptor activin-like kinase 1 (ALK-1) promotes endothelial cell quiescence. Previously, using an unbiased screen, we identified ALK-1 as a high-capacity receptor for low-density lipoprotein (LDL) in endothelial cells that mediates its transcytosis in a nondegradative manner. Here we examine the crosstalk between BMP-9 and LDL and how it influences their interactions with ALK-1. Treatment of endothelial cells with BMP-9 triggers the extensive endocytosis of ALK-1, and it is mediated by caveolin-1 (CAV-1) and dynamin-2 (DNM2) but not clathrin heavy chain. Knockdown of CAV-1 reduces BMP-9–mediated internalization of ALK-1, BMP-9–dependent signaling and gene expression. Similarly, treatment of endothelial cells with LDL reduces BMP-9–induced SMAD1/5 phosphorylation and gene expression and silencing of CAV-1 and DNM2 diminishes LDL-mediated ALK-1 internalization. Interestingly, BMP-9–mediated ALK-1 internalization strongly re-duces LDL transcytosis to levels seen with ALK-1 deficiency. Thus, BMP-9 levels can control cell surface levels of ALK-1, via CAV-1, to regulate both BMP-9 signaling and LDL transcytosis.




ul

HIV-1 Gag release from yeast reveals ESCRT interaction with the Gag N-terminal protein region [Molecular Bases of Disease]

The HIV-1 protein Gag assembles at the plasma membrane and drives virion budding, assisted by the cellular endosomal complex required for transport (ESCRT) proteins. Two ESCRT proteins, TSG101 and ALIX, bind to the Gag C-terminal p6 peptide. TSG101 binding is important for efficient HIV-1 release, but how ESCRTs contribute to the budding process and how their activity is coordinated with Gag assembly is poorly understood. Yeast, allowing genetic manipulation that is not easily available in human cells, has been used to characterize the cellular ESCRT function. Previous work reported Gag budding from yeast spheroplasts, but Gag release was ESCRT-independent. We developed a yeast model for ESCRT-dependent Gag release. We combined yeast genetics and Gag mutational analysis with Gag-ESCRT binding studies and the characterization of Gag-plasma membrane binding and Gag release. With our system, we identified a previously unknown interaction between ESCRT proteins and the Gag N-terminal protein region. Mutations in the Gag-plasma membrane–binding matrix domain that reduced Gag-ESCRT binding increased Gag-plasma membrane binding and Gag release. ESCRT knockout mutants showed that the release enhancement was an ESCRT-dependent effect. Similarly, matrix mutation enhanced Gag release from human HEK293 cells. Release enhancement partly depended on ALIX binding to p6, although binding site mutation did not impair WT Gag release. Accordingly, the relative affinity for matrix compared with p6 in GST-pulldown experiments was higher for ALIX than for TSG101. We suggest that a transient matrix-ESCRT interaction is replaced when Gag binds to the plasma membrane. This step may activate ESCRT proteins and thereby coordinate ESCRT function with virion assembly.




ul

A kinetic dissection of the fast and superprocessive kinesin-3 KIF1A reveals a predominant one-head-bound state during its chemomechanical cycle [Molecular Biophysics]

The kinesin-3 family contains the fastest and most processive motors of the three neuronal transport kinesin families, yet the sequence of states and rates of kinetic transitions that comprise the chemomechanical cycle and give rise to their unique properties are poorly understood. We used stopped-flow fluorescence spectroscopy and single-molecule motility assays to delineate the chemomechanical cycle of the kinesin-3, KIF1A. Our bacterially expressed KIF1A construct, dimerized via a kinesin-1 coiled-coil, exhibits fast velocity and superprocessivity behavior similar to WT KIF1A. We established that the KIF1A forward step is triggered by hydrolysis of ATP and not by ATP binding, meaning that KIF1A follows the same chemomechanical cycle as established for kinesin-1 and -2. The ATP-triggered half-site release rate of KIF1A was similar to the stepping rate, indicating that during stepping, rear-head detachment is an order of magnitude faster than in kinesin-1 and kinesin-2. Thus, KIF1A spends the majority of its hydrolysis cycle in a one-head-bound state. Both the ADP off-rate and the ATP on-rate at physiological ATP concentration were fast, eliminating these steps as possible rate-limiting transitions. Based on the measured run length and the relatively slow off-rate in ADP, we conclude that attachment of the tethered head is the rate-limiting transition in the KIF1A stepping cycle. Thus, KIF1A's activity can be explained by a fast rear-head detachment rate, a rate-limiting step of tethered-head attachment that follows ATP hydrolysis, and a relatively strong electrostatic interaction with the microtubule in the weakly bound post-hydrolysis state.




ul

When Taxol met tubulin [Classics]

When the drug Taxol® was approved by the United States Food and Drug Administration in 1993, it was a game changer for cancer patients. The compound, which arrests cell division by preventing the disassembly of tubulin microfibers, has been used over the past three decades to treat millions of cases of breast, lung, and ovarian cancer as well as Kaposi's sarcoma. In 1990, Bristol Myers Squibb applied to trademark the name Taxol, which was approved in 1992, changing the drug's generic name to paclitaxel.At the time that Taxol was entering clinical trials in the late 1970s, it also proved to be a valuable tool for cytoskeletal research. Tubulin had been discovered in the late 1960s, but it was still unclear how the soluble protein dimer polymerized (Fig. 1) to form the long, complex structures of the cytoskeleton.jbc;295/41/13994/F1F1F1Figure 1.Strands of tubulin, a protein in the cell's skeleton, photographed using a high-resolution microscopy technique. Image made by Pakorn Kanchanawong (National University of Singapore) and Clare Waterman (NHLBI, National Institutes of Health).“Back then, people were just discovering the most basic functions of tubulin and how it polymerized, and then they found a drug that affected this,” said Velia Fowler, a cell biologist at the University of Delaware and former Associate Editor at the Journal of Biological Chemistry.The drug and its cytoskeletal activity intersected in the 1981 JBC paper “Taxol-induced polymerization of purified tubulin” (1), the subject of this JBC Classic. In the single-author paper, Nirbhay Kumar, then a postdoctoral fellow at the National...




ul

Palmitoylation of acetylated tubulin and association with ceramide-rich platforms is critical for ciliogenesis

Priyanka Tripathi
Dec 30, 2020; 0:jlr.RA120001190v1-jlr.RA120001190
Research Articles




ul

Sterol regulatory element-binding protein Sre1 regulates carotenogenesis in the red yeast Xanthophyllomyces dendrorhous

Melissa Gómez
Dec 1, 2020; 61:1658-1674
Research Articles




ul

Stimulation of ABCB4/MDR3 ATPase activity requires an intact phosphatidylcholine lipid

Martin Prescher
Dec 1, 2020; 61:1605-1616
Research Articles




ul

Gene Networks and Pathways for Plasma Lipid Traits via Multi-tissue Multi-omics Systems Analysis

Montgomery Blencowe
Dec 23, 2020; 0:jlr.RA120000713v1-jlr.RA120000713
Research Articles




ul

Insulin resistance dysregulates CYP7B1 leading to oxysterol accumulation: a pathway for NAFL to NASH transition

Genta Kakiyama
Dec 1, 2020; 61:1629-1644
Research Articles




ul

The anti-tubercular activity of simvastatin is mediated by cholesterol-driven autophagy via the AMPK-mTORC1-TFEB axis

Natalie Bruiners
Dec 1, 2020; 61:1617-1628
Research Articles




ul

Lipid metabolism dysregulation in diabetic retinopathy

Julia V Busik
Dec 23, 2020; 0:jlr.TR120000981v1-jlr.TR120000981
Thematic Reviews




ul

Membrane-bound sn-1,2-diacylglycerols explain the dissociation of hepatic insulin resistance from hepatic steatosis in MTTP knockout mice

Abudukadier Abulizi
Dec 1, 2020; 61:1565-1576
Research Articles