met

Crystal structure and Hirshfeld surface analysis of 4,4'-di­meth­oxy­biphenyl-3,3',5,5'-tetra­carb­oxy­lic acid dihydrate

In the crystal of the title compound, C18H14O10·2H2O, the arene rings of the biphenyl moiety are tilted at an angle of 24.3 (1)°, while the planes passing through the carboxyl groups are rotated at angles of 8.6 (1) and 7.7 (1)° out of the plane of the benzene ring to which they are attached. The crystal structure is essentially stabilized by O—H⋯O bonds. Here, the carboxyl groups of neighbouring host mol­ecules are connected by cyclic R22(8) synthons, leading to the formation of a three-dimensional network. The water mol­ecules in turn form helical supra­molecular strands running in the direction of the crystallographic c-axis (chain-like water clusters). The second H atom of each water mol­ecule provides a link to a meth­oxy O atom of the host mol­ecule. A Hirshfeld surface analysis was performed to qu­antify the contributions of the different inter­molecular inter­actions, indicating that the most important contributions to the crystal packing are from H⋯O/O⋯H (37.0%), H⋯H (26.3%), H⋯C/C⋯H (18.5%) and C⋯O/O⋯C (9.5%) inter­actions.




met

Crystal structure and Hirshfeld surface analysis of 6-imino-8-(4-methyl­phen­yl)-1,3,4,6-tetra­hydro-2H-pyrido[1,2-a]pyrimidine-7,9-dicarbo­nitrile

In the ten-membered 1,3,4,6-tetra­hydro-2H-pyrido[1,2-a]pyrimidine ring system of the title compound, C17H15N5, the 1,2-di­hydro­pyridine ring is essentially planar (r.m.s. deviation = 0.001 Å), while the 1,3-diazinane ring has a distorted twist-boat conformation. In the crystal, mol­ecules are linked by N—H⋯N and C—H⋯N hydrogen bonds, forming a three-dimensional network. In addition, C—H⋯π inter­actions form layers parallel to the (100) plane. Thus, crystal-structure cohesion is ensured. According to a Hirshfeld surface study, H⋯H (40.4%), N⋯H/H⋯N (28.6%) and C⋯H/H⋯C (24.1%) inter­actions are the most important contributors to the crystal packing.




met

Crystal structure of 2,4-di­amino-5-(4-hy­droxy-3-meth­oxy­phen­yl)-8,8-dimethyl-6-oxo-6,7,8,9-tetra­hydro-5H-chromeno[2,3-b]pyridine-3-carbo­nitrile–di­methyl­formamide–water (1/1/1)

In the structure of the title compound, C22H22N4O4·C3H7NO·H2O, the entire tricyclic system is approximately planar except for the carbon atom bearing the two methyl groups; the meth­oxy­phenyl ring is approximately perpendicular to the tricycle. All seven potential hydrogen-bond donors take part in classical hydrogen bonds. The main mol­ecule and the DMF combine to form broad ribbons parallel to the a axis and roughly parallel to the ab plane; the water mol­ecules connect the residues in the third dimension.




met

Crystal structure and Hirshfeld surface analysis of ethyl 2-(7-chloro-3-methyl-2-oxo-1,2-di­hydro­quinoxalin-1-yl)acetate

The quinoxaline moiety in the title mol­ecule, C13H13ClN2O3, is almost planar (r.m.s. deviation of the fitted atoms = 0.033 Å). In the crystal, C—H⋯O hydrogen bonds plus slipped π-stacking and C—H⋯π(ring) inter­actions generate chains of mol­ecules extending along the b-axis direction. The chains are connected by additional C—H⋯O hydrogen bonds. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (37.6%), H⋯O/O⋯H (22.7%) and H⋯Cl/Cl⋯H (13.1%) inter­actions.




met

Synthesis and crystal structure of tetra­methyl (E)-4,4'-(ethene-1,2-di­yl)bis­(5-nitro­benzene-1,2-di­carboxyl­ate)

The title compound, C22H18N2O12, was obtained as a by-product during the planned synthesis of 1,2-bis­(2-nitro-4,5-dimethyl phthalate)ethane by oxidative dimerization starting from dimethyl-4-methyl-5-nitro phthalate. To identify this compound unambiguously, a single-crystal structure analysis was performed. The asymmetric unit consists of half a mol­ecule that is located at a centre of inversion. As a result of symmetry restrictions, the mol­ecule shows an E configuration around the double bond. Both phenyl rings are coplanar, whereas the nitro and the two methyl ester groups are rotated out of the ring plane by 32.6 (1), 56.5 (2) and 49.5 (2)°, respectively. In the crystal, mol­ecules are connected into chains extending parallel to the a axis by pairs of C—H⋯O hydrogen bonds that are connected into a tri-periodic network by additional C—H⋯O hydrogen-bonding inter­actions.




met

2-Cyano-2-iso­nitro­soacetamide–3,4-di­methylpyrazole (1/1): a co-crystal of two mol­ecules with agrochemical activities

In the structure of the title co-crystal, C3H3N3O2·C5H8N2, the components are linked by a set of directional O—H⋯N, N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonds to yield a two-dimensional mono-periodic arrangement. The structure propagates in the third dimension by extensive π–π stacking inter­actions of nearly parallel mol­ecules of the two components, following an alternating sequence. The primary structure-defining inter­action is very strong oxime-OH donor to pyrazole-N acceptor hydrogen bond [O⋯N = 2.587 (2) Å], while the significance of weaker hydrogen bonds and π–π stacking inter­actions is comparable. The distinct structural roles of different kinds of inter­actions agree with the results of a Hirshfeld surface analysis and calculated inter­action energies. The title compound provides insights into co-crystals of active agrochemical mol­ecules and features the rational integration in one structure of a fungicide, C3H3N3O2, and a second active component, C5H8N2, known for alleviation the toxic effects of fungicides on plants. The material appears to be well suited for practical uses, being non-volatile, air-stable, water-soluble, but neither hygroscopic nor efflorescent.




met

Crystal structures of tri­chlorido­(4-methyl­piperidine)gold(III) and two polymorphs of tri­bromido(4-methyl­piperidine)­gold(III)

Tri­chlorido­(4-methyl­piperidine)­gold(III), [AuCl3(C6H13N)], 1, crystallizes in Pbca with Z = 8. Tri­bromido­(4-methyl­piperidine)­gold(III), [AuBr3(C6H13N)], 2, crystallizes as two polymorphs, 2a in Pnma with Z = 4 (imposed mirror symmetry) and 2b, which is isotypic to 1. The Au—N bonds trans to Cl are somewhat shorter than those trans to Br, and the Au—Cl bonds trans to N are longer than those cis to N, whereas the Au—Br bonds trans to N are slightly shorter than the cis bonds. The methyl and AuX3 groups (X = halogen) occupy equatorial positions at the six-membered ring. The packing of all three structures involves chains of mol­ecules with offset stacking of the AuX3 moieties associated with short Au⋯X contacts; for 1 and 2b these are reinforced by N—H⋯X hydrogen bonds, whereas for 2a there are no classical hydrogen bonds and the chains are inter­connected by Br⋯Br contacts.




met

Crystal structure and Hirshfeld surface analysis of dimethyl 4'-bromo-3-oxo-5-(thio­phen-2-yl)-3,4,5,6-tetra­hydro-[1,1'-biphen­yl]-2,4-di­carboxyl­ate

In the title compound, C20H17BrO5S, mol­ecules are connected by inter­molecular C—H⋯S hydrogen bonds with R22(10) ring motifs, forming ribbons along the b-axis direction. C—H⋯π inter­actions consolidate the ribbon structure while van der Waals forces between the ribbons ensure the cohesion of the crystal structure. According to a Hirshfeld surface analysis, H⋯H (40.5%), O⋯H/H⋯O (27.0%), C⋯H/H⋯C (13.9%) and Br⋯H/H⋯Br (11.7%) inter­actions are the most significant contributors to the crystal packing. The thio­phene ring and its adjacent di­carboxyl­ate group and the three adjacent carbon atoms of the central hexene ring to which they are attached were refined as disordered over two sets of sites having occupancies of 0.8378 (15) and 0.1622 (15). The thio­phene group is disordered by a rotation of 180° around one bond.




met

Synthesis, crystal structure and Hirshfeld analysis of N-ethyl-2-{3-methyl-2-[(2Z)-pent-2-en-1-yl]cyclo­pent-2-en-1-yl­idene}hydrazinecarbo­thio­amide

The title compound (C14H23N3S, common name: cis-jasmone 4-ethyl­thio­semicarbazone) was synthesized by the equimolar reaction of cis-jasmone and 4-ethyl­thio­semicarbazide in ethanol facilitated by acid catalysis. There is one crystallographically independent mol­ecule in the asymmetric unit, which shows disorder of the terminal ethyl group of the jasmone carbon chain [site-occupancy ratio = 0.911 (5):0.089 (5)]. The thio­semicarbazone entity [N—N—C(=S)—N] is approximately planar, with the maximum deviation of the mean plane through the N/N/C/S/N atoms being 0.0331 (8) Å, while the maximum deviation of the mean plane through the five-membered ring of the jasmone fragment amounts to −0.0337 (8) Å. The dihedral angle between the two planes is 4.98 (7)°. The mol­ecule is not planar due to this structural feature and the sp3-hybridized atoms of the jasmone carbon chain. Additionally, one H⋯N intra­molecular inter­action is observed, with graph-set motif S(5). In the crystal, the mol­ecules are connected through pairs of H⋯S inter­actions with R22(8) and R21(7) graph-set motifs into centrosymmetric dimers. The dimers are further connected by H⋯N inter­actions with graph-set motif R22(12), which are related by an inversion centre, forming a mono-periodic hydrogen-bonded ribbon parallel to the b-axis. The crystal structure and the supra­molecular assembly of the title compound are compared with four known cis-jasmone thio­semicarbazone derivatives (two crystalline modifications of the non-substituted form, the 4-methyl and the 4-phenyl derivatives). A Hirshfeld surface analysis indicates that the major contributions for the crystal cohesion are from H⋯H (70.7%), H⋯S/S⋯H (13.5%), H⋯C/C⋯H (8.8%), and H⋯N/N⋯H (6.6%) inter­faces (only the disordered atoms with the highest s.o.f. were considered for the evaluation).




met

Crystal structure and Hirshfeld surface analysis of (1H-imidazole-κN3)[4-methyl-2-({[2-oxido-5-(2-phenyl­diazen-1-yl)phen­yl]methyl­idene}amino)penta­noate-κ3O,N,O']copper(II)

The title copper(II) complex, [Cu(C18H19N3O3)(C3H4N2)], consists of a tridentate ligand synthesized from l-leucine and azo­benzene-salicyl­aldehyde. One imidazole mol­ecule is additionally coordinated to the copper(II) ion in the equatorial plane. The crystal structure features N—H⋯O hydrogen bonds. A Hirshfeld surface analysis indicates that the most important contributions to the packing are from H⋯H (52.0%) and C⋯H/H⋯C (17.9%) contacts.




met

Synthesis, crystal structure and properties of the trigonal–bipyramidal complex tris­(2-methyl­pyridine N-oxide-κO)bis­(thio­cyanato-κN)cobalt(II)

Reaction of Co(NCS)2 with 2-methyl­pyridine N-oxide in a 1:3 ratio in n-butanol leads to the formation of crystals of tris­(2-methyl­pyridine N-oxide-κO)bis­(thio­cyanato-κN)cobalt(II), [Co(NCS)2(C6H7NO)3]. The asymmetric unit of the title compound consists of one CoII cation two thio­cyanate anions and three crystallographically independent 2-methyl­pyridine N-oxide coligands in general positions. The CoII cations are trigonal–bipyramidally coordinated by two terminal N-bonding thio­cyanate anions in the trans-positions and three 2-methyl­pyridine N-oxide coligands into discrete complexes. These complexes are linked by inter­molecular C–H⋯S inter­actions into double chains that elongate in the c-axis direction. Powder X-ray diffraction (PXRD) measurements prove that all batches are always contaminated with an additional and unknown crystalline phase. Thermogravimetry and differential analysis of crystals selected by hand reveal that the title compound decomposes at about 229°C in an exothermic reaction. At about 113°C a small endothermic signal is observed that, according to differential scanning calorimetry (DSC) measurements, is irreversible. PXRD measurements of the residue prove that a poorly crystalline and unknown phase has formed and thermomicroscopy indicates that some phase transition occurs that is accompanied with a color change of the title compound.




met

Crystal structure of (E)-N-(4-bromo­phen­yl)-2-cyano-3-[3-(2-methyl­prop­yl)-1-phenyl-1H-pyrazol-4-yl]prop-2-enamide

The structure of the title compound, C23H21BrN4O, contains two independent mol­ecules connected by hydrogen bonds of the type Namide—H⋯N≡C to form a dimer. The configuration at the exocyclic C=C double bond is E. The mol­ecules are roughly planar except for the isopropyl groups. There are minor differences in the orientations of these groups and the phenyl rings at N1. The dimers are further linked by ‘weak’ hydrogen bonds, two each of the types Hphen­yl⋯O=C (H⋯O = 2.50, 2.51 Å) and Hphen­yl⋯Br (H⋯Br = 2.89, 2.91 Å), to form ribbons parallel to the b and c axes, respectively. The studied crystal was a non-merohedral twin.




met

Synthesis, crystal structure and thermal properties of the dinuclear complex bis­(μ-4-methylpyridine N-oxide-κ2O:O)bis­[(methanol-κO)(4-methylpyridine N-oxide-κO)bis­(thio­cyanato-κN)cobalt(II)]

Reaction of Co(NCS)2 with 4-methyl­pyridine N-oxide in methanol leads to the formation of crystals of the title compound, [Co2(NCS)4(C6H7NO)4(CH4O)2] or Co2(NCS)4(4-methyl­pyridine N-oxide)4(methanol)2. The asymmetric unit consist of one CoII cation, two thio­cyanate anions, two 4-methyl­pyridine N-oxide coligands and one methanol mol­ecule in general positions. The H atoms of one of the methyl groups are disordered and were refined using a split model. The CoII cations octa­hedrally coordinate two terminal N-bonded thio­cyanate anions, three 4-methyl­pyridine N-oxide coligands and one methanol mol­ecule. Each two CoII cations are linked by pairs of μ-1,1(O,O)-bridging 4-methyl­pyridine N-oxide coligands into dinuclear units that are located on centers of inversion. Powder X-ray diffraction (PXRD) investigations prove that the title compound is contaminated with a small amount of Co(NCS)2(4-meth­yl­pyridine N-oxide)3. Thermogravimetric investigations reveal that the methanol mol­ecules are removed in the beginning, leading to a compound with the composition Co(NCS)2(4-methyl­pyridine N-oxide), which has been reported in the literature and which is of poor crystallinity.




met

Dimeric ethyl­tin(IV)–dibromide–hydroxide–N,N-di­methyl­formamide

Di-μ-hydroxido-bis­[di­bromido­(di­methyl­formamide-κO)ethyl­tin(IV)], [Sn2Br4(C2H5)2(OH)2(C3H7NO)2], was prepared from ethyl­tin(IV) bromide and N,N-di­methyl­formamide (DMF) in air. The crystal structure exhibits the typical structural features of dimeric Lewis-base-stabilized monoorganotin(IV)–dihalide–hydroxides, RSnHal2(OH), i.e. two octa­hedrally coordinated Sn atoms are linked together via two bridging hydroxide groups, resulting in a centrosymmetric four-membered rhomboid-like Sn–OH ring with acute angles at the Sn atom, obtuse angles at the O atoms and two different tin–oxygen bond lengths. With the shorter bond trans to the ethyl group, this observation underlines once more the so-called trans-strengthening effect in monoorganotin(IV) com­pounds with octa­hedrally coordinated Sn atoms. Differences and similarities in the bond lengths and angles in the four-membered Sn–OH rings have been worked out for the rings in dimeric diorganotin(IV)–halide–hydroxides, [R2SnHal(OH)]2, and hydrates of dimeric tin(IV)–trihalide–hydroxide–aqua–hydrates, [SnHal3(OH)(H2O)]2·nH2O.




met

Crystal structure and Hirshfeld surface analysis of (Z)-4-({[2-(benzo[b]thio­phen-3-yl)cyclo­pent-1-en-1-yl]meth­yl}(phen­yl)amino)-4-oxobut-2-enoic acid

In the title compound, C24H21NO3S, the cyclopentene ring adopts an envelope conformation. In the crystal, mol­ecules are linked by C—H⋯π inter­actions, forming ribbons along the a axis. Inter­molecular C—H⋯O hydrogen bonds connect these ribbons to each other, forming layers parallel to the (0overline{1}1) plane. The mol­ecular packing is strengthened by van der Waals inter­actions between the layers. The inter­molecular contacts were qu­anti­fied using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative contributions of the contacts to the crystal packing to be H⋯H 46.0%, C⋯H/H⋯C 21.1%, O⋯H/H⋯O 20.6% and S⋯H/H⋯S 9.0%.




met

Structure of the five-coordinate CoII complex (1H-imidazole){tris­[(1-benzyl­triazol-4-yl-κN3)meth­yl]amine-κN}cobalt(II) bis­(tetra­fluoro­borate)

The title compound, [Co(C3H4N2)(C30H30N10)](BF4)2, is a five-coordinate CoII complex based on the neutral ligands tris­[(1-benzyl­triazol-4-yl)meth­yl]amine (tbta) and imidazole. It exhibits a distorted trigonal bipyramidal geometry in which the equatorial positions are occupied by the three N-atom donors from the triazole rings of the tripodal tbta ligand. The apical amine N-atom donor of tbta and the N-atom donor of the imidazole ligand occupy the axial positions of the coordination sphere. Two tetra­fluoro­borate anions provide charge balance in the crystal.




met

Synthesis and crystal structures of N,2,4,6-tetra­methyl­anilinium tri­fluoro­methane­sulfonate and N-iso­propyl­idene-N,2,4,6-tetra­methyl­anilinium tri­fluoro­methane­sulfonate

Two 2,4,6-tri­methyl­aniline-based trifuloro­methane­sulfonate (tri­fluoro­methane­sulfonate) salts were synthesized and characterized by single-crystal X-ray diffraction. N,2,4,6-Tetra­methyl­anilinium tri­fluoro­methane­sulfonate, [C10H14NH2+][CF3O3S−] (1), was synthesized via methyl­ation of 2,4,6-tri­methyl­aniline. N-Iso­propyl­idene-N,2,4,6-tetra­methyl­anilinium tri­fluoro­meth­ane­sulfonate, [C13H20N+][CF3O3S−] (2), was synthesized in a two-step reaction where the imine, N-iso­propyl­idene-2,4,6-tri­methyl­aniline, was first prepared via a dehydration reaction to form the Schiff base, followed by methyl­ation using methyl tri­fluoro­methane­sulfonate to form the iminium ion. In compound 1, both hydrogen bonding and π–π inter­actions form the main inter­molecular inter­actions. The primary inter­action is a strong N—H⋯O hydrogen bond with the oxygen atoms of the tri­fluoro­methane­sulfonate anions bonded to the hydrogen atoms of the ammonium nitro­gen atom to generate a one-dimensional chain. The [C10H14NH2+] cations form dimers where the benzene rings form a π–π inter­action with a parallel-displaced geometry. The separation distance between the calculated centroids of the benzene rings is 3.9129 (8) Å, and the inter­planar spacing and ring slippage between the dimers are 3.5156 (5) and 1.718 Å, respectively. For 2, the [C13H20N+] cations also form dimers as in 1, but with the benzene rings highly slipped. The distance between the calculated centroids of the benzene rings is 4.8937 (8) Å, and inter­planar spacing and ring slippage are 3.3646 (5) and 3.553 Å, respectively. The major inter­molecular inter­actions in 2 are instead a series of weaker C—H⋯O hydrogen bonds [C⋯O distances of 3.1723 (17), 3.3789 (18), and 3.3789 (18) Å], an inter­action virtually absent in the structure of 1. Fluorine atoms are not involved in strong directional inter­actions in either structure.




met

Synthesis, crystal structure and anti­cancer activity of the complex chlorido­(η2-ethyl­ene)(quinolin-8-olato-κ2N,O)platinum(II) by experimental and theoretical methods

The complex [Pt(C9H6NO)Cl(C2H4)], (I), was synthesized and structurally characterized by ESI mass spectrometry, IR, NMR spectroscopy, DFT calculations and X-ray diffraction. The results showed that the deprotonated 8-hy­droxy­quinoline (C9H6NO) coordinates with the PtII atom via the N and O atoms while the ethyl­ene coordinates in the η2 manner and in the trans position compared to the coordinating N atom. The crystal packing is characterized by C—H⋯O, C—H⋯π, Cl⋯π and Pt⋯π inter­actions. Complex (I) showed high selective activity against Lu-1 and Hep-G2 cell lines with IC50 values of 0.8 and 0.4 µM, respectively, 54 and 33-fold more active than cisplatin. In particular, complex (I) is about 10 times less toxic to normal cells (HEK-293) than cancer cells Lu-1 and Hep-G2. Furthermore, the reaction of complex (I) with guanine at the N7 position was proposed and investigated using the DFT method. The results indicated that replacement of the ethyl­ene ligand with guanine is thermodynamically more favorable than the Cl ligand and that the reaction occurs via two consecutive steps, namely the replacement of ethyl­ene with H2O and the water with the guanine mol­ecule.




met

Crystal structure of bis­{2-[5-(3,4,5-tri­meth­oxyphenyl)-4H-1,2,4-triazol-3-yl]pyridine}palladium(II) bis­(tri­fluoro­acetate) tri­fluoro­acetic acid disolvate

The new palladium(II) complex, [Pd(C16H16N4O3)2](CF3COO)2·2CF3COOH, crystallizes in the triclinic space group Poverline{1} with the asymmetric unit containing half the cation (PdII site symmetry Ci), one tri­fluoro­actetate anion and one co-crystallized tri­fluoro­acetic acid mol­ecule. Two neutral chelating 2-[5-(3,4,5-tri­meth­oxy­phen­yl)-4H-1,2,4-triazol-3-yl]pyridine ligands coordinate to the PdII ion through the triazole-N and pyridine-N atoms in a distorted trans-PdN4 square-planar configuration [Pd—N 1.991 (2), 2.037 (2) Å; cis N—Pd—N 79.65 (8), 100.35 (8)°]. The complex cation is quite planar, except for the methoxo groups (δ = 0.117 Å for one of the C atoms). The planar configuration is supported by two intra­molecular C—H⋯N hydrogen bonds. In the crystal, the π–π-stacked cations are arranged in sheets parallel to the ab plane that are flanked on both sides by the tri­fluoro­acetic acid–tri­fluoro­acetate anion pairs. Apart from classical N/O—H⋯O hydrogen-bonding inter­actions, weak C—H⋯F/N/O contacts consolidate the three-dimensional architecture. Both tri­fluoro­acetic moieties were found to be disordered over two resolvable positions with a refined occupancy ratio of 0.587 (1):0.413 (17) and 0.530 (6):0.470 (6) for the protonated and deprotonated forms, respectively.




met

Crystal structure and Hirshfeld surface analysis of (Z)-4-oxo-4-{phen­yl[(thio­phen-2-yl)meth­yl]amino}­but-2-enoic acid

In the title compound, C15H13NO3S, the mol­ecular conformation is stable with the intra­molecular O—H⋯O hydrogen bond forming a S(7) ring motif. In the crystal, mol­ecules are connected by C—H⋯O hydrogen bonds, forming C(8) chains running along the a-axis direction. Cohesion of the packing is provided by weak van der Waals inter­actions between the chains. A Hirshfeld surface analysis was undertaken to investigate and qu­antify the inter­molecular inter­actions. The thio­phene ring is disordered in a 0.9466 (17):0.0534 (17) ratio over two positions rotated by 180°.




met

Bis(2-chloro-N,N-di­methyl­ethan-1-aminium) tetra­chlorido­cobaltate(II) and tetra­chlorido­zincate(II)

The few examples of structures containing the 2-chloro-N,N-di­methyl­ethan-1-aminium or 3-chloro-N,N-di­methyl­propan-1-aminium cations show a compet­ition between gauche and anti conformations for the chloro­alkyl chain. To explore further the conformational landscape of these cations, and their possible use as mol­ecular switches, the title salts, (C4H11ClN)2[CoCl4] and (C4H11ClN)2[ZnCl4], were prepared and structurally characterized. Details of both structures are in close agreement. The inorganic complex exhibits a slightly flattened tetra­hedral geometry that likely arises from bifurcated N—H hydrogen bonds from the organic cations. The alkyl chain of the cation is disordered between gauche and anti conformations with the gauche conformation occupancy refined to 0.707 (2) for the cobaltate. The gauche conformation places the terminal Cl atom at a tetra­hedral face of the inorganic complex with a contact distance of 3.7576 (9) Å to the Co2+ center. The anti conformation places the terminal Cl atom at a contact distance to a neighboring anti conformation terminal Cl atom that is ∼1 Å less than the sum of the van der Waals radii. Thus, if the anti conformation is present at a site, then the nearest neighbor must be gauche. DFT geometry optimizations indicate the gauche conformation is more stable in vacuo by 0.226 eV, which reduces to 0.0584 eV when calculated in a uniform dielectric. DFT geometry optimizations for the unprotonated mol­ecule indicate the anti conformation is stabilized by 0.0428 eV in vacuo, with no strongly preferred conformation in uniform dielectric, to provide support to the notion that this cation could function as a mol­ecular switch via deprotonation.




met

Crystal structure, Hirshfeld surface analysis, calculations of inter­molecular inter­action energies and energy frameworks and the DFT-optimized mol­ecular structure of 1-[(1-butyl-1H-1,2,3-triazol-4-yl)meth­yl]-3-(prop-1-en-2-yl)-1H-b

The benzimidazole entity of the title mol­ecule, C17H21N5O, is almost planar (r.m.s. deviation = 0.0262 Å). In the crystal, bifurcated C—H⋯O hydrogen bonds link individual mol­ecules into layers extending parallel to the ac plane. Two weak C—H⋯π(ring) inter­actions may also be effective in the stabilization of the crystal structure. Hirshfeld surface analysis of the crystal structure reveals that the most important contributions for the crystal packing are from H⋯H (57.9%), H⋯C/C⋯H (18.1%) and H⋯O/O⋯H (14.9%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the most dominant forces in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization of the title compound is dominated via dispersion energy contributions. The mol­ecular structure optimized by density functional theory (DFT) at the B3LYP/6–311 G(d,p) level is compared with the experimentally determined mol­ecular structure in the solid state.




met

Structural characterization and comparative analysis of polymorphic forms of psilocin (4-hy­droxy-N,N-di­methyl­tryptamine)

The title compound, C12H16N2O, is a hy­droxy-substituted mono­amine alkaloid, and the primary metabolite of the naturally occurring psychedelic compound psilocybin. Crystalline forms of psilocin are known, but their characterization by single-crystal structure analysis is limited. Herein, two anhydrous polymorphic forms (I and II) of psilocin are described. The crystal structure of polymorphic Form I, in space group P21/c, was first reported in 1974. Along with the redeterm­ination to modern standards and unambiguous location of the acidic H atom and variable-temperature single-crystal unit-cell determinations for Form I, the Form II polymorph of the title compound, which crystallizes in the monoclinic space group P21/n, is described for the first time. The psilocin mol­ecules are present in both forms in their phenol–amine tautomeric forms (not resolved in the 1974 report). The mol­ecules in Forms I and II, however, feature different conformations of their N,N-dimethyl ethyl­ene substituent, with the N—C—C—C link in Form I being trans and in Form II being gauche, allowing the latter to bend back to the hydroxyl group of the same mol­ecule, leading to the formation of a strong intra­molecular O—H⋯N hydrogen bond between the hydroxyl moiety and ethyl­amino-nitro­gen group. In the extended structure of Form II, the mol­ecules form one-dimensional strands through N—H⋯O hydrogen bonds from the indole group to the oxygen atom of the hydroxyl moiety of an adjacent mol­ecule. Form II exhibits whole-mol­ecule disorder due to a pseudo-mirror operation, with an occupancy ratio of 0.689 (5):0.311 (5) for the two components. In contrast, Form I does not feature intra­molecular hydrogen bonds but forms a layered structure through inter­molecular N—H⋯O and O—H⋯N hydrogen bonds.




met

Synthesis, crystal structure and properties of poly[di-μ3-chlorido-di-μ2-chlorido-bis­[4-methyl-N-(pyridin-2-yl­methyl­idene)aniline]dicadmium(II)]

The title coordination polymer with the 4-methyl-N-(pyridin-2-yl­methyl­idene)aniline Schiff base ligand (L, C13H12N2), [Cd2Cl4(C13H12N2)]n (1), exhibits a columnar structure extending parallel to [100]. The columns are aligned in parallel and are decorated with chelating L ligands on both sides. They are elongated into a supra­molecular sheet extending parallel to (01overline{1}) through π–π stacking inter­actions involving L ligands of neighbouring columns. Adjacent sheets are packed into the tri-periodic supra­molecular network through weak C—H⋯Cl hydrogen-bonding inter­actions that involve the phenyl CH groups and chlorido ligands. The thermal stability and photoluminescent properties of (1) have also been examined.




met

Crystal structure and Hirshfeld surface analysis of 3,3'-[ethane-1,2-diylbis(­oxy)]bis­(5,5-di­methyl­cyclo­hex-2-en-1-one) including an unknown solvate

The title mol­ecule, C18H26O4, consists of two symmetrical halves related by the inversion centre at the mid-point of the central –C—C– bond. The hexene ring adopts an envelope conformation. In the crystal, the mol­ecules are connected into dimers by C—H⋯O hydrogen bonds with R22(8) ring motifs, forming zigzag ribbons along the b-axis direction. According to a Hirshfeld surface analysis, H⋯H (68.2%) and O⋯H/H⋯O (25.9%) inter­actions are the most significant contributors to the crystal packing. The contribution of some disordered solvent to the scattering was removed using the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9–18] in PLATON. The solvent contribution was not included in the reported mol­ecular weight and density.




met

Crystal structure of a three-coordinate lithium complex with monodentate phenyl­oxazoline and hexa­methyl­disilyl­amide ligands

The reaction of lithium hexa­methyl­disilyl­amide, [Li{N(Si(CH3)3)2}] (LiHMDS), with 4,4-dimethyl-2-phenyl-2-oxazoline (Phox, C11H13NO) in hexane produced colourless crystals of bis­(4,4-dimethyl-2-phenyl-2-oxazoline-κN)(hexa­methyl­disilyl­amido-κN)lithium, [Li(C6H18NSi2)(C11H13NO)2] or [Li{N(Si(CH3)3)2}(Phox)2] in high yield (89%). Despite the 1:1 proportion of the starting materials in the reaction mixture, the product formed with a 1:2 amide:oxazoline ratio. In the unit cell of the C2/c space group, the neutral mol­ecules lie on twofold rotation axes coinciding with the Li—N(amide) bonds. The lithium(I) centre adopts a trigonal–planar coordination geometry with three nitro­gen donor atoms, one from the HMDS anion and two from the oxazolines. All ligands are monodentate. In the phenyl­oxazoline units, the dihedral angle defined by the five-membered heterocyclic rings is 35.81 (5)°, while the phenyl substituents are approximately face-to-face, separated by 3.908 (5) Å. In the amide, the methyl groups assume a nearly eclipsed arrangement to minimize steric repulsion with the analogous substituents on the oxazoline rings. The non-covalent inter­actions in the solid-state structure of [Li{N(Si(CH3)3)2}(Phox)2] were assessed by Hirshfeld surface analysis and fingerprint plots. This new compound is attractive for catalysis due to its unique structural features.




met

Tri­fluoro­methane­sulfonate salt of 5,10,15,20-tetra­kis­(1-benzyl­pyridin-1-ium-4-yl)-21H,23H-porphyrin and its CaII complex

The synthesis, crystallization and characterization of a tri­fluoro­methane­sulfonate salt of 5,10,15,20-tetra­kis­(1-benzyl­pyridin-1-ium-4-yl)-21H,23H-por­phy­rin, C68H54N84+·4CF3SO3−·4H2O, 1·OTf, are reported in this work. The reaction between 5,10,15,20-tetra­kis­(pyridin-4-yl)-21H,23H-porphyrin and benzyl bromide in the presence of 0.1 equiv. of Ca(OH)2 in CH3CN under reflux with an N2 atmosphere and subsequent treatment with silver tri­fluoro­methane­sulfonate (AgOTf) salt produced a red–brown solution. This reaction mixture was filtered and the solvent was allowed to evaporate at room temperature for 3 d to give 1·OTf. Crystal structure determination by single-crystal X-ray diffraction (SCXD) revealed that 1·OTf crystallizes in the space group P21/c. The asymmetric unit contains half a porphyrin mol­ecule, two tri­fluoro­methane­sulfonate anions and two water mol­ecules of crystallization. The macrocycle of tetra­pyrrole moieties is planar and unexpectedly it has coordinated CaII ions in occupational disorder. This CaII ion has only 10% occupancy (C72H61.80Ca0.10F12N8O16S4). The pyridinium rings bonded to methyl­ene groups from porphyrin are located in two different arrangements in almost orthogonal positions between the plane formed by the porphyrin and the pyridinium rings. The crystal structure features cation⋯π inter­actions between the CaII atom and the π-system of the phenyl ring of neighboring mol­ecules. Both tri­fluoro­methane­sulfonate anions are found at the periphery of 1, forming hydrogen bonds with water mol­ecules.




met

Crystal structure and Hirshfeld surface analysis of dimethyl 2-oxo-4-(pyridin-2-yl)-6-(thio­phen-2-yl)cyclo­hex-3-ene-1,3-di­carboxyl­ate

In the title compound, C19H17NO5S, the cyclo­hexene ring adopts nearly an envelope conformation. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming a three-dimensional network. In addition, C—H⋯π inter­actions connect the mol­ecules by forming layers parallel to the (010) plane. According to the Hirshfeld surface analysis, H⋯H (36.9%), O⋯H/H⋯O (31.0%), C⋯H/H⋯C (18.9%) and S⋯H/H⋯S (7.9%) inter­actions are the most significant contributors to the crystal packing.




met

The crystal structures and Hirshfeld surface analysis of three new bromo-substituted 3-methyl-1-(phenyl­sulfon­yl)-1H-indole derivatives

Three new 1H-indole derivatives, namely, 2-(bromo­meth­yl)-3-methyl-1-(phenyl­sulfon­yl)-1H-indole, C16H14BrNO2S, (I), 2-[(E)-2-(2-bromo-5-meth­oxy­phen­yl)ethen­yl]-3-methyl-1-(phenyl­sulfon­yl)-1H-indole, C24H20BrNO3S, (II), and 2-[(E)-2-(2-bromo­phen­yl)ethen­yl]-3-methyl-1-(phenyl­sulfon­yl)-1H-indole, C23H18BrNO2S, (III), exhibit nearly orthogonal orientations of their indole ring systems and sulfonyl-bound phenyl rings. Such conformations are favourable for inter­molecular bonding involving sets of slipped π–π inter­actions between the indole systems and mutual C—H⋯π hydrogen bonds, with the generation of two-dimensional monoperiodic patterns. The latter are found in all three structures, in the form of supra­molecular columns with every pair of successive mol­ecules related by inversion. The crystal packing of the compounds is additionally stabilized by weaker slipped π–π inter­actions between the outer phenyl rings (in II and III) and by weak C—H⋯O, C—H⋯Br and C—H⋯π hydrogen bonds. The structural significance of the different kinds of inter­actions agree with the results of a Hirshfeld surface analysis and the calculated inter­action energies. In particular, the largest inter­action energies (up to −60.8 kJ mol−1) are associated with pairing of anti­parallel indole systems, while the energetics of weak hydrogen bonds and phenyl π–π inter­actions are comparable and account for 13–34 kJ mol−1.




met

Synthesis, crystal structure and thermal properties of a new polymorphic modification of diiso­thio­cyanato­tetra­kis­(4-methyl­pyridine)cobalt(II)

The title compound, [Co(NCS)2(C6H7N)4] or Co(NCS)2(4-methyl­pyridine)4, was prepared by the reaction of Co(NCS)2 with 4-methyl­pyridine in water and is isotypic to one of the polymorphs of Ni(NCS)2(4-methyl­pyridine)4 [Kerr & Williams (1977). Acta Cryst. B33, 3589–3592 and Soldatov et al. (2004). Cryst. Growth Des. 4, 1185–1194]. Comparison of the experimental X-ray powder pattern with that calculated from the single-crystal data proves that a pure phase has been obtained. The asymmetric unit consists of one CoII cation, two crystallographically independent thio­cyanate anions and four independent 4-meth­yl­pyridine ligands, all located in general positions. The CoII cations are sixfold coordinated to two terminally N-bonded thio­cyanate anions and four 4-methyl­pyridine coligands within slightly distorted octa­hedra. Between the complexes, a number of weak C—H⋯N and C—H⋯S contacts are found. This structure represent a polymorphic modification of Co(NCS)2(4-methyl­pyridine)4 already reported in the CCD [Harris et al. (2003). NASA Technical Reports, 211890]. In contrast to this form, the crystal structure of the new polymorph shows a denser packing, indicating that it is thermodynamically stable at least at low temperatures. Thermogravimetric and differential thermoanalysis reveal that the title compound starts to decomposes at about 100°C and that the coligands are removed in separate steps without any sign of a polymorphic transition before decomposition.




met

Syntheses and crystal structures of the five- and sixfold coordinated complexes diiso­seleno­cyanato­tris­(2-methyl­pyridine N-oxide)cobalt(II) and diiso­seleno­cyanato­tetra­kis­(2-methyl­pyridine N-

The reaction of CoBr2, KNCSe and 2-methyl­pyridine N-oxide (C6H7NO) in ethanol leads to the formation of crystals of [Co(NCSe)2(C6H7NO)3] (1) and [Co(NCSe)2(C6H7NO)4] (2) from the same reaction mixture. The asymmetric unit of 1 is built up of one CoII cation, two NCSe− iso­seleno­cyanate anions and three 2-methyl­pyridine N-oxide coligands, with all atoms located on general positions. The asymmetric unit of 2 consists of two cobalt cations, four iso­seleno­canate anions and eight 2-methyl­pyridine N-oxide coligands in general positions, because two crystallographically independent complexes are present. In compound 1, the CoII cations are fivefold coordinated to two terminally N-bonded anionic ligands and three 2-methyl­pyridine N-oxide coligands within a slightly distorted trigonal–bipyramidal coordination, forming discrete complexes with the O atoms occupying the equatorial sites. In compound 2, each of the two complexes is coordinated to two terminally N-bonded iso­seleno­cyanate anions and four 2-methyl­pyridine N-oxide coligands within a slightly distorted cis-CoN2O4 octa­hedral coordination geometry. In the crystal structures of 1 and 2, the complexes are linked by weak C—H⋯Se and C—H⋯O contacts. Powder X-ray diffraction reveals that neither of the two compounds were obtained as a pure crystalline phase.




met

Crystal structures of 1,1'-bis­(carb­oxy­meth­yl)-4,4'-bipyridinium derivatives

The crystal structures of 2-[1'-(carb­oxy­meth­yl)-4,4'-bi­pyridine-1,1'-diium-1-yl]acetate tetra­fluoro­borate, C14H13N2O4+·BF4− or (Hbcbpy)(BF4), and neutral 1,1'-bis­(carboxyl­atometh­yl)-4,4'-bi­pyridine-1,1'-diium (bcbpy), C14H20N2O8, are reported. The asymmetric unit of the (Hbcbpy)(BF4) consists of a Hbcbpy+ monocation, a BF4− anion, and one-half of a water mol­ecule. The BF4− anion is disordered. Two pyridinium rings of the Hbcbpy+ monocation are twisted at a torsion angle of 30.3 (2)° with respect to each other. The Hbcbpy monocation contains a carb­oxy­lic acid group and a deprotonated carboxyl­ate group. Both groups exhibit both a long and a short C—O bond. The cations are linked by inter­molecular hydrogen-bonding inter­actions between the carb­oxy­lic acid and the deprotonated carboxyl­ate group to give one-dimensional zigzag chains. The asymmetric unit of the neutral bcbpy consists of one-half of the bcbpy and two water mol­ecules. In contrast to the Hbcbpy+ monocation, the neutral bcbpy mol­ecule contains two pyridinium rings that are coplanar with each other and a carboxyl­ate group with similar C—O bond lengths. The mol­ecules are connected by inter­molecular hydrogen-bonding inter­actions between water mol­ecules and carboxyl­ate groups, forming a three-dimensional hydrogen-bonding network.




met

Crystal structure and Hirshfeld surface analysis of 6,6'-dimethyl-2,2'-bi­pyridine-1,1'-diium tetra­chlorido­cobaltate(II)

In the title mol­ecular salt, (C12H14N2)[CoCl4], the dihedral angle between the pyridine rings of the cation is 52.46 (9)° and the N—C—C—N torsion angle is −128.78 (14)°, indicating that the ring nitro­gen atoms are in anti-clinal conformation. The Cl—Co—Cl bond angles in the anion span the range 105.46 (3)–117.91 (2)°. In the extended structure, the cations and anions are linked by cation-to-anion N—H⋯Cl and C—H⋯Cl inter­actions, facilitating the formation of R44(18) and R44(20) ring motifs. Furthermore, the crystal structure features weak anion-to-cation Cl⋯π inter­actions [Cl⋯π = 3.4891 (12) and 3.5465 (12) Å]. Hirshfeld two-dimensional fingerprint plots revealed that the most significant inter­actions are Cl⋯H/H⋯Cl (45.5%), H⋯H (29.0%), Cl⋯C/C⋯Cl (7.8%), Cl⋯N/N⋯Cl (3.5%), Cl⋯Cl (1.4) and Co⋯H (1%) contacts.




met

Crystal structure of tris­{N,N-diethyl-N'-[(4-nitro­phen­yl)(oxo)meth­yl]carbamimido­thio­ato}cobalt(III)

The synthesis, crystal structure, and a Hirshfeld surface analysis of tris­{N,N-diethyl-N'-[(4-nitro­phen­yl)(oxo)meth­yl]carbamimido­thio­ato}cobalt(III) conducted at 180 K are presented. The complex consists of three N,N-diethyl-N'-[(4-nitro­benzene)(oxo)meth­yl]carbamimido­thio­ato ligands, threefold sym­metric­ally bonded about the CoIII ion, in approximately octa­hedral coordination, which generates a triple of individually near planar metallacyclic (Co—S—C—N—C—O) rings. The overall geometry of the complex is determined by the mutual orientation of each metallacycle about the crystallographically imposed threefold axis [dihedral angles = 81.70 (2)°] and by the dihedral angles between the various planar groups within each asymmetric unit [metallacycle to benzene ring = 13.83 (7)°; benzene ring to nitro group = 17.494 (8)°]. The complexes stack in anti-parallel columns about the overline{3} axis of the space group (Poverline{3}), generating solvent-accessible channels along [001]. These channels contain ill-defined, multiply disordered, partial-occupancy solvent. Atom–atom contacts in the crystal packing predominantly (∼96%) involve hydrogen, the most abundant types being H⋯H (36.6%), H⋯O (31.0%), H⋯C (19.2%), H⋯N (4.8%), and H⋯S (4.4%).




met

Synthesis and crystal structure of bis­(2-aminobenzimidazolium) catena-[metavanadate(V)]

The structure of polymeric catena-poly[2-amino­benzimidazolium [[dioxidovanadium(V)]-μ-oxido]], {(C7H8N3)2[V2O6]}n, has monoclinic symmetry. The title compound is of inter­est with respect to anti­cancer activity. In the crystal structure, infinite linear zigzag vanadate (V2O6)2− chains, constructed from corner-sharing VO4 tetra­hedra and that run parallel to the a axis, are present. Two different protonated 2-amino­benzimidazole mol­ecules are located between the (V2O6)2– chains and form classical N—H⋯O hydrogen bonds with the vanadate oxygen atoms, which contribute to the cohesion of the structure.




met

Synthesis, spectroscopic analysis and crystal structure of (N-{2-[(2-amino­eth­yl)amino]­eth­yl}-4'-methyl-[1,1'-biphenyl]-4-sulfonamidato)tri­carb­on­ylrhenium(I)

The title compound, [Re(C17H22N3O2S)(CO)3] is a net neutral fac-Re(I)(CO)3 complex of the 4-methyl­biphenyl sulfonamide derivatized di­ethyl­enetri­amine ligand. The NNN-donor monoanionic ligand coordinates with the Re core in tridentate fashion, establishing an inner coordination sphere resulting in a net neutral complex. The complex possesses pseudo-octa­hedral geometry where one face of the octa­hedron is occupied by three carbonyl ligands and the other faces are occupied by one sp2 nitro­gen atom of the sulfonamide group and two sp3 nitro­gen atoms of the dien backbone. The Re—Nsp2 bond distance, 2.173 (4) Å, is shorter than the Re—Nsp3 bond distances, 2.217 (5) and 2.228 (6) Å, and is similar to the range reported for typical Re—Nsp2 bond lengths (2.14 to 2.18 Å).




met

Crystal structure and Hirshfeld surface analysis of dimeth­yl(phen­yl)phosphine sulfide

The title compound, C8H11PS, which melts below room temperature, was crystallized at low temperature. The P—S bond length is 1.9623 (5) Å and the major contributors to the Hirshfeld surface are H⋯H (58.1%), S⋯H/H⋯S (13.4%) and C⋯H/H⋯C contacts (11.7%).




met

Synthesis, crystal structure and thermal properties of catena-poly[[bis­(4-methyl­pyridine)­nickel(II)]-di-μ-thio­cyanato], which shows an alternating all-trans and cis–cis–trans-coordination of the NiS2Np2Nt2 octa­hedra (p = 4-me

The title compound, [Ni(NCS)2(C6H7N)2]n, was prepared by the reaction of Ni(NCS)2 with 4-methyl­pyridine in water. Its asymmetric unit consists of two crystallographically independent NiII cations, of which one is located on a twofold rotational axis whereas the second occupies a center of inversion, two independent thio­cyanate anions and two independent 4-methyl­pyridine co­ligands in general positions. Each NiII cation is octa­hedrally coordinated by two 4-methyl­pyridine coligands as well as two N- and two S-bonded thio­cyanate anions. One of the cations shows an all-trans, the other a cis–cis–trans configuration. The metal centers are linked by pairs of μ-1,3-bridging thio­cyanate anions into [101] chains. X-ray powder diffraction shows that a pure crystalline phase has been obtained and thermogravimetry coupled to differential thermoanalysis reveals that the title compound loses half of the 4-methyl­pyridine coligands and transforms into Ni(NCS)2(C6H7N). Nearly pure samples of this compound can be obtained by thermal annealing and a Rietveld refinement demonstrated that it is isotypic to its recently reported Cd analog [Neumann et al., (2020). CrystEngComm. 22, 184–194] In its crystal structure, the metal cations are linked by one μ-1,3(N,S)- and one μ-1,3,3(N,S,S)-bridging thio­cyanate anion into single chains that condense via the μ-1,3,3(N,S,S)-bridging anionic ligands into double chains.




met

Crystal structure determination and analyses of Hirshfeld surface, crystal voids, inter­molecular inter­action energies and energy frameworks of 1-benzyl-4-(methyl­sulfan­yl)-3a,7a-di­hydro-1H-pyrazolo­[3,4-d]pyrimidine

The pyrazolo­pyrimidine moiety in the title mol­ecule, C13H12N4S, is planar with the methyl­sulfanyl substituent lying essentially in the same plane. The benzyl group is rotated well out of this plane by 73.64 (6)°, giving the mol­ecule an approximate L shape. In the crystal, C—H⋯π(ring) inter­actions and C—H⋯S hydrogen bonds form tubes extending along the a axis. Furthermore, there are π–π inter­actions between parallel phenyl rings with centroid-to-centroid distances of 3.8418 (12) Å. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (47.0%), H⋯N/N⋯H (17.6%) and H⋯C/C⋯H (17.0%) inter­actions. The volume of the crystal voids and the percentage of free space were calculated to be 76.45 Å3 and 6.39%, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the cohesion of the crystal structure is dominated by the dispersion energy contributions.




met

Synthesis, structural studies and Hirshfeld surface analysis of 2-[(4-phenyl-1H-1,2,3-triazol-1-yl)methyl]pyridin-1-ium hexa­kis­(nitrato-κ2O,O')thorate(IV)

Reaction of thorium(IV) nitrate with 2-[(4-phenyl-1H-1,2,3-triazol-1-yl)meth­yl]pyridine (L) yielded (LH)2[Th(NO3)6] or (C14H13N4)2[Th(NO3)6] (1), instead of the expected mixed-ligand complex [Th(NO3)4L2], which was detected in the mass spectrum of 1. In the structure, the [Th(NO3)6]2− anions display an icosa­hedral coordination geometry and are connected by LH+ cations through C—H⋯O hydrogen bonds. The LH+ cations inter­act via N—H⋯N hydrogen bonds. Hirshfeld surface analysis indicates that the most important inter­actions are O⋯H/H⋯O hydrogen-bonding inter­actions, which represent a 55.2% contribution.




met

Crystal structure of the 1:1 co-crystal 4-(di­methylamino)­pyridin-1-ium 8-hy­droxy­quinoline-5-sulfonate–N,N-di­methyl­pyridin-4-amine

The asymmetric unit of the title compound is composed of two independent ion pairs of 4-(di­methyl­amino)­pyridin-1-ium 8-hy­droxy­quinoline-5-sulfonate (HDMAP+·HqSA−, C7H11N2+·C9H6NO4S−) and neutral N,N-di­methyl­pyridin-4-amine mol­ecules (DMAP, C7H10N2), co-crystallized as a 1:1:1 HDMAP+:HqSA−:DMAP adduct in the monoclinic system, space group Pc. The compound has a layered structure, including cation layers of HDMAP+ with DMAP and anion layers of HqSA− in the crystal. In the cation layer, there are inter­molecular N—H⋯N hydrogen bonds between the protonated HDMAP+ mol­ecule and the neutral DMAP mol­ecule. In the anion layer, each HqSA− is surrounded by other six HqSA−, where the planar network structure is formed by inter­molecular O—H⋯O and C—H⋯O hydrogen bonds. The cation and anion layers are linked by inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions.




met

Crystal structure of 4-bromo-5,7-dimeth­oxy-2,3-di­hydro-1H-inden-1-one

In the title mol­ecule, C11H11BrO3, the di­hydro­indene moiety is essentially planar but with a slight twist in the saturated portion of the five-membered ring. The meth­oxy groups lie close to the above plane. In the crystal, π-stacking inter­actions between six-membered rings form stacks of mol­ecules extending along the a-axis direction, which are linked by weak C—H⋯O and C—H⋯Br hydrogen bonds. A Hirshfeld surface analysis was performed showing H⋯H, O⋯H/H⋯O and Br⋯H/H⋯Br contacts make the largest contributions to inter­molecular inter­actions in the crystal.




met

Crystal structure of catena-poly[[methanoldioxidouranium(VI)]-μ-2-[5-(2-oxidophen­yl)-1H-1,2,4-triazol-3-yl]acetato-κ2O:O']

In the title complex, [U(C10H7N3O3)O2(CH3OH)]n, the UVI cation has a typical penta­gonal–bipyramidal environment with the equatorial plane defined by one N and two O atoms of one doubly deprotonated 2-[5-(2-hy­droxy­phen­yl)-1H-1,2,4-triazol-3-yl]acetic acid ligand, a carboxyl­ate O atom of the symmetry-related ligand and the O atom of the methanol mol­ecule [U—N/Oeq 2.256 (4)–2.504 (5) Å]. The axial positions are occupied by two oxide O atoms. The equatorial atoms are almost coplanar, with the largest deviation from the mean plane being 0.121 Å for one of the O atoms. The benzene and triazole rings of the tetra­dentate chelating–bridging ligand are twisted by approximately 21.6 (2)° with respect to each other. The carboxyl­ate group of the ligand bridges two uranyl cations, forming a neutral zigzag chain reinforced by a strong O—H⋯O hydrogen bond. In the crystal, adjacent chains are linked into two-dimensional sheets parallel to the ac plane by C/N—H⋯N/O hydrogen bonding and π–π inter­actions. Further weak C—H⋯O contacts consolidate the three-dimensional supra­molecular architecture. In the solid state, the compound shows a broad medium intensity LMCT transition centred around 463 nm, which is responsible for its red colour.




met

Crystal structure determination and Hirshfeld surface analysis of N-acetyl-N-3-meth­oxy­phenyl and N-(2,5-di­meth­oxy­phen­yl)-N-phenyl­sulfonyl derivatives of N-[1-(phenyl­sulfon­yl)-1H-indol-2-yl]methanamine

Two new [1-(phenyl­sulfon­yl)-1H-indol-2-yl]methanamine derivatives, namely, N-(3-meth­oxy­phen­yl)-N-{[1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}acetamide, C24H22N2O4S, (I), and N-(2,5-di­meth­oxy­phen­yl)-N-{[1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}benzene­sulfonamide, C29H26N2O6S2, (II), reveal a nearly orthogonal orientation of their indole ring systems and sulfonyl-bound phenyl rings. The sulfonyl moieties adopt the anti-periplanar conformation. For both compounds, the crystal packing is dominated by C—H⋯O bonding [C⋯O = 3.312 (4)–3.788 (8) Å], with the structure of II exhibiting a larger number, but weaker bonds of this type. Slipped π–π inter­actions of anti­parallel indole systems are specific for I, whereas the structure of II delivers two kinds of C—H⋯π inter­actions at both axial sides of the indole moiety. These findings agree with the results of Hirshfeld surface analysis. The primary contributions to the surface areas are associated with the contacts involving H atoms. Although II manifests a larger fraction of the O⋯H/H⋯O contacts (25.8 versus 22.4%), most of them are relatively distal and agree with the corresponding van der Waals separations.




met

Crystal and mol­ecular structure of 2-methyl-1,4-phenyl­ene bis­(3,5-di­bromo­benzoate)

The aryl diester compound, 2-methyl-1,4-phenyl­ene bis­(3,5-di­bromo­benzoate), C21H12Br4O4, was synthesized by esterification of methyl hydro­quinone with 3,5-di­bromo­benzoic acid. A crystalline sample was obtained by cooling a sample of the melt (m.p. = 502 K/DSC) to room temperature. The mol­ecular structure consists of a central benzene ring with anti-3,5-di­bromo­benzoate groups symmetrically attached at the 1 and 4 positions and a methyl group attached at the 2 position of the central ring. In the crystal structure (space group Poverline{1}), mol­ecules of the title aryl diester are located on inversion centers imposing disorder of the methyl group and H atom across the central benzene ring. The crystal structure is consolidated by a network of C—H⋯Br hydrogen bonds in addition to weaker and offset π–π inter­actions involving the central benzene rings as well as the rings of the attached 3,5-di­bromo­benzoate groups.




met

Pyrazine-bridged polymetallic copper–iridium clusters

Single crystals of the mol­ecular compound, {Cu20Ir6Cl8(C21H24N2)6(C4H4N2)3]·3.18CH3OH or [({Cu10Ir3}Cl4(IMes)3(pyrazine))2(pyrazine)]·3.18CH3OH [where IMes is 1,3-bis­(2,4,6-trimethylphen­yl)imidazol-2-yl­idene], with a unique heterometallic cluster have been prepared and the structure revealed using single-crystal X-ray diffraction. The mol­ecule is centrosymmetric with two {Cu10Ir3} cores bridged by a pyrazine ligand. The polymetallic cluster contains three stabilizing N-heterocyclic carbenes, four Cl ligands, and a non-bridging pyrazine ligand. Notably, the Cu—Ir core is arranged in an unusual shape containing 13 vertices, 22 faces, and 32 sides. The atoms within the trideca­metallic cluster are arranged in four planes, with 2, 4, 4, 3 metals in each plane. Ir atoms are present in alternate planes with an Ir atom featuring in the peripheral bimetallic plane, and two Ir atoms featuring on opposite sides of the non-adjacent tetra­metallic plane. The crystal contains two disordered methanol solvent mol­ecules with an additional region of non-modelled electron density corrected for using the SQUEEZE routine in PLATON [Spek (2015). Acta Cryst. C71, 9–18]. The given chemical formula and other crystal data do not take into account the unmodelled methanol solvent mol­ecule(s).




met

Synthesis, crystal structure and Hirshfeld surface of ethyl 2-[2-(methyl­sulfan­yl)-5-oxo-4,4-diphenyl-4,5-di­hydro-1H-imidazol-1-yl]acetate (thio­phenytoin derivative)

The di­hydro­imidazole ring in the title mol­ecule, C20H20N2O3S, is slightly distorted and the lone pair on the tri-coordinate nitro­gen atom is involved in intra-ring π bonding. The methyl­sulfanyl substituent lies nearly in the plane of the five-membered ring while the ester substituent is rotated well out of that plane. In the crystal, C—H⋯O hydrogen bonds form inversion dimers, which are connected along the a- and c-axis directions by additional C—H⋯O hydrogen bonds, forming layers parallel to the ac plane. The major contributors to the Hirshfeld surface are C⋯H/H⋯C, O⋯H/H⋯O and S⋯H/H⋯S contacts at 20.5%, 14.7% and 4.9%, respectively.




met

Synthesis, crystal structure and Hirshfeld surface analysis of [1-(4-bromo­phen­yl)-1H-1,2,3-triazol-4-yl]methyl 2-(4-nitro­phen­oxy)acetate

The title compound, C17H13BrN4O5, was synthesized by a Cu2Br2-catalysed Meldal–Sharpless reaction between 4-nitro­phen­oxy­acetic acid propargyl ether and para-bromo­phenyl­azide, and characterized by X-ray structure determination and 1H NMR spectroscopy. The mol­ecules, with a near-perpendicular orientation of the bromo­phenyl-triazole and nitro­phen­oxy­acetate fragments, are connected into a three-dimensional network by inter­molecular C—H⋯O and C—H⋯N hydrogen bonds (confirmed by Hirshfeld surface analysis), π–π and Br–π inter­actions.




met

Synthesis and crystal structure of 1,3-bis­(acet­oxymeth­yl)-5-{[(4,6-di­methyl­pyridin-2-yl)amino]­methyl}-2,4,6-tri­ethyl­benzene

In the crystal structure of the title compound, C26H36N2O4, the tripodal mol­ecule exists in a conformation in which the substituents attached to the central arene ring are arranged in an alternating order above and below the ring plane. The heterocyclic unit is inclined at an angle of 79.6 (1)° with respect to the plane of the benzene ring. In the crystal, the mol­ecules are connected via N—H⋯O bonds, forming infinite supra­molecular strands. Inter­strand association involves weak C—H⋯O and C—H⋯π inter­actions, with the pyridine ring acting as an acceptor in the latter case.




met

Synthesis, crystal structure and Hirshfeld surface analysis of 1-[(1-octyl-1H-1,2,3-triazol-4-yl)methyl]-3-phenyl-1,2-di­hydro­quinoxalin-2(1H)-one

In the title mol­ecule, C25H29N5O, the di­hydro­quinoxaline unit is not quite planar (r.m.s. deviation = 0.030 Å) as there is a dihedral angle of 2.69 (3)° between the mean planes of the constituent rings and the mol­ecule adopts a hairpin conformation. In the crystal, the polar portions of the mol­ecules are associated through C—H⋯O and C—H⋯N hydrogen bonds and C—H⋯π(ring) and C=O⋯π(ring) inter­actions, forming thick layers parallel to the bc plane and with the n-octyl groups on the outside surfaces.