ilm

Thin film transistor and organic light emitting pixel having the same

A thin film transistor (TFT) that includes a control electrode, a semiconductor pattern, a first input electrode, a second input electrode, and an output electrode is disclosed. in one aspect, the semiconductor pattern includes a first input area, a second input area, a channel area, and an output area. The channel area is formed between the first input area and the output area and overlapped with the control electrode to be insulated from the control electrode. The second input area is formed between the first input area and the channel area and doped with a doping concentration different from a doping concentration of the first input areas. The second input electrode makes contact with the second input area and receives a control voltage to control a threshold voltage.




ilm

Fuel injection nozzle with film-type fuel application

A fuel injection nozzle for a gas turbine combustion chamber with a film applicator (1) is provided with several fuel openings (2). Center axes (5) of the fuel openings (2) through the film applicator (1), with regard to their radial orientation, are essentially parallel to the main flow direction (6) of the air.




ilm

Side edge cleaning methods and apparatus for thin film photovoltaic devices

Methods for cleaning a side edge of a thin film photovoltaic substrate utilizing a laser are provided. The method can include transporting the substrate in a machine direction to move the substrate past a first laser source, and focusing a first laser beam generated by the first laser source onto the side edge of the substrate such that the laser beam removes the thin film present on the side edge of the substrate. An apparatus is also generally provided for cleaning a first side edge and a second side edge of a thin film photovoltaic substrate.




ilm

Method and apparatus for cleaning a film seperating device

A method for cleaning a film separating device involves: a) performing positive-direction water cleaning when the ratio between the film filter resistance and the preliminary film filter resistance is less than 1.2; b) performing reverse water cleaning when the ratio between the film filter resistance and the preliminary film filter resistance is greater-than or equal-to 1.2; c) performing reverse chemical cleaning when the ratio between the film filter resistance and the preliminary film filter resistance is greater-than or equal-to 2; d) performing positive-direction chemical cleaning when the ratio between the film filter resistance and the preliminary film filter resistance is greater-than or equal-to 3.




ilm

Thin film forming apparatus and thin film forming method using the same

A thin film forming apparatus and a thin film forming method using the same are disclosed. In one aspect, the thin film forming apparatus comprises a mask that includes a blocking portion and an opening. It also includes an etching source that jets an etching gas through the opening of the mask to etch a thin film according to a pattern. The mask includes a gas blower for blowing a gas around the opening so that the etching gas does not penetrate into a thin film area corresponding to the block portion. When the thin film forming apparatus is used, a normal residual area of a thin film may be safely preserved and patterning may be accurately performed. Thus, the quality of a product manufactured by using the thin film forming apparatus may be improved.




ilm

Adhesive optical film, manufacturing method for the same and image display device using the same

A pressure-sensitive adhesive optical film of the invention comprises an optical film and a pressure-sensitive adhesive layer provided on the optical film, wherein the pressure-sensitive adhesive layer has a thickness (μm) standard deviation of 0.12 μm or less. The pressure-sensitive adhesive optical film makes it possible to reduce the problem of visible unevenness caused by a pressure-sensitive adhesive layer.




ilm

Surfboard with air-film creating vents

An air vent that passes from the deck of a surfboard through to its bottom. The vent may have a wide variety of shapes. The trailing boundary of the vent's lower portion is preferably inclined forward toward the surfboard's nose. The inclination serves to prevent water flowing upward. Instead, air is entrained by the water flowing across the vent's bottom exit and pulled downward. A portion of the entrained air flows rearward out of the bottom exit along the surfboard's bottom. This entrained air forms an air film between the board's bottom and the surrounding water, thereby reducing friction.




ilm

Sheet or film clipping stretcher

A clip 20 is provided on a clip support member 30, and one end of a main link member 53 and one end of a sub-link member 54 are pivotally connected to a first shaft member 51 at the clip 20 side of the clip support member 30 to constitute a reference linkage at the clip 20 side.




ilm

Sheet or film oblique stretching method and sheet or film clipping stretcher

Clipping both right and left side edge parts of a sheet or film by right and left pitch-variable clips having flow-directional clip pitches variable along with travel movements, respectively, having positions (AR, AL) for initiation of enlargements of flow-directional clip pitches changed between right clips and left clips, and enlarging flow-directional clip pitches along with travel movements of clips to thereby make an oblique stretch.




ilm

Porous film manufacturing method and successive biaxial stretching apparatus for manufacturing porous film

Provided is a method for manufacturing a high-quality porous film. Here, while the porous film is being manufactured through forming micropores by stretching, a raw film is prevented from slipping on the surfaces of the respective rolls as much as possible even though the raw film includes oil or liquid paraffin as a solvent. The method is for manufacturing a porous film through forming micropores by successive biaxial stretching. A tensile force applied to the raw film F transferring from the longitudinal stretching machine (10) to the transverse stretching machine (50) is set not less than a stretching force necessary for the longitudinal stretching, and thus the raw film is prevented from slipping on a contact surface between the raw film and each roll of the longitudinal stretching machine (10).




ilm

Sheet or film clipping stretcher

A clip support member 30 has a first shaft member 51 cantilevered by guide rollers 56 and 56 for a guiding along a reference rail with a recessed channel 101, the clip support member 30 being provided with a slider 40 having a second shaft member 52 cantilevered by guide rollers 57 and 57 for a guiding along a pitch setting rail 120 with a recessed channel 121, the clip support member 30 supporting a clip 20 at an end thereof, where it has the first shaft member 51, whereto one end of a main link member 53 and one end of a sub-link member 54 are pivotally connected, to constitute a reference linkage at the clip 20 end.




ilm

Sheet or film oblique stretching method and sheet or film clipping stretcher

Clipping both right and left side edge parts of a sheet or film by right and left pitch-variable clips having flow-directional clip pitches variable along with travel movements, respectively, having positions (AR, AL) for initiation of enlargements of flow-directional clip pitches changed between right clips and left clips, and enlarging flow-directional clip pitches along with travel movements of clips to thereby make an oblique stretch.




ilm

METHOD FOR PRODUCING FUNCTIONAL FILM, APPARATUS FOR PRODUCING FUNCTIONAL FILM, AND METHOD FOR PRODUCING FILM

A method for producing a functional film is provided. In the method, a film is sequentially transferred through processing devices including a film inspection device. At least one expander roll is used for film transfer from a processing device to the film inspection device next to the processing device.




ilm

METHOD FOR FORMING A PROTECTIVE FILM

A method for forming a protective film is provided. In the method, a source gas containing an organic metal gas or an organic semi-metal gas is supplied to a substrate having a plurality of recessed shapes formed in a surface so as to cause the source gas to adsorb on the surface of the substrate including the plurality of recessed shapes. Then, an oxidation gas is supplied to the surface of the substrate including the plurality of recessed shapes to oxidize the source gas adsorbed on the surface of the substrate, thereby depositing an oxidation film of the organic metal or the organic semi-metal on a flat area between the plurality of recessed shapes. Supplying the source gas to the substrate and supplying the oxidation gas to the substrate are repeated at a rate in a range of 90 to 300 cycles per minute.




ilm

METHOD FOR MANUFACTURING HARDCOAT FILM AND HARDCOAT FILM

The invention is directed to a method for manufacturing a hardcoat film including a hardcoat layer having a surface of which a water contact angle is 65° or less by applying, drying, and curing a composition for forming the hardcoat layer on a base material film, in which the composition for forming the hardcoat layer contains the components (a) to (d) as defined herein, and, in a case in which a total solid content of the composition for forming the hardcoat layer is set to 100% by mass, a content of the component (b) is 40% to 80% by mass, a content of the component (c) is 10% to 40% by mass, and a content of the component (d) is 10% to 40% by mass.




ilm

FILM FORMATION APPARATUS AND FILM FORMATION METHOD

A film formation apparatus and a film formation method that can homogenize the distribution of gas in each zone in a chamber and improve film formation precision are provided. A film formation apparatus according to one embodiment includes: a chamber which includes a plurality of zones into which gas is introduced, and a plurality of discharge ports that discharge the gas located in at least any of the zones and that can individually adjust an opening state; and a transportation unit that transports a substrate so as to pass through the plurality of the zones in the chamber.




ilm

METHOD FOR MANUFACTURING GRAPHENE COMPOSITE FILM

The present invention provides a method for manufacturing a graphene composite film including preparing a zeolite suspension and a graphene oxide suspension containing graphene oxide, reducing the graphene oxide suspension until the graphene oxide is partially reduced to form partially-reduced graphene oxide, followed by adding the zeolite suspension and a surfactant into the partially-reduced graphene oxide suspension to form a composite solution, further reducing the composite solution until the partially-reduced graphene oxide is completely reduced to form graphene, and forming the composite solution into the graphene composite film on a substrate via plasma-enhanced atomizing deposition.




ilm

FILM FORMING DEVICE AND METHOD

A film-forming device and a film forming method are provided. The film-forming device is configured to form an organic material thin film at a target region of a substrate and includes a gas supplying mechanism and a gas injection mechanism. The gas supplying mechanism is configured to import a mixture gas of organic material steam and an inert gas into the gas injection mechanism. The gas injection mechanism is configured to inject the mixture gas from the gas supplying mechanism onto the target region of the substrate.




ilm

METHOD FOR PRODUCING POROUS POLYIMIDE FILM, POROUS POLYIMIDE FILM AND SEPARATOR USING SAME

A method for producing a porous polyimide film comprises: forming a first un-burned composite film wherein the first film is formed on a substrate using a first varnish that contains (A1) a polyamide acid or a polyimide and (B1) fine particles at a volume ratio (A1):(B1) of from 19:81 to 45:65; forming a second un-burned composite film wherein the second film is formed on the first film using a second varnish that contains (A2) a polyamide acid or a polyimide and (B2) fine particles at a volume ratio (A2):(B2) of from 20:80 to 50:50 and has a lower fine particle content ratio than the first varnish; burning wherein an un-burned composite film composed of the first film and the second film is burned, thereby obtaining a polyimide-fine particle composite film; and a fine particle removal step wherein the fine particles are removed from the polyimide-fine particle composite film.




ilm

ELECTRODE COATED WITH A FILM OBTAINED FROM AN AQUEOUS SOLUTION COMPRISING A WATER-SOLUBLE BINDER, PRODUCTION METHOD THEREOF AND USES OF SAME

A method of preparing an electrochemical electrode which is partially or totally covered with a film that is obtained by spreading an aqueous solution comprising a water-soluble binder over the electrode and subsequently drying same. The production cost of the electrodes thus obtained is reduced and the surface porosity thereof is associated with desirable resistance values.




ilm

WHITE REFLECTIVE FILM FOR EDGE-LIGHT TYPE BACKLIGHT, AND LIQUID CRYSTAL DISPLAY BACKLIGHT USING SAME

A white reflective film for an edge light backlight improves the luminance and unevenness therein, voids uneven close contact with, and scraping of, the light guide plate, and minimizes the crushing of convexes formed on at least one side, even in cases where the reflective film is laid directly over a corrugated chassis designed to house circuitry or the reflective film is used in combination with LEDs. The film satisfies (i) to (iii): (i) a stiffness of 2 to 10 mN·m; (ii) convexes have been formed on at least one face (A), and their maximum height is 5 to 60 μm; (iii) the convexes contain an aromatic polyester.




ilm

METHODS OF MANUFACTURING THIN FILM TRANSISTOR AND ARRAY SUBSTRATE

A method of manufacturing a thin film transistor is disclosed. The method of manufacturing the thin film transistor includes: manufacturing a substrate; forming an oxide semiconductor layer on the substrate; forming a pattern including an active layer through a patterning process; forming a source and drain metal layer on the active layer; and forming a pattern including a source electrode and a drain electrode through a patterning process, an opening being formed between the source electrode and the drain electrode at a position corresponding to a region of the active layer used as a channel, wherein the step of forming the pattern including the source electrode and the drain electrode through a patterning process includes: removing a portion of the source and drain metal layer corresponding to the position of the opening through dry etching. The method may also be used to manufacturing a thin film transistor.




ilm

METHODS OF GROWING HETEROEPITAXIAL SINGLE CRYSTAL OR LARGE GRAINED SEMICONDUCTOR FILMS AND DEVICES THEREON

A method is provided for making smooth crystalline semiconductor thin-films and hole and electron transport films for solar cells and other electronic devices. Such semiconductor films have an average roughness of 3.4 nm thus allowing for effective deposition of additional semiconductor film layers such as perovskites for tandem solar cell structures which require extremely smooth surfaces for high quality device fabrication.




ilm

Light-scattering fluororesin film for agricultural applications, and method for producing same

The present invention provide a light-scattering fluororesin film for agricultural applications which can be used as a covering material for an agricultural house or the like, is excellent in uniformity of color or the like of crops cultivated, can reduce the occurrence of leaf scorch, seedling blight or the like, and can cultivate the crops at high productivity. Specifically, the invention provides a light-scattering fluororesin film for agricultural applications that gives a ratio of scattered light with a scattering angle of 5.5 to 10° being 5% or higher relative to the total transmitted light.




ilm

Fluid Permeable Anodic Oxide Film and Fluid Permeable Body Using Anodic Oxide Film

A fluid permeable anodic oxide film includes a plurality of regularly-disposed pores formed by anodizing metal and a plurality of permeation holes having an inner width larger than an inner width of the pores and extending through the fluid permeable anodic oxide film. Also provided is a fluid permeable body which makes use of the fluid permeable anodic oxide film.




ilm

ENHANCED BARRIER FILMS COMBINING VAPOR DEPOSITED COATINGS AND POLYMER BASED COATINGS

The invention concerns barrier films comprising: (i) a substrate comprising at least first and second coatings on the substrate; (ii) the first coating comprising an inorganic oxide, metal oxide or metallic coating; and (iii) the second coating capable of adhering to the substrates, wherein the second coating is polymeric; wherein the degradation of oxygen transmission rate is reduced when compared to a barrier film without the second coating when the barrier film is subjected to Gelbo-type flexing as described in ASTM F392.




ilm

PROPYLENE HOMOPOLYMER COMPOSITION FOR CAPACITOR FILM, METHOD FOR PRODUCING THE SAME, AND CAPACITOR FILM

Provided are a propylene homopolymer composition for a capacitor film, which can provide a film with excellent high-temperature voltage resistance and excellent thin-film stretchability, a method for producing the same, and a capacitor film. The propylene homopolymer composition for a capacitor film contains 50 to 99% by mass of a propylene homopolymer (A1) having predetermined characteristics and 1 to 50% by mass of a propylene homopolymer (B1) having predetermined characteristics, and has (i) a melt flow rate (MFR) of 1.0 to 10.0 g/10 min and (ii) a chlorine content of 2 ppm by mass or less.




ilm

HARDCOAT FILM, METHOD FOR MANUFACTURING HARDCOAT FILM, POLARIZING PLATE, AND LIQUID CRYSTAL DISPLAY DEVICE

Provided is a hardcoat film having a film thickness of 25 μm or less in which a polymerized substance of a compound having an energy ray-curable group and a resin are mixed across an entire region in a film thickness direction, in which a percentage of a mass concentration of the resin which is represented by the Expression (1) as defined herein has a distribution in which the percentage is maximized on at least one of two opposed surfaces, in the film thickness direction, of the hardcoat film or at a central part, in the film thickness direction, of the hardcoat film.




ilm

ANCHOR LAYER FORMATION COMPOSITION, ANCHOR LAYER, OPTICAL FILM PROVIDED WITH ADHESIVE LAYER, AND IMAGE DISPLAY DEVICE

An anchor layer formation composition, a pressure-sensitive adhesive layer-attached optical film, and an image display device are provided, in which the composition includes an oxazoline group-containing polymer and an ionic compound including a cation component and a sulfonyl group-containing anion component and is capable of forming an anchor layer that can improve the adhesion between a pressure-sensitive adhesive layer and an optical film when interposed therebetween, the pressure-sensitive adhesive layer-attached optical film has high durability and good reworkability and allows the pressure-sensitive adhesive layer to resist chipping, and the image display device has the pressure-sensitive adhesive layer-attached optical film.




ilm

ADHESION LAYER COMPOSITION, METHOD FOR FORMING FILM BY NANOIMPRINTING, METHODS FOR MANUFACTURING OPTICAL COMPONENT, CIRCUIT BOARD AND ELECTRONIC APPARATUS

In nanoimprinting processes, photo-cured products often separate from the substrate and stick to the mold due to insufficient adhesion between the photo-cured product and the substrate. This causes a defect of pattern separation. An adhesion layer composition used for forming an adhesion layer between a substrate and a photocurable composition includes a compound (A) having at least two functional groups, and a solvent (B). The functional groups include at least one functional group capable of being bound to the substrate, selected from the group consisting of hydroxy, carboxy, thiol, amino, epoxy, and (blocked) isocyanate, and at least one hydrogen donating group as a functional group capable of being bound to the photocurable composition.




ilm

Method of fabricating CIS or CIGS thin film

Disclosed herein is a method of fabricating a CIS or CIGS thin film, comprising: forming, on a substrate, a seed particle layer comprising copper-indium-compound seed particles comprising copper (Cu); indium (In); and at least one selected from the group consisting of gallium (Ga), sulfur (S) and selenium (Se),applying, on the seed particle layer, a water-soluble precursor solution comprising: a water-soluble copper (Cu) precursor;a water-soluble indium (In) precursor; andat least one selected from the group consisting of a water-soluble gallium (Ga) precursor, a water-soluble sulfur (S) precursor and a water-soluble selenium (Se) precursor, and forming a thin film at high temperature.




ilm

FILM BULK ACOUSTIC WAVE RESONATOR (FBAR) HAVING STRESS-RELIEF

An acoustic resonator structure comprises: a substrate having a cavity, which has a plurality of sides; a first electrode disposed over the cavity; a piezoelectric layer disposed over a portion of the first electrode and extending over at least one of the sides; and a second electrode disposed over the piezoelectric layer, an overlap of the first electrode, the piezoelectric layer and the second electrode forming an active area of the FBAR. The active area of the FBAR is completely suspended over the cavity.




ilm

METHOD OF MANUFACTURING THIN-FILM TRANSISTOR, THIN-FILM TRANSISTOR SUBSTRATE, AND FLAT PANEL DISPLAY APPARATUS

A method of manufacturing a thin-film transistor includes forming an oxide semiconductor on a substrate, stacking an insulating layer and a metal layer on the substrate to cover the oxide semiconductor, forming a photosensitive pattern on the metal layer, forming a gate electrode by etching the metal layer using the photosensitive pattern as a mask, where a part of the gate electrode overlaps a first oxide semiconductor region of the oxide semiconductor, forming a gate insulating film by partially etching the insulating layer using the photosensitive pattern as a mask, where the gate insulating film includes a first insulating region with a first thickness under the photosensitive pattern and a second insulating region with a second thickness less than the first thickness, and performing plasma processing on the gate insulating film so that a second oxide semiconductor region of the oxide semiconductor under the second insulating region becomes conductive.




ilm

POLYMERIZABLE LIQUID CRYSTAL COMPOUND, COMPOSITION FOR OPTICAL FILM, AND OPTICAL FILM, COMPENSATION FILM, ANTIREFLECTIVE FILM, AND DISPLAY DEVICE INCLUDING THE SAME

A polymerizable liquid crystal compound represented by Chemical Formula 1: wherein in Chemical Formula 1, groups and variables are the same as defined in the detailed description.




ilm

RETARDATION FILM

Disclosed is a retardation film which shows a high light selective absorbency to visible rays having short wavelengths near 400 nm to have a high light resistance, and which can give, when used in a display device, good display properties to the display device. This film is a retardation film, satisfying all of the following formulae (1) to (4): 2≦A(380) (1), 0.5≦A(400) (2), 0.4≧A(420)/A(400) (3), and 100 nm≦Re(550)≦170 nm (4), in which each A(λ) represents the absorbance of the film at a wavelength λ nm, and Re (550) represents the in-plane retardation value of the film to a light ray having a wavelength of 550 nm.




ilm

COMPENSATION FILM AND METHOD OF MANUFACTURING THE SAME

A compensation film includes an elongation film having an elongation rate of greater than or equal to about 200% in a uniaxial direction and having a surface energy of about 40 mJ/m2 to about 65 mJ/m2 and a liquid crystal layer disposed on one side of the elongation film and including liquid crystals.




ilm

LIQUID CRYSTAL DISPLAY ELEMENT, LIQUID CRYSTAL ALIGNMENT FILM, AND LIQUID CRYSTAL ALIGNMENT TREATMENT AGENT

To provide a liquid crystal display device, in which the vertical alignment property of the liquid crystal is high, favorable transparency when no voltage is applied and favorable scattering property when a voltage is applied are achieved, and the adhesion between the liquid crystal layer and the vertical liquid crystal alignment film is high. A liquid crystal display device, which comprises a liquid crystal layer formed by disposing a liquid crystal composition containing a polymerizable compound which undergoes a polymerization reaction by ultraviolet rays, between a pair of substrates provided with an electrode, and irradiating the liquid crystal composition with ultraviolet rays and curing it in such a state that the liquid crystal composition partly or entirely shows liquid crystallinity, and at least one of the substrates being provided with a liquid crystal alignment film to vertically align a liquid crystal, wherein the liquid crystal alignment film is a liquid crystal alignment film obtained from a liquid crystal aligning agent containing a polymer having a first side chain structure and a second side chain structure.




ilm

ACTIVE LAYER, THIN-FILM TRANSISTOR ARRAY SUBSTRATE COMPRISING THE SAME, AND DISPLAY DEVICE COMPRISING THE SAME

Carbon allotropes, a thin-film transistor array substrate comprising the same, and a display device comprising the same are disclosed. The thin-film transistor array substrate comprising a substrate, a gate electrode on the substrate, a gate insulating film on the gate electrode, an active layer positioned on the gate insulating film and comprising a semiconductor material and a plurality of carbon allotropes, and a source electrode and a drain electrode that make contact with the active layer.




ilm

LAMINATED FILM, ELECTRON ELEMENT, PRINTED CIRCUIT BOARD AND DISPLAY DEVICE

According to one embodiment, a laminated film includes a first adhesive layer, a first insulating layer which faces the first adhesive layer, a first metal layer which is located between the first adhesive layer and the first insulating layer, and a first porous layer which is located between the first adhesive layer and the first insulating layer and faces the first metal layer.




ilm

MAGNETICALLY ENHANCED LOW TEMPERATURE-HIGH DENSITY PLASMA-CHEMICAL VAPOR DEPOSITION PLASMA SOURCE FOR DEPOSITING DIAMOND AND DIAMOND LIKE FILMS

A magnetically enhanced low temperature high density plasma chemical vapor deposition (LT-HDP-CVD) source has a hollow cathode target and an anode, which form a gap. A cathode target magnet assembly forms magnetic field lines substantially perpendicular to the cathode surface. A gap magnet assembly forms a magnetic field in the gap that is coupled with the cathode target magnetic field. The magnetic field lines cross the pole piece electrode positioned in the gap. The pole piece is isolated from ground and can be connected to a voltage power supply. The pole piece can have negative, positive, floating, or RF electrical potentials. By controlling the duration, value, and sign of the electric potential on the pole piece, plasma ionization can be controlled. Feed gas flows through the gap between the hollow cathode and anode. The cathode can be connected to a pulse power or RF power supply, or cathode can be connected to both power supplies. The cathode target and substrate can be inductively grounded.




ilm

MAGNETICALLY ENHANCED HIGH DENSITY PLASMA-CHEMICAL VAPOR DEPOSITION PLASMA SOURCE FOR DEPOSITING DIAMOND AND DIAMOND-LIKE FILMS

A magnetically enhanced HDP-CVD plasma source includes a hollow cathode target and an anode. The anode and cathode form a gap. A cathode target magnet assembly forms magnetic field lines that are substantially perpendicular to a cathode target surface. The gap magnet assembly forms a cusp magnetic field in the gap that is coupled with the cathode target magnetic field. The magnetic field lines cross a pole piece electrode positioned in the gap. This pole piece is isolated from ground and can be connected with a voltage power supply. The pole piece can have a negative, positive, or floating electric potential. The plasma source can be configured to generate volume discharge. The gap size prohibits generation of plasma discharge in the gap. By controlling the duration, value and a sign of the electric potential on the pole piece, the plasma ionization can be controlled. The magnetically enhanced HDP-CVD source can also be used for chemically enhanced ionized physical vapor deposition (CE-IPVD). Gas flows through the gap between hollow cathode and anode. The cathode target is inductively grounded, and the substrate is periodically inductively grounded.




ilm

METHOD OF SPUTTER DEPOSITION OF A FILM ON AN ESSENTIALLY PLANE EXTENDED SURFACE OF A SUBSTRATE

A film is sputter-deposited on an essentially plane, extended surface of a substrate which has recesses therein, namely at least one of grooves, of holes, of bores, of vias, of trenches. So as to establish on one hand a homogeneous thickness distribution of the film along the addressed surface of the substrate and, on the other hand, a thick film deposition within the recesses, sputter deposition is performed first at a large distance between a sputter surface of a target and the addressed surface of the substrate and then at a reduced distance between the addressed surfaces.




ilm

FILM FORMATION APPARATUS AND FILM-FORMED WORKPIECE MANUFACTURING METHOD

A film formation apparatus and a film-formed workpiece manufacturing method which are capable of forming a film with a uniform thickness on a workpiece like a three-dimensional object that includes a plurality of surfaces by a simple structure are provided. A film formation apparatus includes a target 21 that is a film formation material including a plane SU3, a power supply unit 3 applying power to the target 21, a rotating unit 4 rotating a workpiece W that is a film formation object around a rotation axis AX1, and a revolving unit 5 revolving the rotating unit 4 around a revolution axis AX2 separate from the rotation axis AX1 to repeatedly make the workpiece W to come close to and move apart from the target 21.




ilm

QUALITY EVALUATION METHOD FOR LAMINATE HAVING PROTECTIVE LAYER ON SURFACE OF OXIDE SEMICONDUCTOR THIN FILM AND QUALITY CONTROL METHOD FOR OXIDE SEMICONDUCTOR THIN FILM

Provided is a method for simply evaluating defects caused in interface states in oxide semiconductor thin films and protective films in TFTs having protective films formed on the surface of oxide semiconductor thin films without actually measuring the characteristics of the same. This evaluation method evaluates defects caused in the interface states by measuring electron states in the oxide semiconductor thin film by a contact method or noncontact method. The defects caused in the interface states are any of the following (1)-(3). (1) Threshold value voltage (Vth,) when a positive bias is applied to the thin-film transistor(2) Difference in threshold value voltage (ΔVth) before and after applying the positive bias to the thin-film transistor(3) Threshold value during the first measurement when a plurality of measurements is made of the threshold value voltage when a positive bias is applied to the thin-film transistor.




ilm

Did Punk Break? Green Day Played Gilman Last Night (Photos)

"So the last time we played here was September 6th, 1993," announced Billie Joe Armstrong. He was on stage at storied Berkeley venue 924 Gilman Street, flanked by Mike Dirnt, Tre Cool, Jason White, and Jason Freese.…



  • Blogs/Arts & Music

ilm

ENCAPSULATION FILM

Provided are an encapsulation film, an organic electronic device including the same, and a method of manufacturing the organic electronic device. Therefore, provided is the pressure-sensitive adhesive composition, which can form a structure capable of effectively blocking moisture or water entering the organic electronic device from the outside, and have excellent processability in a process of manufacturing a panel and excellent heat retention under a high-temperature and high-humidity condition.




ilm

METHOD FOR MAKING COMPOSITE STRUCTURE WITH A SURFACING FILM THEREON

A method for making a composite structure with a surfacing film thereon. The surfacing film is co-cured with fiber-reinforced resin composite materials. The surfacing film is formed from a curable resin composition containing an epoxy novolac resin, a tri-functional or tetra-functional epoxy resin, ceramic microspheres, an amine-based curing agent, particulate inorganic fillers; and a toughening component. The surfacing film exhibits high Tg and high cross-linked density after curing, as well as high resistance to paint stripper solutions.




ilm

Gill Oliver meets filmmaker Mike Shipperly

Gill Oliver meets filmmaker Mike Shipperly — a man who can make your movie dreams come true.




ilm

Film fans are the first to tie the knot at Harbour Lights Cinema in Southampton

IT was the perfectly scripted Hollywood ending for a distinctly familiar cinema audience.