mma Thematic review series: The Pathogenesis of Atherosclerosis. Effects of infection and inflammation on lipid and lipoprotein metabolism mechanisms and consequences to the host By feedproxy.google.com Published On :: 2004-07-01 Weerapan KhovidhunkitJul 1, 2004; 45:1169-1196Thematic Reviews Full Article
mma The Morass of Central American Migration: Dynamics, Dilemmas and Policy Alternatives By feedproxy.google.com Published On :: Mon, 11 Nov 2019 16:10:01 +0000 Invitation Only Research Event 22 November 2019 - 8:15am to 9:30am Chatham House | 10 St James's Square | London | SW1Y 4LE Event participants Anita Isaacs, Professor of Political Science, Haverford College; Co-Director, Migration Encounters ProjectJuan Ricardo Ortega, Principal Advisor for Central America, Inter-American Development BankChair: Amy Pope, Associate Fellow, Chatham House; US Deputy Homeland Security Adviser for the Obama Administration (2015-17) 2019 has seen a record number of people migrating from Central America’s Northern Triangle – an area that covers El Salvador, Guatemala and Honduras. Estimates from June 2019 have placed the number of migrants at nearly double of what they were in 2018 with the increase in numbers stemming from a lack of economic opportunity combined with a rise in crime and insecurity in the region. The impacts of migration can already be felt within the affected states as the exodus has played a significant role in weakening labour markets and contributing to a ‘brain drain’ in the region. It has also played an increasingly active role in the upcoming US presidential election with some calling for more security on the border to curb immigration while others argue that a more effective strategy is needed to address the sources of migration. What are the core causes of Central American migration and how have the US, Central American and now also Mexican governments facilitated and deterred migration from the region? Can institutions be strengthened to alleviate the causes of migration? And what possible policy alternatives and solutions are there that could alleviate the pressures individuals and communities feel to migrate? Anita Isaacs, professor of Political Science at Haverford College and co-director of the Migration Encounters Project, and Juan Ricard Ortega, principal advisor for Central America at the Inter-American Development Bank, will join us for a discussion on the core drivers of migration within and across Central America.Attendance at this event is by invitation only. Event attributes Chatham House Rule Department/project US and the Americas Programme US and Americas Programme Email Full Article
mma Immature leadership: Donald Trump and the American presidency By feedproxy.google.com Published On :: Wed, 04 Mar 2020 13:20:12 +0000 4 March 2020 , Volume 96, Number 2 Read online Daniel W. Drezner There has been a renaissance in the study of how the backgrounds of individual leaders affect foreign policy outcomes. Donald Trump's presidency highlights the limits of this approach. Trump's psychology is so unique, and so akin to that of a small child, that studying his background alone is insufficient to explain his decision-making. The evidence for this characterization of Trump's leadership comes not from his political opponents, but his allies, staffers and subordinates. Trump's lack of impulse control, short attention span and frequent temper tantrums have all undercut his effectiveness as president as compared to his predecessors. Nonetheless, the 45th president helps to clarify ongoing debates in American politics about the relative strength of the presidency as an institution. In particular, the powers of the presidency have become so enhanced that even comparatively weak and inexperienced leaders can execute dramatic policy shifts. The formal checks on presidential power, from the legislative, judicial and executive branches have all eroded. Similarly, the informal checks on the presidency had also degraded before Trump's inauguration. This article uses Trump's presidency—and his severe limitations as a decision-maker—to highlight the ways in which even a weak leader can affect change by holding a powerful office. Full Article
mma Roles of the DOCK-D family proteins in a mouse model of neuroinflammation [Neurobiology] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 The DOCK-D (dedicator of cytokinesis D) family proteins are atypical guanine nucleotide exchange factors that regulate Rho GTPase activity. The family consists of Zizimin1 (DOCK9), Zizimin2 (DOCK11), and Zizimin3 (DOCK10). Functions of the DOCK-D family proteins are presently not well-explored, and the role of the DOCK-D family in neuroinflammation is unknown. In this study, we generated three mouse lines in which DOCK9 (DOCK9−/−), DOCK10 (DOCK10−/−), or DOCK11 (DOCK11−/−) had been deleted and examined the phenotypic effects of these gene deletions in MOG35–55 peptide-induced experimental autoimmune encephalomyelitis, an animal model of the neuroinflammatory disorder multiple sclerosis. We found that all the gene knockout lines were healthy and viable. The only phenotype observed under normal conditions was a slightly smaller proportion of B cells in splenocytes in DOCK10−/− mice than in the other mouse lines. We also found that the migration ability of macrophages is impaired in DOCK10−/− and DOCK11−/− mice and that the severity of experimental autoimmune encephalomyelitis was ameliorated only in DOCK10−/− mice. No apparent phenotype was observed for DOCK9−/− mice. Further investigations indicated that lipopolysaccharide stimulation up-regulates DOCK10 expression in microglia and that microglial migration is decreased in DOCK10−/− mice. Up-regulation of C–C motif chemokine ligand 2 (CCL2) expression induced by activation of Toll-like receptor 4 or 9 signaling was reduced in DOCK10−/− astrocytes compared with WT astrocytes. Taken together, our findings suggest that DOCK10 plays a role in innate immunity and neuroinflammation and might represent a potential therapeutic target for managing multiple sclerosis. Full Article
mma Reactive dicarbonyl compounds cause Calcitonin Gene-Related Peptide release and synergize with inflammatory conditions in mouse skin and peritoneum [Molecular Bases of Disease] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 The plasmas of diabetic or uremic patients and of those receiving peritoneal dialysis treatment have increased levels of the glucose-derived dicarbonyl metabolites like methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG). The elevated dicarbonyl levels can contribute to the development of painful neuropathies. Here, we used stimulated immunoreactive Calcitonin Gene–Related Peptide (iCGRP) release as a measure of nociceptor activation, and we found that each dicarbonyl metabolite induces a concentration-, TRPA1-, and Ca2+-dependent iCGRP release. MGO, GO, and 3-DG were about equally potent in the millimolar range. We hypothesized that another dicarbonyl, 3,4-dideoxyglucosone-3-ene (3,4-DGE), which is present in peritoneal dialysis (PD) solutions after heat sterilization, activates nociceptors. We also showed that at body temperatures 3,4-DGE is formed from 3-DG and that concentrations of 3,4-DGE in the micromolar range effectively induced iCGRP release from isolated murine skin. In a novel preparation of the isolated parietal peritoneum PD fluid or 3,4-DGE alone, at concentrations found in PD solutions, stimulated iCGRP release. We also tested whether inflammatory tissue conditions synergize with dicarbonyls to induce iCGRP release from isolated skin. Application of MGO together with bradykinin or prostaglandin E2 resulted in an overadditive effect on iCGRP release, whereas MGO applied at a pH of 5.2 resulted in reduced release, probably due to an MGO-mediated inhibition of transient receptor potential (TRP) V1 receptors. These results indicate that several reactive dicarbonyls activate nociceptors and potentiate inflammatory mediators. Our findings underline the roles of dicarbonyls and TRPA1 receptors in causing pain during diabetes or renal disease. Full Article
mma Hepatic monoamine oxidase B is involved in endogenous geranylgeranoic acid synthesis in mammalian liver cells [Research Articles] By feedproxy.google.com Published On :: 2020-05-01T00:05:28-07:00 Geranylgeranoic acid (GGA) originally was identified in some animals and has been developed as an agent for preventing second primary hepatoma. We previously have also identified GGA as an acyclic diterpenoid in some medicinal herbs. Recently, we reported that in human hepatoma-derived HuH-7 cells, GGA is metabolically labeled from 13C-mevalonate. Several cell-free experiments have demonstrated that GGA is synthesized through geranylgeranial by oxygen-dependent oxidation of geranylgeraniol (GGOH), but the exact biochemical events giving rise to GGA in hepatoma cells remain unclear. Monoamine oxidase B (MOAB) has been suggested to be involved in GGOH oxidation. Here, using two human hepatoma cell lines, we investigated whether MAOB contributes to GGA biosynthesis. Using either HuH-7 cell lysates or recombinant human MAOB, we found that: 1) the MAO inhibitor tranylcypromine dose-dependently downregulates endogenous GGA levels in HuH-7 cells; and 2) siRNA-mediated MAOB silencing reduces intracellular GGA levels in HuH-7 and Hep3B cells. Unexpectedly, however, CRISPR/Cas9-generated MAOB-KO human hepatoma Hep3B cells had GGA levels similar to those in MAOB-WT cells. A sensitivity of GGA levels to siRNA-mediated MAOB downregulation was recovered when the MAOB-KO cells were transfected with a MAOB-expression plasmid, suggesting that MAOB is the enzyme primarily responsible for GGOH oxidation and that some other latent metabolic pathways may maintain endogenous GGA levels in the MAOB-KO hepatoma cells. Along with the previous findings, these results provide critical insights into the biological roles of human MAOB and provide evidence that hepatic MAOB is involved in endogenous GGA biosynthesis via GGOH oxidation. Full Article
mma Lipid rafts in glial cells: role in neuroinflammation and pain processing [Thematic Reviews] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Activation of microglia and astrocytes secondary to inflammatory processes contributes to the development and perpetuation of pain with a neuropathic phenotype. This pain state presents as a chronic debilitating condition and affects a large population of patients with conditions like rheumatoid arthritis and diabetes, or after surgery, trauma, or chemotherapy. Here, we review the regulation of lipid rafts in glial cells and the role they play as a key component of neuroinflammatory sensitization of central pain signaling pathways. In this context, we introduce the concept of an inflammaraft (i-raft), enlarged lipid rafts harboring activated receptors and adaptor molecules and serving as an organizing platform to initiate inflammatory signaling and the cellular response. Characteristics of the inflammaraft include increased relative abundance of lipid rafts in inflammatory cells, increased content of cholesterol per raft, and increased levels of inflammatory receptors, such as toll-like receptor (TLR)4, adaptor molecules, ion channels, and enzymes in lipid rafts. This inflammaraft motif serves an important role in the membrane assembly of protein complexes, for example, TLR4 dimerization. Operating within this framework, we demonstrate the involvement of inflammatory receptors, redox molecules, and ion channels in the inflammaraft formation and the regulation of cholesterol and sphingolipid metabolism in the inflammaraft maintenance and disruption. Strategies for targeting inflammarafts, without affecting the integrity of lipid rafts in noninflammatory cells, may lead to developing novel therapies for neuropathic pain states and other neuroinflammatory conditions. Full Article
mma Summary Outcomes of the Fifth Meeting of the BCH Informal Advisory Committee (BCH IAC). The BCH IAC provides guidance regarding the technical issues associated with the ongoing development of the BCH. By www.cbd.int Published On :: Thu, 18 Feb 2010 00:00:00 GMT Full Article
mma The summary outcomes of of the ninth meeting of the Informal Advisory Committee on the Biosafety Clearing-House is now available. By www.cbd.int Published On :: Wed, 16 Jul 2014 00:00:00 GMT Full Article
mma A CBD/Aarhus Convention checklist and summary of tools and resources are now available. By bch.cbd.int Published On :: Fri, 29 Jan 2016 00:00:00 GMT Full Article
mma CBD News: In response to decision IX/16 requesting the Executive Secretary to summarize information found within existing documents on the conservation and sustainable use of biodiversity relevant for Reducing Emissions from Deforestation and Forest Degra By unfccc.int Published On :: Fri, 22 Aug 2008 00:00:00 GMT Full Article
mma CBD News: Syracuse Charter on Biodiversity and Chair's Summary - G8 Environment Ministerial Meeting, Castello Maniace, Siracusa, 22-24 April, 2009. By www.cbd.int Published On :: Thu, 23 Apr 2009 00:00:00 GMT Full Article
mma CBD News: Summary results and conclusions of the Airbus-commissioned survey referred to in the address of the Executive Secretary delivered at the Royal Geographical Society, London, on 3 September 2009. By www.cbd.int Published On :: Thu, 03 Sep 2009 00:00:00 GMT Full Article
mma CBD News: Summary of the Second Global Private Donor Forum, which took place this past October 26th, 2010 at the margins of the tenth Conference of Parties (COP10) in Nagoya, Japan. By www.cbd.int Published On :: Fri, 03 Dec 2010 00:00:00 GMT Full Article
mma CBD News: Statement on Behalf of CBD Executive on the occasion of The 2nd International Conference on Marine Mammal Protected Areas, 7 to 11 November 2011, Martinique By www.cbd.int Published On :: Mon, 07 Nov 2011 00:00:00 GMT Full Article
mma CBD News: Statement by Mr. Braulio Ferreira de Souza Dias, CBD Executive Secretary, on the occasion of the Regional Capacity-Building Workshop on the Nagoya Protocol on Acess and Benefit-Sharing for Middle East Region and Djibouti, Libya, Mauritania, Amma By www.cbd.int Published On :: Tue, 09 Apr 2013 00:00:00 GMT Full Article
mma CBD News: Statement by Mr. Braulio F. de Souza Dias, CBD Executive Secretary, to the National Workshop on Indicators and NBSAP for Iraq, Amman, Jordan, 1-4 July 2013 By www.cbd.int Published On :: Mon, 01 Jul 2013 00:00:00 GMT Full Article
mma CBD News: The ecologically or biologically significant marine areas (EBSA) booklet series provide snapshot summaries of the pages upon pages of data compiled by participating experts, to provide an inspiring overview of some of the most ecologically or bi By www.cbd.int Published On :: Fri, 22 Jun 2018 00:00:00 GMT Full Article
mma CBD News: In the "Beijing Call for Biodiversity Conservation and Climate Change", French President Emmanuel Macron and Chinese President Xi Jinping on 6 November reaffirmed their commitments to enhance international cooperation on climate change By www.diplomatie.gouv.fr Published On :: Thu, 07 Nov 2019 00:00:00 GMT Full Article
mma The Dilemma of Weight Loss in Diabetes By spectrum.diabetesjournals.org Published On :: 2007-07-01 Marion J. FranzJul 1, 2007; 20:133-136Editorials Full Article
mma {gamma}-Hydroxybutyrate does not mediate glucose inhibition of glucagon secretion [Signal Transduction] By www.jbc.org Published On :: 2020-04-17T00:06:05-07:00 Hypersecretion of glucagon from pancreatic α-cells strongly contributes to diabetic hyperglycemia. Moreover, failure of α-cells to increase glucagon secretion in response to falling blood glucose concentrations compromises the defense against hypoglycemia, a common complication in diabetes therapy. However, the mechanisms underlying glucose regulation of glucagon secretion are poorly understood and likely involve both α-cell–intrinsic and intraislet paracrine signaling. Among paracrine factors, glucose-stimulated release of the GABA metabolite γ-hydroxybutyric acid (GHB) from pancreatic β-cells might mediate glucose suppression of glucagon release via GHB receptors on α-cells. However, the direct effects of GHB on α-cell signaling and glucagon release have not been investigated. Here, we found that GHB (4–10 μm) lacked effects on the cytoplasmic concentrations of the secretion-regulating messengers Ca2+ and cAMP in mouse α-cells. Glucagon secretion from perifused mouse islets was also unaffected by GHB at both 1 and 7 mm glucose. The GHB receptor agonist 3-chloropropanoic acid and the antagonist NCS-382 had no effects on glucagon secretion and did not affect stimulation of secretion induced by a drop in glucose from 7 to 1 mm. Inhibition of endogenous GHB formation with the GABA transaminase inhibitor vigabatrin also failed to influence glucagon secretion at 1 mm glucose and did not prevent the suppressive effect of 7 mm glucose. In human islets, GHB tended to stimulate glucagon secretion at 1 mm glucose, an effect mimicked by 3-chloropropanoic acid. We conclude that GHB does not mediate the inhibitory effect of glucose on glucagon secretion. Full Article
mma 12-LOX catalyzes the oxidation of 2-arachidonoyl-lysolipids in platelets generating eicosanoid-lysolipids that are attenuated by iPLA2{gamma} knockout [Signal Transduction] By www.jbc.org Published On :: 2020-04-17T00:06:05-07:00 The canonical pathway of eicosanoid production in most mammalian cells is initiated by phospholipase A2-mediated release of arachidonic acid, followed by its enzymatic oxidation resulting in a vast array of eicosanoid products. However, recent work has demonstrated that the major phospholipase in mitochondria, iPLA2γ (patatin-like phospholipase domain containing 8 (PNPLA8)), possesses sn-1 specificity, with polyunsaturated fatty acids at the sn-2 position generating polyunsaturated sn-2-acyl lysophospholipids. Through strategic chemical derivatization, chiral chromatographic separation, and multistage tandem MS, here we first demonstrate that human platelet-type 12-lipoxygenase (12-LOX) can directly catalyze the regioselective and stereospecific oxidation of 2-arachidonoyl-lysophosphatidylcholine (2-AA-LPC) and 2-arachidonoyl-lysophosphatidylethanolamine (2-AA-LPE). Next, we identified these two eicosanoid-lysophospholipids in murine myocardium and in isolated platelets. Moreover, we observed robust increases in 2-AA-LPC, 2-AA-LPE, and their downstream 12-LOX oxidation products, 12(S)-HETE-LPC and 12(S)-HETE-LPE, in calcium ionophore (A23187)-stimulated murine platelets. Mechanistically, genetic ablation of iPLA2γ markedly decreased the calcium-stimulated production of 2-AA-LPC, 2-AA-LPE, and 12-HETE-lysophospholipids in mouse platelets. Importantly, a potent and selective 12-LOX inhibitor, ML355, significantly inhibited the production of 12-HETE-LPC and 12-HETE-LPE in activated platelets. Furthermore, we found that aging is accompanied by significant changes in 12-HETE-LPC in murine serum that were also markedly attenuated by iPLA2γ genetic ablation. Collectively, these results identify previously unknown iPLA2γ-initiated signaling pathways mediated by direct 12-LOX oxidation of 2-AA-LPC and 2-AA-LPE. This oxidation generates previously unrecognized eicosanoid-lysophospholipids that may serve as biomarkers for age-related diseases and could potentially be used as targets in therapeutic interventions. Full Article
mma Cross-regulation between LUBAC and caspase-1 modulates cell death and inflammation [Signal Transduction] By www.jbc.org Published On :: 2020-04-17T00:06:05-07:00 The linear ubiquitin assembly complex (LUBAC) is an essential component of the innate and adaptive immune system. Modification of cellular substrates with linear polyubiquitin chains is a key regulatory step in signal transduction that impacts cell death and inflammatory signaling downstream of various innate immunity receptors. Loss-of-function mutations in the LUBAC components HOIP and HOIL-1 yield a systemic autoinflammatory disease in humans, whereas their genetic ablation is embryonically lethal in mice. Deficiency of the LUBAC adaptor protein Sharpin results in a multi-organ inflammatory disease in mice characterized by chronic proliferative dermatitis (cpdm), which is propagated by TNFR1-induced and RIPK1-mediated keratinocyte cell death. We have previously shown that caspase-1 and -11 promoted the dermatitis pathology of cpdm mice and mediated cell death in the skin. Here, we describe a reciprocal regulation of caspase-1 and LUBAC activities in keratinocytes. We show that LUBAC interacted with caspase-1 via HOIP and modified its CARD domain with linear polyubiquitin and that depletion of HOIP or Sharpin resulted in heightened caspase-1 activation and cell death in response to inflammasome activation, unlike what is observed in macrophages. Reciprocally, caspase-1, as well as caspase-8, regulated LUBAC activity by proteolytically processing HOIP at Asp-348 and Asp-387 during the execution of cell death. HOIP processing impeded substrate ubiquitination in the NF-κB pathway and resulted in enhanced apoptosis. These results highlight a regulatory mechanism underlying efficient apoptosis in keratinocytes and provide further evidence of a cross-talk between inflammatory and cell death pathways. Full Article
mma Noncatalytic Bruton's tyrosine kinase activates PLC{gamma}2 variants mediating ibrutinib resistance in human chronic lymphocytic leukemia cells [Membrane Biology] By www.jbc.org Published On :: 2020-04-24T06:08:45-07:00 Treatment of patients with chronic lymphocytic leukemia (CLL) with inhibitors of Bruton's tyrosine kinase (BTK), such as ibrutinib, is limited by primary or secondary resistance to this drug. Examinations of CLL patients with late relapses while on ibrutinib, which inhibits BTK's catalytic activity, revealed several mutations in BTK, most frequently resulting in the C481S substitution, and disclosed many mutations in PLCG2, encoding phospholipase C-γ2 (PLCγ2). The PLCγ2 variants typically do not exhibit constitutive activity in cell-free systems, leading to the suggestion that in intact cells they are hypersensitive to Rac family small GTPases or to the upstream kinases spleen-associated tyrosine kinase (SYK) and Lck/Yes-related novel tyrosine kinase (LYN). The sensitivity of the PLCγ2 variants to BTK itself has remained unknown. Here, using genetically-modified DT40 B lymphocytes, along with various biochemical assays, including analysis of PLCγ2-mediated inositol phosphate formation, inositol phospholipid assessments, fluorescence recovery after photobleaching (FRAP) static laser microscopy, and determination of intracellular calcium ([Ca2+]i), we show that various CLL-specific PLCγ2 variants such as PLCγ2S707Y are hyper-responsive to activated BTK, even in the absence of BTK's catalytic activity and independently of enhanced PLCγ2 phospholipid substrate supply. At high levels of B-cell receptor (BCR) activation, which may occur in individual CLL patients, catalytically-inactive BTK restored the ability of the BCR to mediate increases in [Ca2+]i. Because catalytically-inactive BTK is insensitive to active-site BTK inhibitors, the mechanism involving the noncatalytic BTK uncovered here may contribute to preexisting reduced sensitivity or even primary resistance of CLL to these drugs. Full Article
mma Structure of an ancestral mammalian family 1B1 cytochrome P450 with increased thermostability [Enzymology] By www.jbc.org Published On :: 2020-04-24T06:08:45-07:00 Mammalian cytochrome P450 enzymes often metabolize many pharmaceuticals and other xenobiotics, a feature that is valuable in a biotechnology setting. However, extant P450 enzymes are typically relatively unstable, with T50 values of ∼30–40 °C. Reconstructed ancestral cytochrome P450 enzymes tend to have variable substrate selectivity compared with related extant forms, but they also have higher thermostability and therefore may be excellent tools for commercial biosynthesis of important intermediates, final drug molecules, or drug metabolites. The mammalian ancestor of the cytochrome P450 1B subfamily was herein characterized structurally and functionally, revealing differences from the extant human CYP1B1 in ligand binding, metabolism, and potential molecular contributors to its thermostability. Whereas extant human CYP1B1 has one molecule of α-naphthoflavone in a closed active site, we observed that subtle amino acid substitutions outside the active site in the ancestor CYP1B enzyme yielded an open active site with four ligand copies. A structure of the ancestor with 17β-estradiol revealed only one molecule in the active site, which still had the same open conformation. Detailed comparisons between the extant and ancestor forms revealed increases in electrostatic and aromatic interactions between distinct secondary structure elements in the ancestral forms that may contribute to their thermostability. To the best of our knowledge, this represents the first structural evaluation of a reconstructed ancestral cytochrome P450, revealing key features that appear to contribute to its thermostability. Full Article
mma Kruppel-like factor 3 (KLF3) suppresses NF-{kappa}B-driven inflammation in mice [Immunology] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 Bacterial products such as lipopolysaccharides (or endotoxin) cause systemic inflammation, resulting in a substantial global health burden. The onset, progression, and resolution of the inflammatory response to endotoxin are usually tightly controlled to avoid chronic inflammation. Members of the NF-κB family of transcription factors are key drivers of inflammation that activate sets of genes in response to inflammatory signals. Such responses are typically short-lived and can be suppressed by proteins that act post-translationally, such as the SOCS (suppressor of cytokine signaling) family. Less is known about direct transcriptional regulation of these responses, however. Here, using a combination of in vitro approaches and in vivo animal models, we show that endotoxin treatment induced expression of the well-characterized transcriptional repressor Krüppel-like factor 3 (KLF3), which, in turn, directly repressed the expression of the NF-κB family member RELA/p65. We also observed that KLF3-deficient mice were hypersensitive to endotoxin and exhibited elevated levels of circulating Ly6C+ monocytes and macrophage-derived inflammatory cytokines. These findings reveal that KLF3 is a fundamental suppressor that operates as a feedback inhibitor of RELA/p65 and may be important in facilitating the resolution of inflammation. Full Article
mma 2020 April Monthly Weather Summary By www.hko.gov.hk Published On :: Monthly weather summary in Hong Kong Full Article I
mma NIH clinical trial tests remdesivir plus anti-inflammatory drug baricitinib for COVID-19 By www.eurekalert.org Published On :: Fri, 08 May 2020 00:00:00 EDT (NIH/National Institute of Allergy and Infectious Diseases) A randomized, controlled clinical trial evaluating the safety and efficacy of a treatment regimen of the investigational antiviral remdesivir plus the anti-inflammatory drug baricitinib for COVID-19 has begun. The trial is now enrolling hospitalized adults with COVID-19 in the United States. The trial is expected to open at approximately 100 US and international sites. Investigators currently anticipate enrolling more than 1,000 participants. The National Institute of Allergy and Infectious Diseases is sponsoring the trial. Full Article
mma An Astronaut & a Rock Star Walk into VentureCrush: Commander Mark Kelly & Laura Marling Discuss Leadership, Creativity & Science By www8.gsb.columbia.edu Published On :: Fri, 16 Aug 2019 00:03:44 +0000 Entrepreneurship Leadership Thursday, July 11, 2019 - 20:00 Full Article
mma NIST helps expand genome sequencing of marine mammals By www.eurekalert.org Published On :: Thu, 07 May 2020 00:00:00 EDT (National Institute of Standards and Technology (NIST)) Researchers will soon have access to the full genomic sequences for 23 marine mammal species preserved by the National Institute of Standards and Technology (NIST), thanks to an ongoing collaboration between NIST and a scientific consortium called the DNA Zoo. Full Article
mma 12-LOX catalyzes the oxidation of 2-arachidonoyl-lysolipids in platelets generating eicosanoid-lysolipids that are attenuated by iPLA2{gamma} knockout [Signal Transduction] By feedproxy.google.com Published On :: 2020-04-17T00:06:05-07:00 The canonical pathway of eicosanoid production in most mammalian cells is initiated by phospholipase A2-mediated release of arachidonic acid, followed by its enzymatic oxidation resulting in a vast array of eicosanoid products. However, recent work has demonstrated that the major phospholipase in mitochondria, iPLA2γ (patatin-like phospholipase domain containing 8 (PNPLA8)), possesses sn-1 specificity, with polyunsaturated fatty acids at the sn-2 position generating polyunsaturated sn-2-acyl lysophospholipids. Through strategic chemical derivatization, chiral chromatographic separation, and multistage tandem MS, here we first demonstrate that human platelet-type 12-lipoxygenase (12-LOX) can directly catalyze the regioselective and stereospecific oxidation of 2-arachidonoyl-lysophosphatidylcholine (2-AA-LPC) and 2-arachidonoyl-lysophosphatidylethanolamine (2-AA-LPE). Next, we identified these two eicosanoid-lysophospholipids in murine myocardium and in isolated platelets. Moreover, we observed robust increases in 2-AA-LPC, 2-AA-LPE, and their downstream 12-LOX oxidation products, 12(S)-HETE-LPC and 12(S)-HETE-LPE, in calcium ionophore (A23187)-stimulated murine platelets. Mechanistically, genetic ablation of iPLA2γ markedly decreased the calcium-stimulated production of 2-AA-LPC, 2-AA-LPE, and 12-HETE-lysophospholipids in mouse platelets. Importantly, a potent and selective 12-LOX inhibitor, ML355, significantly inhibited the production of 12-HETE-LPC and 12-HETE-LPE in activated platelets. Furthermore, we found that aging is accompanied by significant changes in 12-HETE-LPC in murine serum that were also markedly attenuated by iPLA2γ genetic ablation. Collectively, these results identify previously unknown iPLA2γ-initiated signaling pathways mediated by direct 12-LOX oxidation of 2-AA-LPC and 2-AA-LPE. This oxidation generates previously unrecognized eicosanoid-lysophospholipids that may serve as biomarkers for age-related diseases and could potentially be used as targets in therapeutic interventions. Full Article
mma Proteaphagy in mammalian cells can function independent of ATG5/ATG7 By feedproxy.google.com Published On :: 2020-04-16 Tatjana GoebelApr 16, 2020; 0:RA120.001983v1-mcp.RA120.001983Research Full Article
mma Robust summarization and inference in proteome-wide label-free quantification By feedproxy.google.com Published On :: 2020-04-22 Adriaan StickerApr 22, 2020; 0:RA119.001624v1-mcp.RA119.001624Research Full Article
mma 11C-Methionine PET Identifies Astroglia Involvement in Heart-Brain Inflammation Networking after Acute Myocardial Infarction By jnm.snmjournals.org Published On :: 2019-12-05T10:37:41-08:00 Acute myocardial infarction (MI) triggers a local and systemic inflammatory response. We recently showed microglia involvement using TSPO imaging. Here, we evaluate whether 11C-methionine provides further insights into heart-brain inflammation networking. Methods: Male Bl6N mice underwent permanent coronary artery ligation followed by 11C-methionine PET at 3 and 7 days (n = 3). In subgroups, leukocyte homing was blocked by integrin antibodies (n = 5). The cellular substrate for PET signal was identified using brain section immunostaining. Results: 11C-methionine uptake peaked in the MI region at d3 (5.9±0.9vs 2.4±0.5 %ID/cc), decreasing to control level by d7 (4.3±0.6 %ID/cc). Brain uptake was proportional to cardiac uptake (r=0.47,p<0.05), peaking also at d3 (2.9±0.4vs 2.4±0.3 %ID/cc) and returning to baseline at d7 (2.3±0.4 %ID/cc). Integrin blockade reduced uptake at every time point. Immunostaining at d3 revealed co-localization of the L-type amino acid transporter with GFAP-positive astrocytes but not CD68-positive microglia. Conclusion: PET imaging with 11C-methionine specifically identifies an astrocyte component, enabling further dissection of the heart-brain axis in post MI inflammation. Full Article
mma Inflammation-based index and 68Ga-DOTATOC PET-derived uptake and volumetric parameters predict outcome in neuroendocrine tumor patients treated with 90Y-DOTATOC By jnm.snmjournals.org Published On :: 2019-12-05T10:37:41-08:00 We performed post-hoc analyses on the utility of pre-therapeutic and early interim 68Ga-DOTA-Tyr3-octreotide (68Ga-DOTATOC) positron emission tomography (PET) tumor uptake and volumetric parameters and a recently proposed biomarker, the inflammation-based index (IBI), for peptide receptor radionuclide therapy (PRRT) in neuroendocrine tumor (NET) patients treated with 90Y-DOTATOC in the setting of a prospective phase II trial. Methods: Forty-three NET patients received up to four cycles of 1.85 GBq/m²/cycle 90Y-DOTATOC with a maximal kidney biologic effective dose of 37 Gy. All patients underwent a 68Ga-DOTATOC PET/computed tomography (CT) at baseline and seven weeks after the first PRRT cycle. 68Ga-DOTATOC-avid tumor lesions were semi-automatically delineated using a customized standardized uptake value (SUV) threshold-based approach. PRRT response was assessed on CT using RECIST 1.1. Results: Median progression-free survival (PFS) and overall survival (OS) were 13.9 and 22.3 months, respectively. An SUVmean higher than 13.7 (75th percentile (P75)) was associated with better survival (hazard ratio (HR) 0.45; P = 0.024), whereas a 68Ga-DOTATOC-avid tumor volume higher than 578 ml (P75) was associated with worse OS (HR 2.18; P = 0.037). Elevated baseline IBI was associated with worse OS (HR 3.90; P = 0.001). Multivariate analysis corroborated independent associations between OS and SUVmean (P = 0.016) and IBI (P = 0.015). No significant correlations with PFS were found. A composite score based on SUVmean and IBI allowed to further stratify patients in three categories with significantly different survival. On early interim PET, a decrease in SUVmean of more than 17% (P75) was associated with worse survival (HR 2.29; P = 0.024). Conclusion: Normal baseline IBI and high 68Ga-DOTATOC tumor uptake predict better outcome in NET patients treated with 90Y-DOTATOC. This can be used for treatment personalization. Interim 68Ga-DOTATOC PET does not provide information for treatment personalization. Full Article
mma Time for a Next-Generation Nuclear Medicine Gamma Camera? [NEWSLINE] By jnm.snmjournals.org Published On :: 2020-05-08T13:18:58-07:00 Full Article
mma Site-specific N-glycan Analysis of Antibody-binding Fc {gamma} Receptors from Primary Human Monocytes [Research] By feedproxy.google.com Published On :: 2020-02-01T00:05:30-08:00 FcRIIIa (CD16a) and FcRIIa (CD32a) on monocytes are essential for proper effector functions including antibody dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP). Indeed, therapeutic monoclonal antibodies (mAbs) that bind FcRs with greater affinity exhibit greater efficacy. Furthermore, post-translational modification impacts antibody binding affinity, most notably the composition of the asparagine(N)-linked glycan at N162 of CD16a. CD16a is widely recognized as the key receptor for the monocyte response, however the post-translational modifications of CD16a from endogenous monocytes are not described. Here we isolated monocytes from individual donors and characterized the composition of CD16a and CD32a N-glycans from all modified sites. The composition of CD16a N-glycans varied by glycosylation site and donor. CD16a displayed primarily complex-type biantennary N-glycans at N162, however some individuals expressed CD16a V158 with ~20% hybrid and oligomannose types which increased affinity for IgG1 Fc according to surface plasmon resonance binding analyses. The CD16a N45-glycans contain markedly less processing than other sites with >75% hybrid and oligomannose forms. N38 and N74 of CD16a both contain highly processed complex-type N-glycans with N-acetyllactosamine repeats and complex-type biantennary N-glycans dominate at N169. The composition of CD16a N-glycans isolated from monocytes included a higher proportion of oligomannose-type N-glycans at N45 and less sialylation plus greater branch fucosylation than we observed in a recent analysis of NK cell CD16a. The additional analysis of CD32a from monocytes revealed different features than observed for CD16a including the presence of a predominantly biantennary complex-type N-glycans with two sialic acids at both sites (N64 and N145). Full Article
mma Detection of multiple autoantibodies in patients with ankylosing spondylitis using nucleic acid programmable protein arrays [11. Microarrays/Combinatorics/Display Technology] By feedproxy.google.com Published On :: 2010-02-01T14:51:46-08:00 Ankylosing Spondylitis (AS) is a common, inflammatory rheumatic disease, which primarily affects the axial skeleton and is associated with sacroiliitis, uveitis and enthesitis. Unlike other autoimmune rheumatic diseases, such as rheumatoid arthritis or systemic lupus erythematosus, autoantibodies have not yet been reported to be a feature of AS. We therefore wished to determine if plasma from patients with AS contained autoantibodies and if so, characterize and quantify this response in comparison to patients with Rheumatoid Arthritis (RA) and healthy controls. Two high-density nucleic acid programmable protein arrays expressing a total of 3498 proteins were screened with plasma from 25 patients with AS, 17 with RA and 25 healthy controls. Autoantigens identified were subjected to Ingenuity Pathway Analysis in order to determine patterns of signalling cascades or tissue origin. 44% of patients with Ankylosing Spondylitis demonstrated a broad autoantibody response, as compared to 33% of patients with RA and only 8% of healthy controls. Individuals with AS demonstrated autoantibody responses to shared autoantigens, and 60% of autoantigens identified in the AS cohort were restricted to that group. The AS patients autoantibody responses were targeted towards connective, skeletal and muscular tissue, unlike those of RA patients or healthy controls. Thus, patients with AS show evidence of systemic humoral autoimmunity and multispecific autoantibody production. Nucleic Acid Programmable Protein Arrays constitute a powerful tool to study autoimmune diseases. Full Article
mma Proteaphagy in mammalian cells can function independent of ATG5/ATG7 [Research] By feedproxy.google.com Published On :: 2020-04-16T07:35:14-07:00 The degradation of intra- and extracellular proteins is essential in all cell types and mediated by two systems, the ubiquitin-proteasome system (UPS) and the autophagy-lysosome pathway. This study investigates the changes in autophagosomal and lysosomal proteomes upon inhibition of proteasomes by bortezomib (BTZ) or MG132. We find an increased abundance of more than 50 proteins in lysosomes of cells in which the proteasome is inhibited. Among those are dihydrofolate reductase (DHFR), ß-Catenin and 3-hydroxy-3-methylglutaryl-coenzym-A (HMGCoA)-reductase. Since these proteins are known to be degraded by the proteasome they seem to be compensatorily delivered to the autophagosomal pathway when the proteasome is inactivated. Surprisingly, most of the proteins which show increased amounts in the lysosomes of BTZ or MG132 treated cells are proteasomal subunits. Thus an inactivated, non-functional proteasome is delivered to the autophagic pathway. Native gel electrophoresis shows that the proteasome reaches the lysosome intact and not disassembled. Adaptor proteins, which target proteasomes to autophagy, have been described in Arabidopsis, Saccharomyces and upon starvation in mammalians. However, in cell lines deficient of these proteins or their mammalian orthologues, respectively, the transfer of proteasomes to the lysosome is not impaired. Obviously, these proteins do not play a role as autophagy adaptor proteins in mammalian cells. We can also show that chaperone-mediated autophagy (CMA) does not participate in the proteasome delivery to the lysosomes. In autophagy-related (ATG)-5 and ATG7 deficient cells the delivery of inactivated proteasomes to the autophagic pathway was only partially blocked, indicating the existence of at least two different pathways by which inactivated proteasomes can be delivered to the lysosome in mammalian cells. Full Article
mma Robust summarization and inference in proteome-wide label-free quantification [Research] By feedproxy.google.com Published On :: 2020-04-22T13:36:37-07:00 Label-Free Quantitative mass spectrometry based workflows for differential expression (DE) analysis of proteins impose important challenges on the data analysis due to peptide-specific effects and context dependent missingness of peptide intensities. Peptide-based workflows, like MSqRob, test for DE directly from peptide intensities and outperform summarization methods which first aggregate MS1 peptide intensities to protein intensities before DE analysis. However, these methods are computationally expensive, often hard to understand for the non-specialised end-user, and do not provide protein summaries, which are important for visualisation or downstream processing. In this work, we therefore evaluate state-of-the-art summarization strategies using a benchmark spike-in dataset and discuss why and when these fail compared to the state-of-the-art peptide based model, MSqRob. Based on this evaluation, we propose a novel summarization strategy, MSqRobSum, which estimates MSqRob’s model parameters in a two-stage procedure circumventing the drawbacks of peptide-based workflows. MSqRobSum maintains MSqRob’s superior performance, while providing useful protein expression summaries for plotting and downstream analysis. Summarising peptide to protein intensities considerably reduces the computational complexity, the memory footprint and the model complexity, and makes it easier to disseminate DE inferred on protein summaries. Moreover, MSqRobSum provides a highly modular analysis framework, which provides researchers with full flexibility to develop data analysis workflows tailored towards their specific applications. Full Article
mma Role of pyruvate kinase M2 in oxidized LDL-induced macrophage foam cell formation and inflammation [Research Articles] By feedproxy.google.com Published On :: 2020-03-01T00:06:33-08:00 Pyruvate kinase M2 (PKM2) links metabolic and inflammatory dysfunction in atherosclerotic coronary artery disease; however, its role in oxidized LDL (Ox-LDL)-induced macrophage foam cell formation and inflammation is unknown and therefore was studied. In recombinant mouse granulocyte-macrophage colony-stimulating factor-differentiated murine bone marrow-derived macrophages, early (1–6 h) Ox-LDL treatment induced PKM2 tyrosine 105 phosphorylation and promotes its nuclear localization. PKM2 regulates aerobic glycolysis and inflammation because PKM2 shRNA or Shikonin abrogated Ox-LDL-induced hypoxia-inducible factor-1α target genes lactate dehydrogenase, glucose transporter member 1, interleukin 1β (IL-1β) mRNA expression, lactate, and secretory IL-1β production. PKM2 inhibition significantly increased Ox-LDL-induced ABCA1 and ABCG1 protein expression and NBD-cholesterol efflux to apoA1 and HDL. PKM2 shRNA significantly inhibited Ox-LDL-induced CD36, FASN protein expression, DiI-Ox-LDL binding and uptake, and cellular total cholesterol, free cholesterol, and cholesteryl ester content. Therefore, PKM2 regulates lipid uptake and efflux. DASA-58, a PKM2 activator, downregulated LXR-α, ABCA1, and ABCG1, and augmented FASN and CD36 protein expression. Peritoneal macrophages showed similar results. Ox-LDL induced PKM2- SREBP-1 interaction and FASN expression in a PKM2-dependent manner. Therefore, this study suggests a role for PKM2 in Ox-LDL-induced aerobic glycolysis, inflammation, and macrophage foam cell formation. Full Article
mma Hepatic PLIN5 signals via SIRT1 to promote autophagy and prevent inflammation during fasting [Research Articles] By feedproxy.google.com Published On :: 2020-03-01T00:06:33-08:00 Lipid droplets (LDs) are energy-storage organelles that are coated with hundreds of proteins, including members of the perilipin (PLIN) family. PLIN5 is highly expressed in oxidative tissues, including the liver, and is thought to play a key role in uncoupling LD accumulation from lipotoxicity; however, the mechanisms behind this action are incompletely defined. We investigated the role of hepatic PLIN5 in inflammation and lipotoxicity in a murine model under both fasting and refeeding conditions and in hepatocyte cultures. PLIN5 ablation with antisense oligonucleotides triggered a pro-inflammatory response in livers from mice only under fasting conditions. Similarly, PLIN5 mitigated lipopolysaccharide- or palmitic acid-induced inflammatory responses in hepatocytes. During fasting, PLIN5 was also required for the induction of autophagy, which contributed to its anti-inflammatory effects. The ability of PLIN5 to promote autophagy and prevent inflammation were dependent upon signaling through sirtuin 1 (SIRT1), which is known to be activated in response to nuclear PLIN5 under fasting conditions. Taken together, these data show that PLIN5 signals via SIRT1 to promote autophagy and prevent FA-induced inflammation as a means to maintain hepatocyte homeostasis during periods of fasting and FA mobilization. Full Article
mma Erratum: Unequivocal evidence for endogenous geranylgeranoic acid biosynthesized from mevalonate in mammalian cells [Errata] By feedproxy.google.com Published On :: 2020-04-01T00:05:29-07:00 Full Article
mma Hepatic monoamine oxidase B is involved in endogenous geranylgeranoic acid synthesis in mammalian liver cells [Research Articles] By feedproxy.google.com Published On :: 2020-05-01T00:05:28-07:00 Geranylgeranoic acid (GGA) originally was identified in some animals and has been developed as an agent for preventing second primary hepatoma. We previously have also identified GGA as an acyclic diterpenoid in some medicinal herbs. Recently, we reported that in human hepatoma-derived HuH-7 cells, GGA is metabolically labeled from 13C-mevalonate. Several cell-free experiments have demonstrated that GGA is synthesized through geranylgeranial by oxygen-dependent oxidation of geranylgeraniol (GGOH), but the exact biochemical events giving rise to GGA in hepatoma cells remain unclear. Monoamine oxidase B (MOAB) has been suggested to be involved in GGOH oxidation. Here, using two human hepatoma cell lines, we investigated whether MAOB contributes to GGA biosynthesis. Using either HuH-7 cell lysates or recombinant human MAOB, we found that: 1) the MAO inhibitor tranylcypromine dose-dependently downregulates endogenous GGA levels in HuH-7 cells; and 2) siRNA-mediated MAOB silencing reduces intracellular GGA levels in HuH-7 and Hep3B cells. Unexpectedly, however, CRISPR/Cas9-generated MAOB-KO human hepatoma Hep3B cells had GGA levels similar to those in MAOB-WT cells. A sensitivity of GGA levels to siRNA-mediated MAOB downregulation was recovered when the MAOB-KO cells were transfected with a MAOB-expression plasmid, suggesting that MAOB is the enzyme primarily responsible for GGOH oxidation and that some other latent metabolic pathways may maintain endogenous GGA levels in the MAOB-KO hepatoma cells. Along with the previous findings, these results provide critical insights into the biological roles of human MAOB and provide evidence that hepatic MAOB is involved in endogenous GGA biosynthesis via GGOH oxidation. Full Article
mma Lipid rafts in glial cells: role in neuroinflammation and pain processing [Thematic Reviews] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Activation of microglia and astrocytes secondary to inflammatory processes contributes to the development and perpetuation of pain with a neuropathic phenotype. This pain state presents as a chronic debilitating condition and affects a large population of patients with conditions like rheumatoid arthritis and diabetes, or after surgery, trauma, or chemotherapy. Here, we review the regulation of lipid rafts in glial cells and the role they play as a key component of neuroinflammatory sensitization of central pain signaling pathways. In this context, we introduce the concept of an inflammaraft (i-raft), enlarged lipid rafts harboring activated receptors and adaptor molecules and serving as an organizing platform to initiate inflammatory signaling and the cellular response. Characteristics of the inflammaraft include increased relative abundance of lipid rafts in inflammatory cells, increased content of cholesterol per raft, and increased levels of inflammatory receptors, such as toll-like receptor (TLR)4, adaptor molecules, ion channels, and enzymes in lipid rafts. This inflammaraft motif serves an important role in the membrane assembly of protein complexes, for example, TLR4 dimerization. Operating within this framework, we demonstrate the involvement of inflammatory receptors, redox molecules, and ion channels in the inflammaraft formation and the regulation of cholesterol and sphingolipid metabolism in the inflammaraft maintenance and disruption. Strategies for targeting inflammarafts, without affecting the integrity of lipid rafts in noninflammatory cells, may lead to developing novel therapies for neuropathic pain states and other neuroinflammatory conditions. Full Article
mma Noncatalytic Bruton's tyrosine kinase activates PLC{gamma}2 variants mediating ibrutinib resistance in human chronic lymphocytic leukemia cells [Membrane Biology] By feedproxy.google.com Published On :: 2020-04-24T06:08:45-07:00 Treatment of patients with chronic lymphocytic leukemia (CLL) with inhibitors of Bruton's tyrosine kinase (BTK), such as ibrutinib, is limited by primary or secondary resistance to this drug. Examinations of CLL patients with late relapses while on ibrutinib, which inhibits BTK's catalytic activity, revealed several mutations in BTK, most frequently resulting in the C481S substitution, and disclosed many mutations in PLCG2, encoding phospholipase C-γ2 (PLCγ2). The PLCγ2 variants typically do not exhibit constitutive activity in cell-free systems, leading to the suggestion that in intact cells they are hypersensitive to Rac family small GTPases or to the upstream kinases spleen-associated tyrosine kinase (SYK) and Lck/Yes-related novel tyrosine kinase (LYN). The sensitivity of the PLCγ2 variants to BTK itself has remained unknown. Here, using genetically-modified DT40 B lymphocytes, along with various biochemical assays, including analysis of PLCγ2-mediated inositol phosphate formation, inositol phospholipid assessments, fluorescence recovery after photobleaching (FRAP) static laser microscopy, and determination of intracellular calcium ([Ca2+]i), we show that various CLL-specific PLCγ2 variants such as PLCγ2S707Y are hyper-responsive to activated BTK, even in the absence of BTK's catalytic activity and independently of enhanced PLCγ2 phospholipid substrate supply. At high levels of B-cell receptor (BCR) activation, which may occur in individual CLL patients, catalytically-inactive BTK restored the ability of the BCR to mediate increases in [Ca2+]i. Because catalytically-inactive BTK is insensitive to active-site BTK inhibitors, the mechanism involving the noncatalytic BTK uncovered here may contribute to preexisting reduced sensitivity or even primary resistance of CLL to these drugs. Full Article
mma ADAM10 and ADAM17 proteases mediate proinflammatory cytokine-induced and constitutive cleavage of endomucin from the endothelial surface [Membrane Biology] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Contact between inflammatory cells and endothelial cells (ECs) is a crucial step in vascular inflammation. Recently, we demonstrated that the cell-surface level of endomucin (EMCN), a heavily O-glycosylated single-transmembrane sialomucin, interferes with the interactions between inflammatory cells and ECs. We have also shown that, in response to an inflammatory stimulus, EMCN is cleared from the cell surface by an unknown mechanism. In this study, using adenovirus-mediated overexpression of a tagged EMCN in human umbilical vein ECs, we found that treatment with tumor necrosis factor α (TNF-α) or the strong oxidant pervanadate leads to loss of cell-surface EMCN and increases the levels of the C-terminal fragment of EMCN 3- to 4-fold. Furthermore, treatment with the broad-spectrum matrix metalloproteinase inhibitor batimastat (BB94) or inhibition of ADAM metallopeptidase domain 10 (ADAM10) and ADAM17 with two small-molecule inhibitors, GW280264X and GI254023X, or with siRNA significantly reduced basal and TNFα-induced cell-surface EMCN cleavage. Release of the C-terminal fragment of EMCN by TNF-α treatment was blocked by chemical inhibition of ADAM10 alone or in combination with ADAM17. These results indicate that cell-surface EMCN undergoes constitutive cleavage and that TNF-α treatment dramatically increases this cleavage, which is mediated predominantly by ADAM10 and ADAM17. As endothelial cell-surface EMCN attenuates leukocyte–EC interactions during inflammation, we propose that EMCN is a potential therapeutic target to manage vascular inflammation. Full Article
mma Pharmacologic PPAR-{gamma} Activation Reprograms Bone Marrow Macrophages and Partially Rescues HSPC Mobilization in Human and Murine Diabetes By diabetes.diabetesjournals.org Published On :: 2020-04-28T07:09:24-07:00 Mobilization of hematopoietic stem/progenitor cells (HSPCs) from the bone marrow (BM) is impaired in diabetes. Excess oncostatin M (OSM) produced by M1 macrophages in the diabetic BM signals through p66Shc to induce Cxcl12 in stromal cells and retain HSPCs. BM adipocytes are another source of CXCL12 that blunts mobilization. We tested a strategy of pharmacologic macrophage reprogramming to rescue HSPC mobilization. In vitro, PPAR- activation with pioglitazone switched macrophages from M1 to M2, reduced Osm expression, and prevented transcellular induction of Cxcl12. In diabetic mice, pioglitazone treatment downregulated Osm, p66Shc and Cxcl12 in the hematopoietic BM, restored the effects of granulocyte-colony stimulation factor (G-CSF), and partially rescued HSPC mobilization, but it increased BM adipocytes. Osm deletion recapitulated the effects of pioglitazone on adipogenesis, which was p66Shc-independent, and double knockout of Osm and p66Shc completely rescued HSPC mobilization. In the absence of OSM, BM adipocytes produced less CXCL12, being arguably devoid of HSPC-retaining activity, whereas pioglitazone failed to downregulate Cxcl12 in BM adipocytes. In diabetic patients under pioglitazone therapy, HSPC mobilization after G-CSF was partially rescued. In summary, pioglitazone reprogrammed BM macrophages and suppressed OSM signaling, but sustained Cxcl12 expression by BM adipocytes could limit full recovery of HSPC mobilization. Full Article
mma Structure of an ancestral mammalian family 1B1 cytochrome P450 with increased thermostability [Enzymology] By feedproxy.google.com Published On :: 2020-04-24T06:08:45-07:00 Mammalian cytochrome P450 enzymes often metabolize many pharmaceuticals and other xenobiotics, a feature that is valuable in a biotechnology setting. However, extant P450 enzymes are typically relatively unstable, with T50 values of ∼30–40 °C. Reconstructed ancestral cytochrome P450 enzymes tend to have variable substrate selectivity compared with related extant forms, but they also have higher thermostability and therefore may be excellent tools for commercial biosynthesis of important intermediates, final drug molecules, or drug metabolites. The mammalian ancestor of the cytochrome P450 1B subfamily was herein characterized structurally and functionally, revealing differences from the extant human CYP1B1 in ligand binding, metabolism, and potential molecular contributors to its thermostability. Whereas extant human CYP1B1 has one molecule of α-naphthoflavone in a closed active site, we observed that subtle amino acid substitutions outside the active site in the ancestor CYP1B enzyme yielded an open active site with four ligand copies. A structure of the ancestor with 17β-estradiol revealed only one molecule in the active site, which still had the same open conformation. Detailed comparisons between the extant and ancestor forms revealed increases in electrostatic and aromatic interactions between distinct secondary structure elements in the ancestral forms that may contribute to their thermostability. To the best of our knowledge, this represents the first structural evaluation of a reconstructed ancestral cytochrome P450, revealing key features that appear to contribute to its thermostability. Full Article
mma The Histone Methyltransferase MLL1 Directs Macrophage-Mediated Inflammation in Wound Healing and Is Altered in a Murine Model of Obesity and Type 2 Diabetes By diabetes.diabetesjournals.org Published On :: 2017-09-01 Andrew S. KimballSep 1, 2017; 66:2459-2471Immunology and Transplantation Full Article