lec

Selective MMP inhibitors having reduced side-effects

The subject invention pertains to matrix metalloproteinase (MMP) inhibitors that exhibit an IC50 of below 10−4M against MMP and have substantially no activity against non-MMP metalloproteinase-related events. The MMP inhibitors of the invention have reduced side-effects, especially with respect to joint pain.




lec

Process for the selective deprotonation and functionalization of 1-fluoro-2-substituted-3-chlorobenzenes

1-Fluoro-2-substituted-3-chlorobenzenes are selectively deprotonated and functionalized in the position adjacent to the fluoro substituent.




lec

Precursor compositions for atomic layer deposition and chemical vapor deposition of titanate, lanthanate, and tantalate dielectric films

Barium, strontium, tantalum and lanthanum precursor compositions useful for atomic layer deposition (ALD) and chemical vapor deposition (CVD) of titanate thin films. The precursors have the formula M(Cp)2, wherein M is strontium, barium, tantalum or lanthanum, and Cp is cyclopentadienyl, of the formula (I), wherein each of R1-R5 is the same as or different from one another, with each being independently selected from among hydrogen, C1-C12 alkyl, C1-C12 amino, C6-C10 aryl, C1-C12 alkoxy, C3-C6 alkylsilyl, C2-C12 alkenyl, R1R2R3NNR3, wherein R1, R2 and R3 may be the same as or different from one another and each is independently selected from hydrogen and C1-C6 alkyl, and pendant ligands including functional group(s) providing further coordination to the metal center M. The precursors of the above formula are useful to achieve uniform coating of high dielectric constant materials in the manufacture of flash memory and other microelectronic devices.




lec

Precursor compositions for atomic layer deposition and chemical vapor deposition of titanate, lanthanate, and tantalate dielectric films

Barium, strontium, tantalum and lanthanum precursor compositions useful for atomic layer deposition (ALD) and chemical vapor deposition (CVD) of titanate thin films. The precursors have the formula M(Cp)2, wherein M is strontium, barium, tantalum or lanthanum, and Cp is cyclopentadienyl, of the formula wherein each of R1-R5 is the same as or different from one another, with each being independently selected from among hydrogen, C1-C12 alkyl, C1-C12 amino, C6-C10 aryl, C1-C12 alkoxy, C3-C6 alkylsilyl, C2-C12 alkenyl, R1R2R3NNR3, wherein R1, R2 and R3 may be the same as or different from one another and each is independently selected from hydrogen and C1-C6 alkyl, and pendant ligands including functional group(s) providing further coordination to the metal center M. The precursors of the above formula are useful to achieve uniform coating of high dielectric constant materials in the manufacture of flash memory and other microelectronic devices.




lec

Precursor compositions for atomic layer deposition and chemical vapor deposition of titanate, lanthanate, and tantalate dielectric films

Barium, strontium, tantalum and lanthanum precursor compositions useful for atomic layer deposition (ALD) and chemical vapor deposition (CVD) of titanate thin films. The precursors have the formula M(Cp)2, wherein M is strontium, barium, tantalum or lanthanum, and Cp is cyclopentadienyl, of the formula wherein each of R1-R5 is the same as or different from one another, with each being independently selected from among hydrogen, C1-C12 alkyl, C1-C12 amino, C6-C10 aryl, C1-C12 alkoxy, C3-C6 alkylsilyl, C2-C12 alkenyl, R1R2R3NNR3, wherein R1, R2 and R3 may be the same as or different from one another and each is independently selected from hydrogen and C1-C6 alkyl, and pendant ligands including functional group(s) providing further coordination to the metal center M. The precursors of the above formula are useful to achieve uniform coating of high dielectric constant materials in the manufacture of flash memory and other microelectronic devices.




lec

Motor lamination notching apparatus and method with selectively positionable punches

A notching apparatus for notching both an outer lamination and an inner lamination from a single lamination blank at s single station using a single press device includes a multi-piece die assembly provides multiple outer slot punches, multiple inner slot punches, and a separator punch. The outer slot punch portion, inner slot punch portion, and separator punch portion of the multi-piece die assembly are all selectively positionable in respective punching positions and non-punching positions to facilitate a controlled notching operation.




lec

In-line automated dual or selective multi-hole punch

A device and method for creating multiple punch holes during a finishing process of paper sheets and other sheet materials. The improved sheet punch including two rotatable punches set at different angles such that when one intersects the sheet path, the other clears the sheet path. The speed of rotation is controlled such that the non-selected punch intersects the sheet path in a space between pitches.




lec

In-line automated perforation method using selective multi-hole punch

A method for creating multiple punch holes during a finishing process of paper sheets and other sheet materials. A highlight of the present invention is the ability to select between at least two configurations of punch holes automatically, without manual adjustment, and “on-the-fly” without interruption of the sheet or paper flow. The perforation method utilizes two rotatable punches set at different angles such that when one intersects the sheet path, the other clears the sheet path. The speed of rotation is controlled such that the non-selected punch intersects the sheet path in a space between pitches.




lec

Tool selection method for machine tool, control device, and numerically controlled lathe

A tool selection method, for a machine tool, comprising the steps of identifying the maximum tip distance (D2) of a currently selected tool (141), a next designated tool (142) and an intermediate tool (143) disposed therebetween; moving a tool rest (10) in the +(plus)X-axis direction after a machining by the currently selected tool (141) is completed until the tip of the currently selected tool (141) is spaced from a workpiece (W) along the X-axis by a distance provided by adding a clearance distance (E) to a difference between the maximum tip distance (D2) and the tip distance (D3) of the currently selected tool (141); moving the tool rest (10) in the +(plus)Y-axis direction until the tip of the next designated tool (142) is aligned with the rotation center axis (12a) of the workpiece (W) in the X-axis direction; and moving the tool rest (10) in the −(minus)X-axis direction.




lec

Electric field whistle

In one embodiment, an electric field sensor is provided including an elongated conductor; a circuit including an input and an output connected across the elongated conductor wherein said circuit includes a DC to AC signal converter; wherein said elongated conductor is operative to impose a DC signal on said circuit input in response to being exposed to an electric field and broadcast an AC signal converted from said DC signal in response to said electric field being greater than a threshold level.




lec

Tool selection method for machine tool, control device, and numerically controlled lathe

A tool selection method, for a machine tool, comprising the steps of identifying the maximum tip distance (D2) of a currently selected tool (141), a next designated tool (142) and an intermediate tool (143) disposed therebetween; moving a tool rest (10) in the +(plus)X-axis direction after a machining by the currently selected tool (141) is completed until the tip of the currently selected tool (141) is spaced from a workpiece (W) along the X-axis by a distance provided by adding a clearance distance (E) to a difference between the maximum tip distance (D2) and the tip distance (D3) of the currently selected tool (141); moving the tool rest (10) in the +(plus)Y-axis direction until the tip of the next designated tool (142) is aligned with the rotation center axis (12a) of the workpiece (W) in the X-axis direction; and moving the tool rest (10) in the −(minus)X-axis direction.




lec

Electromagnetic pump with oscillating piston

An electromagnetic pump is provided, which includes a hollow tubular body extending along a longitudinal direction, a piston mounted so as to be able to move inside the hollow tubular body, a solenoid, supplied with alternating current and assembled around at least a portion of the body and a magnetic envelope surrounding at least a portion of the body. The presence of a magnet magnetized longitudinally in a predetermined direction and a magnetic envelope orienting and channeling flux lines created by the magnet either around the solenoid or directly inside themselves creates an oscillating magnetic force on the piston.




lec

Electric fan

An electric fan is provided, including a labyrinth structure with increased performance of preventing entry of a liquid into a receiving space to receive a stator and a rotor. A clearance is defined between an opposed wall portion of a base and an opposed wall portion of an impeller body, which are opposed to each other in an axial direction of a rotary shaft, to form a labyrinth structure. The opposed wall portion of the base and the opposed wall portions of the impeller body are shaped to form a volume expanding portion within the clearance. The volume expanding portion is constituted from a groove portion for expanding the clearance, having a volume larger than other portions within the clearance.




lec

Control apparatus for electric oil pump

A temperature range in which an electric oil pump to supply oil to a vehicle drive system can start is enlarged to enhance an effective use degree, enhance a start success probability, and suppress malfunction occurrence. When a measured oil temperature To is in a temperature range (T1≦To




lec

Electronic apparatus

An electronic apparatus is disclosed. The electronic apparatus includes: an imaging device which converts light into an image signal; a lens unit positioned in front of the imaging device to form an image on the imaging device from light incident from an object; a shutter unit interposed between the lens unit and the imaging device to expose the imaging device to the light incident from the object based on a predetermined exposure time and that includes a shutter curtain that regulates the light incident from the object; and a measurement unit which measures an actual exposure time of the shutter unit. The measurement unit is positioned behind the shutter curtain and includes a light-receiving sensor which receives light incident on the measurement unit from the light incident from the object other than the light of the effective image area incident on the imaging device.




lec

Interposer configuration with thermally isolated regions for temperature-sensitive opto-electronic components

An interposer (support substrate) for an opto-electronic assembly is formed to include a thermally-isolated region where temperature-sensitive devices (such as, for example, laser diodes) may be positioned and operate independent of temperature fluctuations in other areas of the assembly. The thermal isolation is achieved by forming a boundary of dielectric material through the thickness of the interposer, the periphery of the dielectric defining the boundary between the thermally isolated region and the remainder of the assembly. A thermo-electric cooler can be used in conjunction with the temperature-sensitive device(s) to stabilize the operation of these devices.




lec

Communication module and portable electronic device

A communication module according to the present invention includes a substrate, a laser element and a light receiving element provided on a front surface of the substrate and separating from each other, a transparent resin package collectively sealing the laser element and the light receiving element, and a diffusion unit provided to be opposed to a light emitting surface of the laser element at a prescribed distance for diffusing a laser beam emitted by the laser element, while the distance T between the laser element and the light receiving element satisfies the following formula (1): T≧t1·tan θ+(t1+t2)·tan θ' . . . (1) (in the formula (1), t1 represents the distance between the light emitting surface of the laser element and the diffusion unit, θ represents the maximum angle of emission of the laser element, t2 represents the difference between the height from the front surface of the substrate up to the light emitting surface and the height up to alight receiving surface of the light receiving element, and θ' represents the maximum diffusion angle of the diffusion unit.)




lec

Insulated support for electric conductors, finger grip, and method of making same

A manufacturing method and device for supporting conductors. Using a non-metallic insulating material extending beyond one or both parallel legs of a staple the thumb and forefinger may grip this extension while the staple is being driven into a supporting structure. This finger grip allows for a small, insulated staple to be held with increased safety to thumb and forefinger during penetration of staple into support.




lec

Anchoring inserts, electrode assemblies, and plasma processing chambers

A showerhead electrode is provided where backside inserts are positioned in backside recesses formed along the backside of the electrode. The backside inserts comprise a tool engaging portion. The tool engaging portion is formed such that the backside insert further comprises one or more lateral shielding portions between the tool engaging portion and the threaded outside diameter to prevent a tool engaged with the tool engaging portion of the backside insert from extending beyond the threaded outside diameter of the insert. Further, the tool engaging portion of the backside insert comprises a plurality of torque-receiving slots arranged about the axis of rotation of the backside insert. The torque-receiving slots are arranged to avoid on-axis rotation of the backside insert via opposing pairs of torque-receiving slots.




lec

***WITHDRAWN PATENT AS PER THE LATEST USPTO WITHDRAWN LIST***Driver circuit, display device, and electronic device

To suppress malfunctions in a shift register circuit. A shift register having a plurality of flip-flop circuits is provided. The flip-flop circuit includes a transistor 11, a transistor 12, a transistor 13, a transistor 14, and a transistor 15. When the transistor 13 or the transistor 14 is turned on in a non-selection period, the potential of a node A is set, so that the node A is prevented from entering into a floating state.




lec

Shift register circuit, display panel, and electronic apparatus

Disclosed herein is a shift register circuit that is formed on an insulating substrate with thin film transistors having channels of the same conductivity type and includes shift stages, each of the shift stages including: a first thin film transistor; a second thin film transistor; a 3(1)-th thin film transistor; a 3(2)-th thin film transistor; a 4(1)-th thin film transistor; a 4(2)-th thin film transistor; a fifth thin film transistor; and a sixth thin film transistor.




lec

Driver circuit, display device, and electronic device

To suppress malfunctions in a shift register circuit. A shift register having a plurality of flip-flop circuits is provided. The flip-flop circuit includes a transistor 11, a transistor 12, a transistor 13, a transistor 14, and a transistor 15. When the transistor 13 or the transistor 14 is turned on in a non-selection period, the potential of a node A is set, so that the node A is prevented from entering into a floating state.




lec

Counter, counting method, ad converter, solid-state imaging device, and electronic device

A counter configured to perform counting at both edges of an input clock to output an additional value or a subtraction value for a previous count value and a next count value includes a first latch circuit that latches the input clock, a second latch circuit that latches an output from the first latch circuit, a holding section that holds data of the 0th bit of a count value, and a correction section that performs count correction on data of the first and subsequent bits of the count value on the basis of an output of the second latch circuit.




lec

Electrical devices module for an avionics bay

A module in the form of a pallet or a closed container includes a grouping together of the electrical devices in an avionics bay, in which the electrical devices are interconnected and attached so as to facilitate the mounting and thus limit the time it takes to mount the electrical devices in the avionics bay.




lec

Anti-disassembling device for electronic products

An anti-disassembling device for an electronic product includes a case, a linear movement device, a circular movement device and an optical encoder. At least one retractable transmission member is connected to the case. The circular movement device is located in the case and has an encoding disk, which has multiple slots defined therethrough and teeth are defined in the periphery thereof. The at least one retractable transmission member is engaged with the teeth to rotate the encoding disk. The optical encoder has a lighting module which emits light beams through the slots of the encoding disk and a photosensitive module receives the light beams and sends a signal to the storage unit of the electronic product. The retractable device rotates when the electronic product is disassembled.




lec

Bridge output circuit, motor driving device using the same, and electronic apparatus

A bridge output circuit includes an output terminal, a high side transistor, a low side transistor, a high side driver for controlling a gate voltage of the high side transistor, a low side driver for controlling a gate voltage of the low side transistor, and a controller for controlling the high side and low side drivers. The low side driver includes a first current source, a second current source, and a first assist circuit. The controller is configured to control the turning-on and turning-off states of the first current source, the second current source and the first assist circuit.




lec

Semiconductor integrated circuit having a switch, an electrically-conductive electrode line and an electrically-conductive virtual line

A semiconductor integrated circuit including: a circuit block having an internal voltage line; an annular rail line forming a closed annular line around the circuit block and supplied with one of a power supply voltage and a reference voltage; and a plurality of switch blocks arranged around the circuit block along the annular rail line, the plurality of switch blocks each including a voltage line segment forming a part of the annular rail line and a switch for controlling connection and disconnection between the voltage line segment and the internal voltage line.




lec

Liquid crystal display device and electronic device

To provide a circuit used for a shift register or the like. The basic configuration includes first to fourth transistors and four wirings. The power supply potential VDD is supplied to the first wiring and the power supply potential VSS is supplied to the second wiring. A binary digital signal is supplied to each of the third wiring and the fourth wiring. An H level of the digital signal is equal to the power supply potential VDD, and an L level of the digital signal is equal to the power supply potential VSS. There are four combinations of the potentials of the third wiring and the fourth wiring. Each of the first transistor to the fourth transistor can be turned off by any combination of the potentials. That is, since there is no transistor that is constantly on, deterioration of the characteristics of the transistors can be suppressed.




lec

Resonator element, resonator, electronic device, electronic apparatus, and mobile object

A resonator element includes a substrate including a first principal surface and a second principal surface respectively forming an obverse surface and a reverse surface of the substrate, and vibrating in a thickness-shear vibration mode, a first excitation electrode disposed on the first principal surface, and a second excitation electrode disposed on the second principal surface, and being larger than the first excitation electrode in a plan view, the first excitation electrode is disposed so as to fit into an outer edge of the second excitation electrode in the plan view, and the energy trap confficient M fulfills 15.5≦M≦36.7.




lec

Resonator element, resonator, electronic device, electronic apparatus, and mobile object

A resonator element includes a substrate vibrating in a thickness-shear vibration mode, a first excitation electrode disposed on one principal surface of the substrate, and has a shape obtained by cutting out four corners of a quadrangle, and a second excitation electrode disposed on the other principal surface of the substrate, and a ratio (S2/S1) between the area S1 of the quadrangle and the area S2 of the first excitation electrode fulfills 87.7%≦(S2/S1)




lec

Oscillating device, oscillating element and electronic apparatus

An oscillating device includes a temperature compensated oscillator that compensates a frequency temperature characteristic in a temperature compensation range including apart of a first temperature range, and a temperature control circuit that includes a heater and controls a temperature of a quartz crystal resonator of the temperature compensated oscillator into a second temperature range included in the temperature compensation range. Further, the temperature compensation range of the temperature compensated oscillator may include a part of the first temperature range in which compensation can be performed by first-order approximation.




lec

Voltage controlled oscillator band-select fast searching using predictive searching

A method, an apparatus, and a computer program product are provided. The apparatus tunes a frequency provided by a VCO. The apparatus determines a relative capacitance change associated with a first frequency and a desired frequency from a look-up table. The apparatus adjusts a capacitor circuit in the VCO based on the determined relative capacitance change determined from the look-up table in order to tune from the first frequency to the desired frequency. The apparatus determines that the frequency provided by the VCO is a second frequency different than the desired frequency after adjusting the capacitor circuit. The apparatus performs an iterative search to further adjust the capacitor circuit when a difference between the second frequency and the desired frequency is greater than a threshold.




lec

Vibration element, vibrator, oscillator, electronic apparatus, and moving object

A vibration element includes a piezoelectric substrate including a vibrating section and a thick section having a thickness larger than that of the vibrating section. The thick section includes a first thick section provided along a first outer edge of the vibrating section, a second thick section provided along a second outer edge, and a third thick section provided along another first outer edge. An inclined outer edge section that intersects with each of an X axis and a Z' axis is provided in a tip section of the piezoelectric substrate.




lec

Electronic oscillation circuit

An electronic oscillator circuit has a first oscillator, for supplying a first oscillation signal, a second oscillator, for supplying a second oscillation signal, a first controller for delivering the first control signal as a function of a phase difference between a first controller input and a second controller input of the first controller; a second controller for delivering the second control signal as a function of a phase difference between a first controller input of the second controller and a second controller input of the second controller; a resonator; at least a second resonance frequency, with a first phase shift dependent on the difference between the frequency of a second exciting signal and the second resonance frequency and processing means, for receiving the first oscillator signal and the second oscillator signal, determining their mutual proportion, looking up a frequency compensation factor in a prestored table and outputting a compensated oscillation signal.




lec

Assembly structure of electronic control unit and coil assembly of solenoid valve for electronic brake system

An assembly structure of an electronic control unit and a coil assembly of a solenoid valve for an electronic brake system connected to the electronic control unit having a printed circuit board and applying power to the solenoid valve. The coil assembly is penetrated to allow an upper portion of the solenoid valve to be fitted thereinto, and includes a cylindrical bobbin provided with a coil and a coil case. The electronic control unit is provided with a housing having an insertion groove and joined to the hydraulic control unit, the printed circuit board being disposed spaced apart from the coil assembly, and the housing is provided with an elastic member having one end contacting the printed circuit board and the other end contacting the coil case. The elastic member is configured with a coil spring to produce different elastic forces.




lec

Electric actuator

A most recent electrostatic capacitance value for a backup capacitor is measured periodically. Each time the most recent electrostatic capacitance value is measured, a charging voltage (a required charging voltage) that is required in order to cause a return operation of a valve from the setting opening at that time to an emergency opening/closing position (for example, the fully closed position) is calculated based on the electrostatic capacitance value that has been measured, and the terminal voltage of the backup capacitor is adjusted so as to become equal to the calculated required charging voltage.




lec

Electromagnet valve

An electromagnetic valve with an electromagnetic circuit includes a coil wound onto a coil former, a core, a magnetic return device, a valve closure element, a guide pin, and an armature which is substantially hollow. The armature is mounted so as to be movable with an inwardly directed face on the guide pin. The armature acts at least indirectly on the valve closure element. The guide pin comprises a surface. The surface is arranged to point radially outwards so as to form a first part directed towards the core and a second part directed towards the armature. The first part is configured to be magnetized. The second part is configured not to be magnetized. A control edge is formed between the first part and the second part.




lec

Method for operating a collection means for printed products

A method for operating a collection system for printed products includes drawing off the printed products from discharge device(s) disposed at corresponding discharge point(s) in the collection system. The printed products are deposited on a collection section during a cycle period of the discharge device(s) so as to form a bundle of printed products. The bundle is transferred to a subsequent conveying mechanism having receiving pockets. It is determined whether at least one missing printed product exists due to an incorrect drawing off from the discharge point(s). A repair process is initiated and controlled in which the at least one missing printed product is drawn off from the corresponding discharge point(s) at a time corresponding to a subsequent recurrent pocket-related cycle of the subsequent conveying mechanism in a subsequent cycle period of the discharge device(s). The at least one missing printed product is inserted in the relevant receiving pocket.




lec

Microelectromechanical system devices having through substrate vias and methods for the fabrication thereof

Methods for the fabrication of a Microelectromechanical Systems (“MEMS”) devices are provided, as are MEMS devices. In one embodiment, the MEMS device fabrication method includes forming at least one via opening extending into a substrate wafer, depositing a body of electrically-conductive material over the substrate wafer and into the via opening to produce a via, bonding the substrate wafer to a transducer wafer having an electrically-conductive transducer layer, and forming an electrical connection between the via and the electrically-conductive transducer layer. The substrate wafer is thinned to reveal the via through a bottom surface of the substrate wafer, and a backside conductor is produced over a bottom surface of the substrate wafer electrically coupled to the via.




lec

Stacked microelectronic packages having patterned sidewall conductors and methods for the fabrication thereof

Embodiments of a method for fabricating stacked microelectronic packages are provided, as are embodiments of a stacked microelectronic package. In one embodiment, the method includes arranging microelectronic device panels in a panel stack. Each microelectronic device panel includes a plurality of microelectronic devices and a plurality of package edge conductors extending therefrom. Trenches are formed in the panel stack exposing the plurality of package edge conductors. An electrically-conductive material is deposited into the trenches and contacts the plurality of package edge conductors exposed therethrough. The panel stack is then separated into partially-completed stacked microelectronic packages. For at least one of the partially-completed stacked microelectronic packages, selected portions of the electrically-conductive material are removed to define a plurality of patterned sidewall conductors interconnecting the microelectronic devices included within the stacked microelectronic package.




lec

Texturing a layer in an optoelectronic device for improved angle randomization of light

Embodiments generally relate to optoelectronic devices and more specifically, to textured layers in optoelectronic devices. In one embodiment, a method for providing a textured layer in an optoelectronic device includes depositing a first layer of a first material and depositing an island layer of a second material on the first layer. Depositing the island layer includes forming one or more islands of the second material to provide at least one textured surface of the island layer, where the textured surface is operative to cause scattering of light.




lec

Method of forming 3D integrated microelectronic assembly with stress reducing interconnects

A microelectronic assembly and method of making, which includes a first microelectronic element (including a substrate with first and second opposing surfaces, a semiconductor device, and conductive pads at the first surface which are electrically coupled to the semiconductor device) and a second microelectronic element (including a handler with first and second opposing surfaces, a second semiconductor device, and conductive pads at the handler first surface which are electrically coupled to the second semiconductor device). The first and second microelectronic elements are integrated such that the second surfaces face each other. The first microelectronic element includes conductive elements each extending from one of its conductive pads, through the substrate to the second surface. The second microelectronic element includes conductive elements each extending between the handler first and second surfaces. The conductive elements of the first microelectronics element are electrically coupled to the conductive elements of the second microelectronics element.




lec

Enhanced patterning uniformity of gate electrodes of a semiconductor device by late gate doping

When forming sophisticated semiconductor-based gate electrode structures of transistors, the pre-doping of one type of gate electrode structure may be accomplished after the actual patterning of the electrode material by using an appropriate mask or fill material for covering the active regions and using a lithography mask. In this manner, a high degree of flexibility is provided with respect to selecting an appropriate patterning regime, while at the same time a uniform and superior cross-sectional shape for any type of gate electrode structure is obtained.




lec

Manufacturing method of semiconductor film, manufacturing method of semiconductor device, and manufacturing method of photoelectric conversion device

A method for forming an amorphous semiconductor which contains an impurity element and has low resistivity and a method for manufacturing a semiconductor device with excellent electrical characteristics with high yield are provided. In the method for forming an amorphous semiconductor containing an impurity element, which utilizes a plasma CVD method, pulse-modulated discharge inception voltage is applied to electrodes under the pressure and electrode distance with which the minimum discharge inception voltage according to Paschen's Law can be obtained, whereby the amorphous semiconductor which contains an impurity element and has low resistivity is formed.




lec

***WITHDRAWN PATENT AS PER THE LATEST USPTO WITHDRAWN LIST***Electroconductive sheet and touch panel

The present invention provides an electroconductive sheet and a touch panel which do not impair visibility in a vicinity of an electrode terminal in a sensing region. In an electroconductive sheet which has an electrode pattern constructed of a metal thin wire and an electrode terminal that is electrically connected to an end of the electrode pattern, a transmittance of the electrode pattern is 83% or more, and when the transmittance of the electrode pattern is represented by a %, a transmittance of the electrode terminal is controlled to be (a-20)% or more and (a-3)% or less.




lec

Back plate component having reflective sheet reinforcing structure and liquid crystal display device including the same

Provided is a back plate component having reflective sheet reinforcing structure. The back plate component includes: a frame, a reflective sheet and a plurality of supporting film sheets. The frame includes a plurality of lateral beams and vertical beams, and at least one hollow part is included between the lateral beams and the vertical beams. The reflective sheet is attached to the frame, and includes a reflective surface and a back surface corresponding to the reflective surface. A portion of the back surface covers the whole hollow part. The plurality of supporting film sheets is attached to the back surface at a region corresponding to the hollow part, and includes a material the same as that of the reflective sheet. A liquid crystal display device is further disclosed herein.




lec

Display device substrate, display device substrate manufacturing method, display device, liquid crystal display device, liquid crystal display device manufacturing method and organic electroluminescent display device

The present invention provides a display device substrate, a display device substrate manufacturing method, a display device, a liquid crystal display device, a liquid crystal display device manufacturing method and an organic electroluminescent display device that allow suppressing faults derived from occurrence of gas and/or bubbles in a pixel region. The present invention is a display device substrate that comprises: a photosensitive resin film; and a pixel electrode, in this order, from a side of an insulating substrate. The display device substrate has a gas-barrier insulating film, at a layer higher than the photosensitive resin film, for preventing advance of a gas generated from the photosensitive resin film, or has a gas-barrier insulating film, between the photosensitive resin film and the pixel electrode, for preventing advance of gas generated from the photosensitive resin film.




lec

Pixel electrode panel, a liquid crystal display panel assembly and methods for manufacturing the same

A liquid crystal display panel, including: a pixel electrode formed on a first substrate; an alignment layer formed on the pixel electrode, wherein the alignment layer includes an alignment layer material and aligns first liquid crystal molecules in a direction substantially perpendicular to the pixel electrode; and a photo hardening layer formed on the alignment layer, wherein the photo hardening layer includes a photo hardening layer material and aligns second liquid crystal molecules to be tilted with respect to the pixel electrode, wherein the alignment layer material and the photo hardening layer material have different polarities from each other.




lec

Liquid crystal display device, semiconductor device, and electronic appliance

The liquid crystal display device includes an island-shaped first semiconductor film 102 which is formed over a base insulating film 101 and in which a source 102d, a channel forming region 102a, and a drain 102b are formed; a first electrode 102c which is formed of a material same as the first semiconductor film 102 to be the source 102d or the drain 102b and formed over the base insulating film 101; a second electrode 108 which is formed over the first electrode 102c and includes a first opening pattern 112; and a liquid crystal 110 which is provided over the second electrode 108.




lec

Liquid crystal display device, semiconductor device, and electronic appliance

The liquid crystal display device includes an island-shaped first semiconductor film 102 which is formed over a base insulating film 101 and in which a source 102d, a channel forming region 102a, and a drain 102b are formed; a first electrode 102c which is formed of a material same as the first semiconductor film 102 to be the source 102d or the drain 102b and formed over the base insulating film 101; a second electrode 108 which is formed over the first electrode 102c and includes a first opening pattern 112; and a liquid crystal 110 which is provided over the second electrode 108.