at

A kinesin adapter directly mediates dendritic mRNA localization during neural development in mice [Neurobiology]

Motor protein-based active transport is essential for mRNA localization and local translation in animal cells, yet how mRNA granules interact with motor proteins remains poorly understood. Using an unbiased yeast two–hybrid screen for interactions between murine RNA-binding proteins (RBPs) and motor proteins, here we identified protein interaction with APP tail-1 (PAT1) as a potential direct adapter between zipcode-binding protein 1 (ZBP1, a β-actin RBP) and the kinesin-I motor complex. The amino acid sequence of mouse PAT1 is similar to that of the kinesin light chain (KLC), and we found that PAT1 binds to KLC directly. Studying PAT1 in mouse primary hippocampal neuronal cultures from both sexes and using structured illumination microscopic imaging of these neurons, we observed that brain-derived neurotrophic factor (BDNF) enhances co-localization of dendritic ZBP1 and PAT1 within granules that also contain kinesin-I. PAT1 is essential for BDNF-stimulated neuronal growth cone development and dendritic protrusion formation, and we noted that ZBP1 and PAT1 co-locate along with β-actin mRNA in actively transported granules in living neurons. Acute disruption of the PAT1–ZBP1 interaction in neurons with PAT1 siRNA or a dominant-negative ZBP1 construct diminished localization of β-actin mRNA but not of Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα) mRNA in dendrites. The aberrant β-actin mRNA localization resulted in abnormal dendritic protrusions and growth cone dynamics. These results suggest a critical role for PAT1 in BDNF-induced β-actin mRNA transport during postnatal development and reveal a new molecular mechanism for mRNA localization in vertebrates.




at

The short variant of optic atrophy 1 (OPA1) improves cell survival under oxidative stress [Bioenergetics]

Optic atrophy 1 (OPA1) is a dynamin protein that mediates mitochondrial fusion at the inner membrane. OPA1 is also necessary for maintaining the cristae and thus essential for supporting cellular energetics. OPA1 exists as membrane-anchored long form (L-OPA1) and short form (S-OPA1) that lacks the transmembrane region and is generated by cleavage of L-OPA1. Mitochondrial dysfunction and cellular stresses activate the inner membrane–associated zinc metallopeptidase OMA1 that cleaves L-OPA1, causing S-OPA1 accumulation. The prevailing notion has been that L-OPA1 is the functional form, whereas S-OPA1 is an inactive cleavage product in mammals, and that stress-induced OPA1 cleavage causes mitochondrial fragmentation and sensitizes cells to death. However, S-OPA1 contains all functional domains of dynamin proteins, suggesting that it has a physiological role. Indeed, we recently demonstrated that S-OPA1 can maintain cristae and energetics through its GTPase activity, despite lacking fusion activity. Here, applying oxidant insult that induces OPA1 cleavage, we show that cells unable to generate S-OPA1 are more sensitive to this stress under obligatory respiratory conditions, leading to necrotic death. These findings indicate that L-OPA1 and S-OPA1 differ in maintaining mitochondrial function. Mechanistically, we found that cells that exclusively express L-OPA1 generate more superoxide and are more sensitive to Ca2+-induced mitochondrial permeability transition, suggesting that S-OPA1, and not L-OPA1, protects against cellular stress. Importantly, silencing of OMA1 expression increased oxidant-induced cell death, indicating that stress-induced OPA1 cleavage supports cell survival. Our findings suggest that S-OPA1 generation by OPA1 cleavage is a survival mechanism in stressed cells.




at

An arrestin-1 surface opposite of its interface with photoactivated rhodopsin engages with enolase-1 [Protein Structure and Folding]

Arrestin-1 is the arrestin family member responsible for inactivation of the G protein–coupled receptor rhodopsin in photoreceptors. Arrestin-1 is also well-known to interact with additional protein partners and to affect other signaling cascades beyond phototransduction. In this study, we investigated one of these alternative arrestin-1 binding partners, the glycolysis enzyme enolase-1, to map the molecular contact sites between these two proteins and investigate how the binding of arrestin-1 affects the catalytic activity of enolase-1. Using fluorescence quench protection of strategically placed fluorophores on the arrestin-1 surface, we observed that arrestin-1 primarily engages enolase-1 along a surface that is opposite of the side of arrestin-1 that binds photoactivated rhodopsin. Using this information, we developed a molecular model of the arrestin-1–enolase-1 complex, which was validated by targeted substitutions of charge-pair interactions. Finally, we identified the likely source of arrestin's modulation of enolase-1 catalysis, showing that selective substitution of two amino acids in arrestin-1 can completely remove its effect on enolase-1 activity while still remaining bound to enolase-1. These findings open up opportunities for examining the functional effects of arrestin-1 on enolase-1 activity in photoreceptors and their surrounding cells.




at

Inhibition of glycosphingolipid biosynthesis reverts multidrug resistance by differentially modulating ABC transporters in chronic myeloid leukemias [Cell Biology]

Multidrug resistance (MDR) in cancer arises from cross-resistance to structurally- and functionally-divergent chemotherapeutic drugs. In particular, MDR is characterized by increased expression and activity of ATP-binding cassette (ABC) superfamily transporters. Sphingolipids are substrates of ABC proteins in cell signaling, membrane biosynthesis, and inflammation, for example, and their products can favor cancer progression. Glucosylceramide (GlcCer) is a ubiquitous glycosphingolipid (GSL) generated by glucosylceramide synthase, a key regulatory enzyme encoded by the UDP-glucose ceramide glucosyltransferase (UGCG) gene. Stressed cells increase de novo biosynthesis of ceramides, which return to sub-toxic levels after UGCG mediates incorporation into GlcCer. Given that cancer cells seem to mobilize UGCG and have increased GSL content for ceramide clearance, which ultimately contributes to chemotherapy failure, here we investigated how inhibition of GSL biosynthesis affects the MDR phenotype of chronic myeloid leukemias. We found that MDR is associated with higher UGCG expression and with a complex GSL profile. UGCG inhibition with the ceramide analog d-threo-1-(3,4,-ethylenedioxy)phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol (EtDO-P4) greatly reduced GSL and monosialotetrahexosylganglioside levels, and co-treatment with standard chemotherapeutics sensitized cells to mitochondrial membrane potential loss and apoptosis. ABC subfamily B member 1 (ABCB1) expression was reduced, and ABCC-mediated efflux activity was modulated by competition with nonglycosylated ceramides. Consistently, inhibition of ABCC-mediated transport reduced the efflux of exogenous C6-ceramide. Overall, UGCG inhibition impaired the malignant glycophenotype of MDR leukemias, which typically overcomes drug resistance through distinct mechanisms. This work sheds light on the involvement of GSL in chemotherapy failure, and its findings suggest that targeted GSL modulation could help manage MDR leukemias.




at

Genetic lineage tracing with multiple DNA recombinases: A user's guide for conducting more precise cell fate mapping studies [Methods and Resources]

Site-specific recombinases, such as Cre, are a widely used tool for genetic lineage tracing in the fields of developmental biology, neural science, stem cell biology, and regenerative medicine. However, nonspecific cell labeling by some genetic Cre tools remains a technical limitation of this recombination system, which has resulted in data misinterpretation and led to many controversies in the scientific community. In the past decade, to enhance the specificity and precision of genetic targeting, researchers have used two or more orthogonal recombinases simultaneously for labeling cell lineages. Here, we review the history of cell-tracing strategies and then elaborate on the working principle and application of a recently developed dual genetic lineage-tracing approach for cell fate studies. We place an emphasis on discussing the technical strengths and caveats of different methods, with the goal to develop more specific and efficient tracing technologies for cell fate mapping. Our review also provides several examples for how to use different types of DNA recombinase–mediated lineage-tracing strategies to improve the resolution of the cell fate mapping in order to probe and explore cell fate–related biological phenomena in the life sciences.




at

Endorepellin evokes an angiostatic stress signaling cascade in endothelial cells [Glycobiology and Extracellular Matrices]

Endorepellin, the C-terminal fragment of the heparan sulfate proteoglycan perlecan, influences various signaling pathways in endothelial cells by binding to VEGFR2. In this study, we discovered that soluble endorepellin activates the canonical stress signaling pathway consisting of PERK, eIF2α, ATF4, and GADD45α. Specifically, endorepellin evoked transient activation of VEGFR2, which, in turn, phosphorylated PERK at Thr980. Subsequently, PERK phosphorylated eIF2α at Ser51, upregulating its downstream effector proteins ATF4 and GADD45α. RNAi-mediated knockdown of PERK or eIF2α abrogated the endorepellin-mediated up-regulation of GADD45α, the ultimate effector protein of this stress signaling cascade. To functionally validate these findings, we utilized an ex vivo model of angiogenesis. Exposure of the aortic rings embedded in 3D fibrillar collagen to recombinant endorepellin for 2–4 h activated PERK and induced GADD45α vis à vis vehicle-treated counterparts. Similar effects were obtained with the established cellular stress inducer tunicamycin. Notably, chronic exposure of aortic rings to endorepellin for 7–9 days markedly suppressed vessel sprouting, an angiostatic effect that was rescued by blocking PERK kinase activity. Our findings unravel a mechanism by which an extracellular matrix protein evokes stress signaling in endothelial cells, which leads to angiostasis.




at

Targeting the polyamine pathway—“a means” to overcome chemoresistance in triple-negative breast cancer [Cell Biology]

Triple-negative breast cancer (TNBC) is characterized by its aggressive biology, early metastatic spread, and poor survival outcomes. TNBC lacks expression of the targetable receptors found in other breast cancer subtypes, mandating use of cytotoxic chemotherapy. However, resistance to chemotherapy is a significant problem, encountered in about two-thirds of TNBC patients, and new strategies are needed to mitigate resistance. In this issue of the Journal of Biological Chemistry, Geck et al. report that TNBC cells are highly sensitive to inhibition of the de novo polyamine synthesis pathway and that inhibition of this pathway sensitizes cells to TNBC-relevant chemotherapy, uncovering new opportunities for addressing chemoresistance.




at

Structural basis of specific inhibition of extracellular activation of pro- or latent myostatin by the monoclonal antibody SRK-015 [Molecular Biophysics]

Myostatin (or growth/differentiation factor 8 (GDF8)) is a member of the transforming growth factor β superfamily of growth factors and negatively regulates skeletal muscle growth. Its dysregulation is implicated in muscle wasting diseases. SRK-015 is a clinical-stage mAb that prevents extracellular proteolytic activation of pro- and latent myostatin. Here we used integrated structural and biochemical approaches to elucidate the molecular mechanism of antibody-mediated neutralization of pro-myostatin activation. The crystal structure of pro-myostatin in complex with 29H4-16 Fab, a high-affinity variant of SRK-015, at 2.79 Å resolution revealed that the antibody binds to a conformational epitope in the arm region of the prodomain distant from the proteolytic cleavage sites. This epitope is highly sequence-divergent, having only limited similarity to other closely related members of the transforming growth factor β superfamily. Hydrogen/deuterium exchange MS experiments indicated that antibody binding induces conformational changes in pro- and latent myostatin that span the arm region, the loops contiguous to the protease cleavage sites, and the latency-associated structural elements. Moreover, negative-stain EM with full-length antibodies disclosed a stable, ring-like antigen–antibody structure in which the two Fab arms of a single antibody occupy the two arm regions of the prodomain in the pro- and latent myostatin homodimers, suggesting a 1:1 (antibody:myostatin homodimer) binding stoichiometry. These results suggest that SRK-015 binding stabilizes the latent conformation and limits the accessibility of protease cleavage sites within the prodomain. These findings shed light on approaches that specifically block the extracellular activation of growth factors by targeting their precursor forms.




at

Structures of the MHC-I molecule BF2*1501 disclose the preferred presentation of an H5N1 virus-derived epitope [Protein Structure and Folding]

Lethal infections by strains of the highly-pathogenic avian influenza virus (HPAIV) H5N1 pose serious threats to both the poultry industry and public health worldwide. A lack of confirmed HPAIV epitopes recognized by cytotoxic T lymphocytes (CTLs) has hindered the utilization of CD8+ T-cell–mediated immunity and has precluded the development of effectively diversified epitope-based vaccination approaches. In particular, an HPAIV H5N1 CTL-recognized epitope based on the peptide MHC-I–β2m (pMHC-I) complex has not yet been designed. Here, screening a collection of selected peptides of several HPAIV strains against a specific pathogen-free pMHC-I (pBF2*1501), we identified a highly-conserved HPAIV H5N1 CTL epitope, named HPAIV–PA123–130. We determined the structure of the BF2*1501–PA123–130 complex at 2.1 Å resolution to elucidate the molecular mechanisms of a preferential presentation of the highly-conserved PA123–130 epitope in the chicken B15 lineage. Conformational characteristics of the PA123–130 epitope with a protruding Tyr-7 residue indicated that this epitope has great potential to be recognized by specific TCRs. Moreover, significantly increased numbers of CD8+ T cells specific for the HPAIV–PA123–130 epitope in peptide-immunized chickens indicated that a repertoire of CD8+ T cells can specifically respond to this epitope. We anticipate that the identification and structural characterization of the PA123–130 epitope reported here could enable further studies of CTL immunity against HPAIV H5N1. Such studies may aid in the development of vaccine development strategies using well-conserved internal viral antigens in chickens.




at

The heme-regulatory motifs of heme oxygenase-2 contribute to the transfer of heme to the catalytic site for degradation [Protein Structure and Folding]

Heme-regulatory motifs (HRMs) are present in many proteins that are involved in diverse biological functions. The C-terminal tail region of human heme oxygenase-2 (HO2) contains two HRMs whose cysteine residues form a disulfide bond; when reduced, these cysteines are available to bind Fe3+-heme. Heme binding to the HRMs occurs independently of the HO2 catalytic active site in the core of the protein, where heme binds with high affinity and is degraded to biliverdin. Here, we describe the reversible, protein-mediated transfer of heme between the HRMs and the HO2 core. Using hydrogen-deuterium exchange (HDX)-MS to monitor the dynamics of HO2 with and without Fe3+-heme bound to the HRMs and to the core, we detected conformational changes in the catalytic core only in one state of the catalytic cycle—when Fe3+-heme is bound to the HRMs and the core is in the apo state. These conformational changes were consistent with transfer of heme between binding sites. Indeed, we observed that HRM-bound Fe3+-heme is transferred to the apo-core either upon independent expression of the core and of a construct spanning the HRM-containing tail or after a single turnover of heme at the core. Moreover, we observed transfer of heme from the core to the HRMs and equilibration of heme between the core and HRMs. We therefore propose an Fe3+-heme transfer model in which HRM-bound heme is readily transferred to the catalytic site for degradation to facilitate turnover but can also equilibrate between the sites to maintain heme homeostasis.




at

Structural insight into the recognition of pathogen-derived phosphoglycolipids by C-type lectin receptor DCAR [Protein Structure and Folding]

The C-type lectin receptors (CLRs) form a family of pattern recognition receptors that recognize numerous pathogens, such as bacteria and fungi, and trigger innate immune responses. The extracellular carbohydrate-recognition domain (CRD) of CLRs forms a globular structure that can coordinate a Ca2+ ion, allowing receptor interactions with sugar-containing ligands. Although well-conserved, the CRD fold can also display differences that directly affect the specificity of the receptors for their ligands. Here, we report crystal structures at 1.8–2.3 Å resolutions of the CRD of murine dendritic cell-immunoactivating receptor (DCAR, or Clec4b1), the CLR that binds phosphoglycolipids such as acylated phosphatidyl-myo-inositol mannosides (AcPIMs) of mycobacteria. Using mutagenesis analysis, we identified critical residues, Ala136 and Gln198, on the surface surrounding the ligand-binding site of DCAR, as well as an atypical Ca2+-binding motif (Glu-Pro-Ser/EPS168–170). By chemically synthesizing a water-soluble ligand analog, inositol-monophosphate dimannose (IPM2), we confirmed the direct interaction of DCAR with the polar moiety of AcPIMs by biolayer interferometry and co-crystallization approaches. We also observed a hydrophobic groove extending from the ligand-binding site that is in a suitable position to interact with the lipid portion of whole AcPIMs. These results suggest that the hydroxyl group-binding ability and hydrophobic groove of DCAR mediate its specific binding to pathogen-derived phosphoglycolipids such as mycobacterial AcPIMs.




at

Structural basis of cell-surface signaling by a conserved sigma regulator in Gram-negative bacteria [Molecular Biophysics]

Cell-surface signaling (CSS) in Gram-negative bacteria involves highly conserved regulatory pathways that optimize gene expression by transducing extracellular environmental signals to the cytoplasm via inner-membrane sigma regulators. The molecular details of ferric siderophore-mediated activation of the iron import machinery through a sigma regulator are unclear. Here, we present the 1.56 Å resolution structure of the periplasmic complex of the C-terminal CSS domain (CCSSD) of PupR, the sigma regulator in the Pseudomonas capeferrum pseudobactin BN7/8 transport system, and the N-terminal signaling domain (NTSD) of PupB, an outer-membrane TonB-dependent transducer. The structure revealed that the CCSSD consists of two subdomains: a juxta-membrane subdomain, which has a novel all-β-fold, followed by a secretin/TonB, short N-terminal subdomain at the C terminus of the CCSSD, a previously unobserved topological arrangement of this domain. Using affinity pulldown assays, isothermal titration calorimetry, and thermal denaturation CD spectroscopy, we show that both subdomains are required for binding the NTSD with micromolar affinity and that NTSD binding improves CCSSD stability. Our findings prompt us to present a revised model of CSS wherein the CCSSD:NTSD complex forms prior to ferric-siderophore binding. Upon siderophore binding, conformational changes in the CCSSD enable regulated intramembrane proteolysis of the sigma regulator, ultimately resulting in transcriptional regulation.




at

Structural and mutational analyses of the bifunctional arginine dihydrolase and ornithine cyclodeaminase AgrE from the cyanobacterium Anabaena [Enzymology]

In cyanobacteria, metabolic pathways that use the nitrogen-rich amino acid arginine play a pivotal role in nitrogen storage and mobilization. The N-terminal domains of two recently identified bacterial enzymes: ArgZ from Synechocystis and AgrE from Anabaena, have been found to contain an arginine dihydrolase. This enzyme provides catabolic activity that converts arginine to ornithine, resulting in concomitant release of CO2 and ammonia. In Synechocystis, the ArgZ-mediated ornithine–ammonia cycle plays a central role in nitrogen storage and remobilization. The C-terminal domain of AgrE contains an ornithine cyclodeaminase responsible for the formation of proline from ornithine and ammonia production, indicating that AgrE is a bifunctional enzyme catalyzing two sequential reactions in arginine catabolism. Here, the crystal structures of AgrE in three different ligation states revealed that it has a tetrameric conformation, possesses a binding site for the arginine dihydrolase substrate l-arginine and product l-ornithine, and contains a binding site for the coenzyme NAD(H) required for ornithine cyclodeaminase activity. Structure–function analyses indicated that the structure and catalytic mechanism of arginine dihydrolase in AgrE are highly homologous with those of a known bacterial arginine hydrolase. We found that in addition to other active-site residues, Asn-71 is essential for AgrE's dihydrolase activity. Further analysis suggested the presence of a passage for substrate channeling between the two distinct AgrE active sites, which are situated ∼45 Å apart. These results provide structural and functional insights into the bifunctional arginine dihydrolase–ornithine cyclodeaminase enzyme AgrE required for arginine catabolism in Anabaena.




at

Glycation-mediated inter-protein cross-linking is promoted by chaperone-client complexes of {alpha}-crystallin: Implications for lens aging and presbyopia [Glycobiology and Extracellular Matrices]

Lens proteins become increasingly cross-linked through nondisulfide linkages during aging and cataract formation. One mechanism that has been implicated in this cross-linking is glycation through formation of advanced glycation end products (AGEs). Here, we found an age-associated increase in stiffness in human lenses that was directly correlated with levels of protein–cross-linking AGEs. α-Crystallin in the lens binds to other proteins and prevents their denaturation and aggregation through its chaperone-like activity. Using a FRET-based assay, we examined the stability of the αA-crystallin–γD-crystallin complex for up to 12 days and observed that this complex is stable in PBS and upon incubation with human lens–epithelial cell lysate or lens homogenate. Addition of 2 mm ATP to the lysate or homogenate did not decrease the stability of the complex. We also generated complexes of human αA-crystallin or αB-crystallin with alcohol dehydrogenase or citrate synthase by applying thermal stress. Upon glycation under physiological conditions, the chaperone–client complexes underwent greater extents of cross-linking than did uncomplexed protein mixtures. LC-MS/MS analyses revealed that the levels of cross-linking AGEs were significantly higher in the glycated chaperone–client complexes than in glycated but uncomplexed protein mixtures. Mouse lenses subjected to thermal stress followed by glycation lost resilience more extensively than lenses subjected to thermal stress or glycation alone, and this loss was accompanied by higher protein cross-linking and higher cross-linking AGE levels. These results uncover a protein cross-linking mechanism in the lens and suggest that AGE-mediated cross-linking of α-crystallin–client complexes could contribute to lens aging and presbyopia.




at

A Legionella effector kinase is activated by host inositol hexakisphosphate [Enzymology]

The transfer of a phosphate from ATP to a protein substrate, a modification known as protein phosphorylation, is catalyzed by protein kinases. Protein kinases play a crucial role in virtually every cellular activity. Recent studies of atypical protein kinases have highlighted the structural similarity of the kinase superfamily despite notable differences in primary amino acid sequence. Here, using a bioinformatics screen, we searched for putative protein kinases in the intracellular bacterial pathogen Legionella pneumophila and identified the type 4 secretion system effector Lpg2603 as a remote member of the protein kinase superfamily. Employing an array of biochemical and structural biology approaches, including in vitro kinase assays and isothermal titration calorimetry, we show that Lpg2603 is an active protein kinase with several atypical structural features. Importantly, we found that the eukaryote-specific host signaling molecule inositol hexakisphosphate (IP6) is required for Lpg2603 kinase activity. Crystal structures of Lpg2603 in the apo-form and when bound to IP6 revealed an active-site rearrangement that allows for ATP binding and catalysis. Our results on the structure and activity of Lpg2603 reveal a unique mode of regulation of a protein kinase, provide the first example of a bacterial kinase that requires IP6 for its activation, and may aid future work on the function of this effector during Legionella pathogenesis.




at

Affinity maturation, humanization, and co-crystallization of a rabbit anti-human ROR2 monoclonal antibody for therapeutic applications [Immunology]

Antibodies are widely used as cancer therapeutics, but their current use is limited by the low number of antigens restricted to cancer cells. A receptor tyrosine kinase, receptor tyrosine kinase-like orphan receptor 2 (ROR2), is normally expressed only during embryogenesis and is tightly down-regulated in postnatal healthy tissues. However, it is up-regulated in a diverse set of hematologic and solid malignancies, thus ROR2 represents a candidate antigen for antibody-based cancer therapy. Here we describe the affinity maturation and humanization of a rabbit mAb that binds human and mouse ROR2 but not human ROR1 or other human cell-surface antigens. Co-crystallization of the parental rabbit mAb in complex with the human ROR2 kringle domain (hROR2-Kr) guided affinity maturation by heavy-chain complementarity-determining region 3 (HCDR3)-focused mutagenesis and selection. The affinity-matured rabbit mAb was then humanized by complementarity-determining region (CDR) grafting and framework fine tuning and again co-crystallized with hROR2-Kr. We show that the affinity-matured and humanized mAb retains strong affinity and specificity to ROR2 and, following conversion to a T cell–engaging bispecific antibody, has potent cytotoxicity toward ROR2-expressing cells. We anticipate that this humanized affinity-matured mAb will find application for antibody-based cancer therapy of ROR2-expressing neoplasms.




at

Zinc promotes liquid-liquid phase separation of tau protein [Protein Structure and Folding]

Tau is a microtubule-associated protein that plays a major role in Alzheimer's disease (AD) and other tauopathies. Recent reports indicate that, in the presence of crowding agents, tau can undergo liquid–liquid phase separation (LLPS), forming highly dynamic liquid droplets. Here, using recombinantly expressed proteins, turbidimetry, fluorescence microscopy imaging, and fluorescence recovery after photobleaching (FRAP) assays, we show that the divalent transition metal zinc strongly promotes this process, shifting the equilibrium phase boundary to lower protein or crowding agent concentrations. We observed no tau LLPS-promoting effect for any other divalent transition metal ions tested, including Mn2+, Fe2+, Co2+, Ni2+, and Cu2+. We also demonstrate that multiple zinc-binding sites on tau are involved in the LLPS-promoting effect and provide insights into the mechanism of this process. Zinc concentration is highly elevated in AD brains, and this metal ion is believed to be an important player in the pathogenesis of this disease. Thus, the present findings bring a new dimension to understanding the relationship between zinc homeostasis and the pathogenic process in AD and related neurodegenerative disorders.




at

The streptococcal multidomain fibrillar adhesin CshA has an elongated polymeric architecture [Microbiology]

The cell surfaces of many bacteria carry filamentous polypeptides termed adhesins that enable binding to both biotic and abiotic surfaces. Surface adherence is facilitated by the exquisite selectivity of the adhesins for their cognate ligands or receptors and is a key step in niche or host colonization and pathogenicity. Streptococcus gordonii is a primary colonizer of the human oral cavity and an opportunistic pathogen, as well as a leading cause of infective endocarditis in humans. The fibrillar adhesin CshA is an important determinant of S. gordonii adherence, forming peritrichous fibrils on its surface that bind host cells and other microorganisms. CshA possesses a distinctive multidomain architecture comprising an N-terminal target-binding region fused to 17 repeat domains (RDs) that are each ∼100 amino acids long. Here, using structural and biophysical methods, we demonstrate that the intact CshA repeat region (CshA_RD1–17, domains 1–17) forms an extended polymeric monomer in solution. We recombinantly produced a subset of CshA RDs and found that they differ in stability and unfolding behavior. The NMR structure of CshA_RD13 revealed a hitherto unreported all β-fold, flanked by disordered interdomain linkers. These findings, in tandem with complementary hydrodynamic studies of CshA_RD1–17, indicate that this polypeptide possesses a highly unusual dynamic transitory structure characterized by alternating regions of order and disorder. This architecture provides flexibility for the adhesive tip of the CshA fibril to maintain bacterial attachment that withstands shear forces within the human host. It may also help mitigate deleterious folding events between neighboring RDs that share significant structural identity without compromising mechanical stability.




at

Structural basis of substrate recognition and catalysis by fucosyltransferase 8 [Protein Structure and Folding]

Fucosylation of the innermost GlcNAc of N-glycans by fucosyltransferase 8 (FUT8) is an important step in the maturation of complex and hybrid N-glycans. This simple modification can dramatically affect the activities and half-lives of glycoproteins, effects that are relevant to understanding the invasiveness of some cancers, development of mAb therapeutics, and the etiology of a congenital glycosylation disorder. The acceptor substrate preferences of FUT8 are well-characterized and provide a framework for understanding N-glycan maturation in the Golgi; however, the structural basis of these substrate preferences and the mechanism through which catalysis is achieved remain unknown. Here we describe several structures of mouse and human FUT8 in the apo state and in complex with GDP, a mimic of the donor substrate, and with a glycopeptide acceptor substrate at 1.80–2.50 Å resolution. These structures provide insights into a unique conformational change associated with donor substrate binding, common strategies employed by fucosyltransferases to coordinate GDP, features that define acceptor substrate preferences, and a likely mechanism for enzyme catalysis. Together with molecular dynamics simulations, the structures also revealed how FUT8 dimerization plays an important role in defining the acceptor substrate-binding site. Collectively, this information significantly builds on our understanding of the core fucosylation process.




at

Templated folding of intrinsically disordered proteins [Molecular Biophysics]

Much of our current knowledge of biological chemistry is founded in the structure-function relationship, whereby sequence determines structure that determines function. Thus, the discovery that a large fraction of the proteome is intrinsically disordered, while being functional, has revolutionized our understanding of proteins and raised new and interesting questions. Many intrinsically disordered proteins (IDPs) have been determined to undergo a disorder-to-order transition when recognizing their physiological partners, suggesting that their mechanisms of folding are intrinsically different from those observed in globular proteins. However, IDPs also follow some of the classic paradigms established for globular proteins, pointing to important similarities in their behavior. In this review, we compare and contrast the folding mechanisms of globular proteins with the emerging features of binding-induced folding of intrinsically disordered proteins. Specifically, whereas disorder-to-order transitions of intrinsically disordered proteins appear to follow rules of globular protein folding, such as the cooperative nature of the reaction, their folding pathways are remarkably more malleable, due to the heterogeneous nature of their folding nuclei, as probed by analysis of linear free-energy relationship plots. These insights have led to a new model for the disorder-to-order transition in IDPs termed “templated folding,” whereby the binding partner dictates distinct structural transitions en route to product, while ensuring a cooperative folding.




at

An arrestin-1 surface opposite of its interface with photoactivated rhodopsin engages with enolase-1 [Protein Structure and Folding]

Arrestin-1 is the arrestin family member responsible for inactivation of the G protein–coupled receptor rhodopsin in photoreceptors. Arrestin-1 is also well-known to interact with additional protein partners and to affect other signaling cascades beyond phototransduction. In this study, we investigated one of these alternative arrestin-1 binding partners, the glycolysis enzyme enolase-1, to map the molecular contact sites between these two proteins and investigate how the binding of arrestin-1 affects the catalytic activity of enolase-1. Using fluorescence quench protection of strategically placed fluorophores on the arrestin-1 surface, we observed that arrestin-1 primarily engages enolase-1 along a surface that is opposite of the side of arrestin-1 that binds photoactivated rhodopsin. Using this information, we developed a molecular model of the arrestin-1–enolase-1 complex, which was validated by targeted substitutions of charge-pair interactions. Finally, we identified the likely source of arrestin's modulation of enolase-1 catalysis, showing that selective substitution of two amino acids in arrestin-1 can completely remove its effect on enolase-1 activity while still remaining bound to enolase-1. These findings open up opportunities for examining the functional effects of arrestin-1 on enolase-1 activity in photoreceptors and their surrounding cells.




at

Amylin Agonists: A Novel Approach in the Treatment of Diabetes

Ole Schmitz
Dec 1, 2004; 53:S233-S238
Section V: The Incretin Pathway




at

Risk Factors for Diabetic Peripheral Neuropathy and Cardiovascular Autonomic Neuropathy in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study

Barbara H. Braffett
May 1, 2020; 69:1000-1010
Complications




at

The Histone Methyltransferase MLL1 Directs Macrophage-Mediated Inflammation in Wound Healing and Is Altered in a Murine Model of Obesity and Type 2 Diabetes

Andrew S. Kimball
Sep 1, 2017; 66:2459-2471
Immunology and Transplantation




at

A Variation on the Theme: SGLT2 Inhibition and Glucagon Secretion in Human Islets

David J. Hodson
May 1, 2020; 69:864-866
Commentaries




at

Effect of a Sustained Reduction in Plasma Free Fatty Acid Concentration on Intramuscular Long-Chain Fatty Acyl-CoAs and Insulin Action in Type 2 Diabetic Patients

Mandeep Bajaj
Nov 1, 2005; 54:3148-3153
Metabolism




at

AMPK: A Target for Drugs and Natural Products With Effects on Both Diabetes and Cancer

D. Grahame Hardie
Jul 1, 2013; 62:2164-2172
Perspectives in Diabetes




at

The High-Fat Diet-Fed Mouse: A Model for Studying Mechanisms and Treatment of Impaired Glucose Tolerance and Type 2 Diabetes

Maria Sörhede Winzell
Dec 1, 2004; 53:S215-S219
Section V: The Incretin Pathway




at

Muscle Weakness: A Progressive Late Complication in Diabetic Distal Symmetric Polyneuropathy

Christer S. Andreassen
Mar 1, 2006; 55:806-812
Complications




at

MicroRNA Networks in Pancreatic Islet Cells: Normal Function and Type 2 Diabetes

Lena Eliasson
May 1, 2020; 69:804-812
Small Noncoding RNAs in Diabetes




at

Pancreas Pathology of Latent Autoimmune Diabetes in Adults (LADA) in Patients and in a LADA Rat Model Compared With Type 1 Diabetes

Anne Jörns
Apr 1, 2020; 69:624-633
Islet Studies




at

Visceral Fat Adipokine Secretion Is Associated With Systemic Inflammation in Obese Humans

Luigi Fontana
Apr 1, 2007; 56:1010-1013
Metabolism




at

Systeme International (SI) Units Table


Oct 1, 1992; 41:1368-1369
System[egrave] International (SI) Units Table




at

The Incretin Approach for Diabetes Treatment: Modulation of Islet Hormone Release by GLP-1 Agonism

Jens Juul Holst
Dec 1, 2004; 53:S197-S204
Section V: The Incretin Pathway




at

Insulin Regulates Brain Function, but How Does It Get There?

Sarah M. Gray
Dec 1, 2014; 63:3992-3997
Perspectives in Diabetes




at

Evidence Against an Important Role of Plasma Insulin and Glucagon Concentrations in the Increase in EGP Caused by SGLT2 Inhibitors

Mariam Alatrach
Apr 1, 2020; 69:681-688
Pathophysiology




at

Mechanisms of {beta}-Cell Death in Type 2 Diabetes

Marc Y. Donath
Dec 1, 2005; 54:S108-S113
Section III: Inflammation and beta-Cell Death




at

Changes in Gut Microbiota Control Metabolic Endotoxemia-Induced Inflammation in High-Fat Diet-Induced Obesity and Diabetes in Mice

Patrice D. Cani
Jun 1, 2008; 57:1470-1481
Metabolism




at

Predictors of Postpartum Diabetes in Women With Gestational Diabetes Mellitus

Kristian Löbner
Mar 1, 2006; 55:792-797
Pathophysiology




at

PPARA Polymorphism Influences the Cardiovascular Benefit of Fenofibrate in Type 2 Diabetes: Findings From ACCORD-Lipid

Mario Luca Morieri
Apr 1, 2020; 69:771-783
Genetics/Genomes/Proteomics/Metabolomics




at

The cGAS-cGAMP-STING Pathway: A Molecular Link Between Immunity and Metabolism

Juli Bai
Jun 1, 2019; 68:1099-1108
Perspectives in Diabetes




at

Intense Exercise Has Unique Effects on Both Insulin Release and Its Roles in Glucoregulation: Implications for Diabetes

Errol B. Marliss
Feb 1, 2002; 51:S271-S283
Section 6: Pusatile and Phasic Insulin Release in Normal and Diabetic Men




at

A Bivariate Genome-Wide Approach to Metabolic Syndrome: STAMPEED Consortium

Aldi T. Kraja
Apr 1, 2011; 60:1329-1339
Genetics




at

Vitamin D Receptor Overexpression in {beta}-Cells Ameliorates Diabetes in Mice

Meritxell Morró
May 1, 2020; 69:927-939
Islet Studies




at

Effect of a High-Protein, Low-Carbohydrate Diet on Blood Glucose Control in People With Type 2 Diabetes

Mary C. Gannon
Sep 1, 2004; 53:2375-2382
Pathophysiology




at

Mechanisms of Pancreatic {beta}-Cell Death in Type 1 and Type 2 Diabetes: Many Differences, Few Similarities

Miriam Cnop
Dec 1, 2005; 54:S97-S107
Section III: Inflammation and beta-Cell Death




at

Metabolic Endotoxemia Initiates Obesity and Insulin Resistance

Patrice D. Cani
Jul 1, 2007; 56:1761-1772
Obesity Studies




at

One Week of Bed Rest Leads to Substantial Muscle Atrophy and Induces Whole-Body Insulin Resistance in the Absence of Skeletal Muscle Lipid Accumulation

Marlou L. Dirks
Oct 1, 2016; 65:2862-2875
Metabolism




at

Low-Grade Systemic Inflammation and the Development of Type 2 Diabetes: The Atherosclerosis Risk in Communities Study

Bruce B. Duncan
Jul 1, 2003; 52:1799-1805
Pathophysiology




at

From the Triumvirate to the Ominous Octet: A New Paradigm for the Treatment of Type 2 Diabetes Mellitus

Ralph A. DeFronzo
Apr 1, 2009; 58:773-795
Banting Lecture