al

Generalized bounds for active subspaces

Mario Teixeira Parente, Jonas Wallin, Barbara Wohlmuth.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 917--943.

Abstract:
In this article, we consider scenarios in which traditional estimates for the active subspace method based on probabilistic Poincaré inequalities are not valid due to unbounded Poincaré constants. Consequently, we propose a framework that allows to derive generalized estimates in the sense that it enables to control the trade-off between the size of the Poincaré constant and a weaker order of the final error bound. In particular, we investigate independently exponentially distributed random variables in dimension two or larger and give explicit expressions for corresponding Poincaré constants showing their dependence on the dimension of the problem. Finally, we suggest possibilities for future work that aim for extending the class of distributions applicable to the active subspace method as we regard this as an opportunity to enlarge its usability.




al

Modal clustering asymptotics with applications to bandwidth selection

Alessandro Casa, José E. Chacón, Giovanna Menardi.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 835--856.

Abstract:
Density-based clustering relies on the idea of linking groups to some specific features of the probability distribution underlying the data. The reference to a true, yet unknown, population structure allows framing the clustering problem in a standard inferential setting, where the concept of ideal population clustering is defined as the partition induced by the true density function. The nonparametric formulation of this approach, known as modal clustering, draws a correspondence between the groups and the domains of attraction of the density modes. Operationally, a nonparametric density estimate is required and a proper selection of the amount of smoothing, governing the shape of the density and hence possibly the modal structure, is crucial to identify the final partition. In this work, we address the issue of density estimation for modal clustering from an asymptotic perspective. A natural and easy to interpret metric to measure the distance between density-based partitions is discussed, its asymptotic approximation explored, and employed to study the problem of bandwidth selection for nonparametric modal clustering.




al

A Low Complexity Algorithm with O(√T) Regret and O(1) Constraint Violations for Online Convex Optimization with Long Term Constraints

This paper considers online convex optimization over a complicated constraint set, which typically consists of multiple functional constraints and a set constraint. The conventional online projection algorithm (Zinkevich, 2003) can be difficult to implement due to the potentially high computation complexity of the projection operation. In this paper, we relax the functional constraints by allowing them to be violated at each round but still requiring them to be satisfied in the long term. This type of relaxed online convex optimization (with long term constraints) was first considered in Mahdavi et al. (2012). That prior work proposes an algorithm to achieve $O(sqrt{T})$ regret and $O(T^{3/4})$ constraint violations for general problems and another algorithm to achieve an $O(T^{2/3})$ bound for both regret and constraint violations when the constraint set can be described by a finite number of linear constraints. A recent extension in Jenatton et al. (2016) can achieve $O(T^{max{ heta,1- heta}})$ regret and $O(T^{1- heta/2})$ constraint violations where $ hetain (0,1)$. The current paper proposes a new simple algorithm that yields improved performance in comparison to prior works. The new algorithm achieves an $O(sqrt{T})$ regret bound with $O(1)$ constraint violations.




al

A Statistical Learning Approach to Modal Regression

This paper studies the nonparametric modal regression problem systematically from a statistical learning viewpoint. Originally motivated by pursuing a theoretical understanding of the maximum correntropy criterion based regression (MCCR), our study reveals that MCCR with a tending-to-zero scale parameter is essentially modal regression. We show that the nonparametric modal regression problem can be approached via the classical empirical risk minimization. Some efforts are then made to develop a framework for analyzing and implementing modal regression. For instance, the modal regression function is described, the modal regression risk is defined explicitly and its Bayes rule is characterized; for the sake of computational tractability, the surrogate modal regression risk, which is termed as the generalization risk in our study, is introduced. On the theoretical side, the excess modal regression risk, the excess generalization risk, the function estimation error, and the relations among the above three quantities are studied rigorously. It turns out that under mild conditions, function estimation consistency and convergence may be pursued in modal regression as in vanilla regression protocols such as mean regression, median regression, and quantile regression. On the practical side, the implementation issues of modal regression including the computational algorithm and the selection of the tuning parameters are discussed. Numerical validations on modal regression are also conducted to verify our findings.




al

A Model of Fake Data in Data-driven Analysis

Data-driven analysis has been increasingly used in various decision making processes. With more sources, including reviews, news, and pictures, can now be used for data analysis, the authenticity of data sources is in doubt. While previous literature attempted to detect fake data piece by piece, in the current work, we try to capture the fake data sender's strategic behavior to detect the fake data source. Specifically, we model the tension between a data receiver who makes data-driven decisions and a fake data sender who benefits from misleading the receiver. We propose a potentially infinite horizon continuous time game-theoretic model with asymmetric information to capture the fact that the receiver does not initially know the existence of fake data and learns about it during the course of the game. We use point processes to model the data traffic, where each piece of data can occur at any discrete moment in a continuous time flow. We fully solve the model and employ numerical examples to illustrate the players' strategies and payoffs for insights. Specifically, our results show that maintaining some suspicion about the data sources and understanding that the sender can be strategic are very helpful to the data receiver. In addition, based on our model, we propose a methodology of detecting fake data that is complementary to the previous studies on this topic, which suggested various approaches on analyzing the data piece by piece. We show that after analyzing each piece of data, understanding a source by looking at the its whole history of pushing data can be helpful.




al

Universal Latent Space Model Fitting for Large Networks with Edge Covariates

Latent space models are effective tools for statistical modeling and visualization of network data. Due to their close connection to generalized linear models, it is also natural to incorporate covariate information in them. The current paper presents two universal fitting algorithms for networks with edge covariates: one based on nuclear norm penalization and the other based on projected gradient descent. Both algorithms are motivated by maximizing the likelihood function for an existing class of inner-product models, and we establish their statistical rates of convergence for these models. In addition, the theory informs us that both methods work simultaneously for a wide range of different latent space models that allow latent positions to affect edge formation in flexible ways, such as distance models. Furthermore, the effectiveness of the methods is demonstrated on a number of real world network data sets for different statistical tasks, including community detection with and without edge covariates, and network assisted learning.




al

Lower Bounds for Parallel and Randomized Convex Optimization

We study the question of whether parallelization in the exploration of the feasible set can be used to speed up convex optimization, in the local oracle model of computation and in the high-dimensional regime. We show that the answer is negative for both deterministic and randomized algorithms applied to essentially any of the interesting geometries and nonsmooth, weakly-smooth, or smooth objective functions. In particular, we show that it is not possible to obtain a polylogarithmic (in the sequential complexity of the problem) number of parallel rounds with a polynomial (in the dimension) number of queries per round. In the majority of these settings and when the dimension of the space is polynomial in the inverse target accuracy, our lower bounds match the oracle complexity of sequential convex optimization, up to at most a logarithmic factor in the dimension, which makes them (nearly) tight. Another conceptual contribution of our work is in providing a general and streamlined framework for proving lower bounds in the setting of parallel convex optimization. Prior to our work, lower bounds for parallel convex optimization algorithms were only known in a small fraction of the settings considered in this paper, mainly applying to Euclidean ($ell_2$) and $ell_infty$ spaces.




al

Path-Based Spectral Clustering: Guarantees, Robustness to Outliers, and Fast Algorithms

We consider the problem of clustering with the longest-leg path distance (LLPD) metric, which is informative for elongated and irregularly shaped clusters. We prove finite-sample guarantees on the performance of clustering with respect to this metric when random samples are drawn from multiple intrinsically low-dimensional clusters in high-dimensional space, in the presence of a large number of high-dimensional outliers. By combining these results with spectral clustering with respect to LLPD, we provide conditions under which the Laplacian eigengap statistic correctly determines the number of clusters for a large class of data sets, and prove guarantees on the labeling accuracy of the proposed algorithm. Our methods are quite general and provide performance guarantees for spectral clustering with any ultrametric. We also introduce an efficient, easy to implement approximation algorithm for the LLPD based on a multiscale analysis of adjacency graphs, which allows for the runtime of LLPD spectral clustering to be quasilinear in the number of data points.




al

Target Propagation in Recurrent Neural Networks

Recurrent Neural Networks have been widely used to process sequence data, but have long been criticized for their biological implausibility and training difficulties related to vanishing and exploding gradients. This paper presents a novel algorithm for training recurrent networks, target propagation through time (TPTT), that outperforms standard backpropagation through time (BPTT) on four out of the five problems used for testing. The proposed algorithm is initially tested and compared to BPTT on four synthetic time lag tasks, and its performance is also measured using the sequential MNIST data set. In addition, as TPTT uses target propagation, it allows for discrete nonlinearities and could potentially mitigate the credit assignment problem in more complex recurrent architectures.




al

On Mahalanobis Distance in Functional Settings

Mahalanobis distance is a classical tool in multivariate analysis. We suggest here an extension of this concept to the case of functional data. More precisely, the proposed definition concerns those statistical problems where the sample data are real functions defined on a compact interval of the real line. The obvious difficulty for such a functional extension is the non-invertibility of the covariance operator in infinite-dimensional cases. Unlike other recent proposals, our definition is suggested and motivated in terms of the Reproducing Kernel Hilbert Space (RKHS) associated with the stochastic process that generates the data. The proposed distance is a true metric; it depends on a unique real smoothing parameter which is fully motivated in RKHS terms. Moreover, it shares some properties of its finite dimensional counterpart: it is invariant under isometries, it can be consistently estimated from the data and its sampling distribution is known under Gaussian models. An empirical study for two statistical applications, outliers detection and binary classification, is included. The results are quite competitive when compared to other recent proposals in the literature.




al

Generalized probabilistic principal component analysis of correlated data

Principal component analysis (PCA) is a well-established tool in machine learning and data processing. The principal axes in PCA were shown to be equivalent to the maximum marginal likelihood estimator of the factor loading matrix in a latent factor model for the observed data, assuming that the latent factors are independently distributed as standard normal distributions. However, the independence assumption may be unrealistic for many scenarios such as modeling multiple time series, spatial processes, and functional data, where the outcomes are correlated. In this paper, we introduce the generalized probabilistic principal component analysis (GPPCA) to study the latent factor model for multiple correlated outcomes, where each factor is modeled by a Gaussian process. Our method generalizes the previous probabilistic formulation of PCA (PPCA) by providing the closed-form maximum marginal likelihood estimator of the factor loadings and other parameters. Based on the explicit expression of the precision matrix in the marginal likelihood that we derived, the number of the computational operations is linear to the number of output variables. Furthermore, we also provide the closed-form expression of the marginal likelihood when other covariates are included in the mean structure. We highlight the advantage of GPPCA in terms of the practical relevance, estimation accuracy and computational convenience. Numerical studies of simulated and real data confirm the excellent finite-sample performance of the proposed approach.




al

On lp-Support Vector Machines and Multidimensional Kernels

In this paper, we extend the methodology developed for Support Vector Machines (SVM) using the $ell_2$-norm ($ell_2$-SVM) to the more general case of $ell_p$-norms with $p>1$ ($ell_p$-SVM). We derive second order cone formulations for the resulting dual and primal problems. The concept of kernel function, widely applied in $ell_2$-SVM, is extended to the more general case of $ell_p$-norms with $p>1$ by defining a new operator called multidimensional kernel. This object gives rise to reformulations of dual problems, in a transformed space of the original data, where the dependence on the original data always appear as homogeneous polynomials. We adapt known solution algorithms to efficiently solve the primal and dual resulting problems and some computational experiments on real-world datasets are presented showing rather good behavior in terms of the accuracy of $ell_p$-SVM with $p>1$.




al

Perturbation Bounds for Procrustes, Classical Scaling, and Trilateration, with Applications to Manifold Learning

One of the common tasks in unsupervised learning is dimensionality reduction, where the goal is to find meaningful low-dimensional structures hidden in high-dimensional data. Sometimes referred to as manifold learning, this problem is closely related to the problem of localization, which aims at embedding a weighted graph into a low-dimensional Euclidean space. Several methods have been proposed for localization, and also manifold learning. Nonetheless, the robustness property of most of them is little understood. In this paper, we obtain perturbation bounds for classical scaling and trilateration, which are then applied to derive performance bounds for Isomap, Landmark Isomap, and Maximum Variance Unfolding. A new perturbation bound for procrustes analysis plays a key role.




al

Practical Locally Private Heavy Hitters

We present new practical local differentially private heavy hitters algorithms achieving optimal or near-optimal worst-case error and running time -- TreeHist and Bitstogram. In both algorithms, server running time is $ ilde O(n)$ and user running time is $ ilde O(1)$, hence improving on the prior state-of-the-art result of Bassily and Smith [STOC 2015] requiring $O(n^{5/2})$ server time and $O(n^{3/2})$ user time. With a typically large number of participants in local algorithms (in the millions), this reduction in time complexity, in particular at the user side, is crucial for making locally private heavy hitters algorithms usable in practice. We implemented Algorithm TreeHist to verify our theoretical analysis and compared its performance with the performance of Google's RAPPOR code.




al

Connecting Spectral Clustering to Maximum Margins and Level Sets

We study the connections between spectral clustering and the problems of maximum margin clustering, and estimation of the components of level sets of a density function. Specifically, we obtain bounds on the eigenvectors of graph Laplacian matrices in terms of the between cluster separation, and within cluster connectivity. These bounds ensure that the spectral clustering solution converges to the maximum margin clustering solution as the scaling parameter is reduced towards zero. The sensitivity of maximum margin clustering solutions to outlying points is well known, but can be mitigated by first removing such outliers, and applying maximum margin clustering to the remaining points. If outliers are identified using an estimate of the underlying probability density, then the remaining points may be seen as an estimate of a level set of this density function. We show that such an approach can be used to consistently estimate the components of the level sets of a density function under very mild assumptions.




al

High-Dimensional Interactions Detection with Sparse Principal Hessian Matrix

In statistical learning framework with regressions, interactions are the contributions to the response variable from the products of the explanatory variables. In high-dimensional problems, detecting interactions is challenging due to combinatorial complexity and limited data information. We consider detecting interactions by exploring their connections with the principal Hessian matrix. Specifically, we propose a one-step synthetic approach for estimating the principal Hessian matrix by a penalized M-estimator. An alternating direction method of multipliers (ADMM) is proposed to efficiently solve the encountered regularized optimization problem. Based on the sparse estimator, we detect the interactions by identifying its nonzero components. Our method directly targets at the interactions, and it requires no structural assumption on the hierarchy of the interactions effects. We show that our estimator is theoretically valid, computationally efficient, and practically useful for detecting the interactions in a broad spectrum of scenarios.




al

Convergences of Regularized Algorithms and Stochastic Gradient Methods with Random Projections

We study the least-squares regression problem over a Hilbert space, covering nonparametric regression over a reproducing kernel Hilbert space as a special case. We first investigate regularized algorithms adapted to a projection operator on a closed subspace of the Hilbert space. We prove convergence results with respect to variants of norms, under a capacity assumption on the hypothesis space and a regularity condition on the target function. As a result, we obtain optimal rates for regularized algorithms with randomized sketches, provided that the sketch dimension is proportional to the effective dimension up to a logarithmic factor. As a byproduct, we obtain similar results for Nystr"{o}m regularized algorithms. Our results provide optimal, distribution-dependent rates that do not have any saturation effect for sketched/Nystr"{o}m regularized algorithms, considering both the attainable and non-attainable cases, in the well-conditioned regimes. We then study stochastic gradient methods with projection over the subspace, allowing multi-pass over the data and minibatches, and we derive similar optimal statistical convergence results.




al

A Unified Framework for Structured Graph Learning via Spectral Constraints

Graph learning from data is a canonical problem that has received substantial attention in the literature. Learning a structured graph is essential for interpretability and identification of the relationships among data. In general, learning a graph with a specific structure is an NP-hard combinatorial problem and thus designing a general tractable algorithm is challenging. Some useful structured graphs include connected, sparse, multi-component, bipartite, and regular graphs. In this paper, we introduce a unified framework for structured graph learning that combines Gaussian graphical model and spectral graph theory. We propose to convert combinatorial structural constraints into spectral constraints on graph matrices and develop an optimization framework based on block majorization-minimization to solve structured graph learning problem. The proposed algorithms are provably convergent and practically amenable for a number of graph based applications such as data clustering. Extensive numerical experiments with both synthetic and real data sets illustrate the effectiveness of the proposed algorithms. An open source R package containing the code for all the experiments is available at https://CRAN.R-project.org/package=spectralGraphTopology.




al

GluonCV and GluonNLP: Deep Learning in Computer Vision and Natural Language Processing

We present GluonCV and GluonNLP, the deep learning toolkits for computer vision and natural language processing based on Apache MXNet (incubating). These toolkits provide state-of-the-art pre-trained models, training scripts, and training logs, to facilitate rapid prototyping and promote reproducible research. We also provide modular APIs with flexible building blocks to enable efficient customization. Leveraging the MXNet ecosystem, the deep learning models in GluonCV and GluonNLP can be deployed onto a variety of platforms with different programming languages. The Apache 2.0 license has been adopted by GluonCV and GluonNLP to allow for software distribution, modification, and usage.




al

Lower Bounds for Testing Graphical Models: Colorings and Antiferromagnetic Ising Models

We study the identity testing problem in the context of spin systems or undirected graphical models, where it takes the following form: given the parameter specification of the model $M$ and a sampling oracle for the distribution $mu_{M^*}$ of an unknown model $M^*$, can we efficiently determine if the two models $M$ and $M^*$ are the same? We consider identity testing for both soft-constraint and hard-constraint systems. In particular, we prove hardness results in two prototypical cases, the Ising model and proper colorings, and explore whether identity testing is any easier than structure learning. For the ferromagnetic (attractive) Ising model, Daskalakis et al. (2018) presented a polynomial-time algorithm for identity testing. We prove hardness results in the antiferromagnetic (repulsive) setting in the same regime of parameters where structure learning is known to require a super-polynomial number of samples. Specifically, for $n$-vertex graphs of maximum degree $d$, we prove that if $|eta| d = omega(log{n})$ (where $eta$ is the inverse temperature parameter), then there is no polynomial running time identity testing algorithm unless $RP=NP$. In the hard-constraint setting, we present hardness results for identity testing for proper colorings. Our results are based on the presumed hardness of #BIS, the problem of (approximately) counting independent sets in bipartite graphs.




al

Targeted Fused Ridge Estimation of Inverse Covariance Matrices from Multiple High-Dimensional Data Classes

We consider the problem of jointly estimating multiple inverse covariance matrices from high-dimensional data consisting of distinct classes. An $ell_2$-penalized maximum likelihood approach is employed. The suggested approach is flexible and generic, incorporating several other $ell_2$-penalized estimators as special cases. In addition, the approach allows specification of target matrices through which prior knowledge may be incorporated and which can stabilize the estimation procedure in high-dimensional settings. The result is a targeted fused ridge estimator that is of use when the precision matrices of the constituent classes are believed to chiefly share the same structure while potentially differing in a number of locations of interest. It has many applications in (multi)factorial study designs. We focus on the graphical interpretation of precision matrices with the proposed estimator then serving as a basis for integrative or meta-analytic Gaussian graphical modeling. Situations are considered in which the classes are defined by data sets and subtypes of diseases. The performance of the proposed estimator in the graphical modeling setting is assessed through extensive simulation experiments. Its practical usability is illustrated by the differential network modeling of 12 large-scale gene expression data sets of diffuse large B-cell lymphoma subtypes. The estimator and its related procedures are incorporated into the R-package rags2ridges.




al

On the consistency of graph-based Bayesian semi-supervised learning and the scalability of sampling algorithms

This paper considers a Bayesian approach to graph-based semi-supervised learning. We show that if the graph parameters are suitably scaled, the graph-posteriors converge to a continuum limit as the size of the unlabeled data set grows. This consistency result has profound algorithmic implications: we prove that when consistency holds, carefully designed Markov chain Monte Carlo algorithms have a uniform spectral gap, independent of the number of unlabeled inputs. Numerical experiments illustrate and complement the theory.




al

The Maximum Separation Subspace in Sufficient Dimension Reduction with Categorical Response

Sufficient dimension reduction (SDR) is a very useful concept for exploratory analysis and data visualization in regression, especially when the number of covariates is large. Many SDR methods have been proposed for regression with a continuous response, where the central subspace (CS) is the target of estimation. Various conditions, such as the linearity condition and the constant covariance condition, are imposed so that these methods can estimate at least a portion of the CS. In this paper we study SDR for regression and discriminant analysis with categorical response. Motivated by the exploratory analysis and data visualization aspects of SDR, we propose a new geometric framework to reformulate the SDR problem in terms of manifold optimization and introduce a new concept called Maximum Separation Subspace (MASES). The MASES naturally preserves the “sufficiency” in SDR without imposing additional conditions on the predictor distribution, and directly inspires a semi-parametric estimator. Numerical studies show MASES exhibits superior performance as compared with competing SDR methods in specific settings.




al

Generalized Nonbacktracking Bounds on the Influence

This paper develops deterministic upper and lower bounds on the influence measure in a network, more precisely, the expected number of nodes that a seed set can influence in the independent cascade model. In particular, our bounds exploit r-nonbacktracking walks and Fortuin-Kasteleyn-Ginibre (FKG) type inequalities, and are computed by message passing algorithms. Further, we provide parameterized versions of the bounds that control the trade-off between efficiency and accuracy. Finally, the tightness of the bounds is illustrated on various network models.




al

On the Complexity Analysis of the Primal Solutions for the Accelerated Randomized Dual Coordinate Ascent

Dual first-order methods are essential techniques for large-scale constrained convex optimization. However, when recovering the primal solutions, we need $T(epsilon^{-2})$ iterations to achieve an $epsilon$-optimal primal solution when we apply an algorithm to the non-strongly convex dual problem with $T(epsilon^{-1})$ iterations to achieve an $epsilon$-optimal dual solution, where $T(x)$ can be $x$ or $sqrt{x}$. In this paper, we prove that the iteration complexity of the primal solutions and dual solutions have the same $Oleft(frac{1}{sqrt{epsilon}} ight)$ order of magnitude for the accelerated randomized dual coordinate ascent. When the dual function further satisfies the quadratic functional growth condition, by restarting the algorithm at any period, we establish the linear iteration complexity for both the primal solutions and dual solutions even if the condition number is unknown. When applied to the regularized empirical risk minimization problem, we prove the iteration complexity of $Oleft(nlog n+sqrt{frac{n}{epsilon}} ight)$ in both primal space and dual space, where $n$ is the number of samples. Our result takes out the $left(log frac{1}{epsilon} ight)$ factor compared with the methods based on smoothing/regularization or Catalyst reduction. As far as we know, this is the first time that the optimal $Oleft(sqrt{frac{n}{epsilon}} ight)$ iteration complexity in the primal space is established for the dual coordinate ascent based stochastic algorithms. We also establish the accelerated linear complexity for some problems with nonsmooth loss, e.g., the least absolute deviation and SVM.




al

Noise Accumulation in High Dimensional Classification and Total Signal Index

Great attention has been paid to Big Data in recent years. Such data hold promise for scientific discoveries but also pose challenges to analyses. One potential challenge is noise accumulation. In this paper, we explore noise accumulation in high dimensional two-group classification. First, we revisit a previous assessment of noise accumulation with principal component analyses, which yields a different threshold for discriminative ability than originally identified. Then we extend our scope to its impact on classifiers developed with three common machine learning approaches---random forest, support vector machine, and boosted classification trees. We simulate four scenarios with differing amounts of signal strength to evaluate each method. After determining noise accumulation may affect the performance of these classifiers, we assess factors that impact it. We conduct simulations by varying sample size, signal strength, signal strength proportional to the number predictors, and signal magnitude with random forest classifiers. These simulations suggest that noise accumulation affects the discriminative ability of high-dimensional classifiers developed using common machine learning methods, which can be modified by sample size, signal strength, and signal magnitude. We developed the measure total signal index (TSI) to track the trends of total signal and noise accumulation.




al

Causal Discovery Toolbox: Uncovering causal relationships in Python

This paper presents a new open source Python framework for causal discovery from observational data and domain background knowledge, aimed at causal graph and causal mechanism modeling. The cdt package implements an end-to-end approach, recovering the direct dependencies (the skeleton of the causal graph) and the causal relationships between variables. It includes algorithms from the `Bnlearn' and `Pcalg' packages, together with algorithms for pairwise causal discovery such as ANM.




al

Latent Simplex Position Model: High Dimensional Multi-view Clustering with Uncertainty Quantification

High dimensional data often contain multiple facets, and several clustering patterns can co-exist under different variable subspaces, also known as the views. While multi-view clustering algorithms were proposed, the uncertainty quantification remains difficult --- a particular challenge is in the high complexity of estimating the cluster assignment probability under each view, and sharing information among views. In this article, we propose an approximate Bayes approach --- treating the similarity matrices generated over the views as rough first-stage estimates for the co-assignment probabilities; in its Kullback-Leibler neighborhood, we obtain a refined low-rank matrix, formed by the pairwise product of simplex coordinates. Interestingly, each simplex coordinate directly encodes the cluster assignment uncertainty. For multi-view clustering, we let each view draw a parameterization from a few candidates, leading to dimension reduction. With high model flexibility, the estimation can be efficiently carried out as a continuous optimization problem, hence enjoys gradient-based computation. The theory establishes the connection of this model to a random partition distribution under multiple views. Compared to single-view clustering approaches, substantially more interpretable results are obtained when clustering brains from a human traumatic brain injury study, using high-dimensional gene expression data.




al

Learning Linear Non-Gaussian Causal Models in the Presence of Latent Variables

We consider the problem of learning causal models from observational data generated by linear non-Gaussian acyclic causal models with latent variables. Without considering the effect of latent variables, the inferred causal relationships among the observed variables are often wrong. Under faithfulness assumption, we propose a method to check whether there exists a causal path between any two observed variables. From this information, we can obtain the causal order among the observed variables. The next question is whether the causal effects can be uniquely identified as well. We show that causal effects among observed variables cannot be identified uniquely under mere assumptions of faithfulness and non-Gaussianity of exogenous noises. However, we are able to propose an efficient method that identifies the set of all possible causal effects that are compatible with the observational data. We present additional structural conditions on the causal graph under which causal effects among observed variables can be determined uniquely. Furthermore, we provide necessary and sufficient graphical conditions for unique identification of the number of variables in the system. Experiments on synthetic data and real-world data show the effectiveness of our proposed algorithm for learning causal models.




al

Optimal Bipartite Network Clustering

We study bipartite community detection in networks, or more generally the network biclustering problem. We present a fast two-stage procedure based on spectral initialization followed by the application of a pseudo-likelihood classifier twice. Under mild regularity conditions, we establish the weak consistency of the procedure (i.e., the convergence of the misclassification rate to zero) under a general bipartite stochastic block model. We show that the procedure is optimal in the sense that it achieves the optimal convergence rate that is achievable by a biclustering oracle, adaptively over the whole class, up to constants. This is further formalized by deriving a minimax lower bound over a class of biclustering problems. The optimal rate we obtain sharpens some of the existing results and generalizes others to a wide regime of average degree growth, from sparse networks with average degrees growing arbitrarily slowly to fairly dense networks with average degrees of order $sqrt{n}$. As a special case, we recover the known exact recovery threshold in the $log n$ regime of sparsity. To obtain the consistency result, as part of the provable version of the algorithm, we introduce a sub-block partitioning scheme that is also computationally attractive, allowing for distributed implementation of the algorithm without sacrificing optimality. The provable algorithm is derived from a general class of pseudo-likelihood biclustering algorithms that employ simple EM type updates. We show the effectiveness of this general class by numerical simulations.




al

Switching Regression Models and Causal Inference in the Presence of Discrete Latent Variables

Given a response $Y$ and a vector $X = (X^1, dots, X^d)$ of $d$ predictors, we investigate the problem of inferring direct causes of $Y$ among the vector $X$. Models for $Y$ that use all of its causal covariates as predictors enjoy the property of being invariant across different environments or interventional settings. Given data from such environments, this property has been exploited for causal discovery. Here, we extend this inference principle to situations in which some (discrete-valued) direct causes of $ Y $ are unobserved. Such cases naturally give rise to switching regression models. We provide sufficient conditions for the existence, consistency and asymptotic normality of the MLE in linear switching regression models with Gaussian noise, and construct a test for the equality of such models. These results allow us to prove that the proposed causal discovery method obtains asymptotic false discovery control under mild conditions. We provide an algorithm, make available code, and test our method on simulated data. It is robust against model violations and outperforms state-of-the-art approaches. We further apply our method to a real data set, where we show that it does not only output causal predictors, but also a process-based clustering of data points, which could be of additional interest to practitioners.




al

Branch and Bound for Piecewise Linear Neural Network Verification

The success of Deep Learning and its potential use in many safety-critical applicationshas motivated research on formal verification of Neural Network (NN) models. In thiscontext, verification involves proving or disproving that an NN model satisfies certaininput-output properties. Despite the reputation of learned NN models as black boxes,and the theoretical hardness of proving useful properties about them, researchers havebeen successful in verifying some classes of models by exploiting their piecewise linearstructure and taking insights from formal methods such as Satisifiability Modulo Theory.However, these methods are still far from scaling to realistic neural networks. To facilitateprogress on this crucial area, we exploit the Mixed Integer Linear Programming (MIP) formulation of verification to propose a family of algorithms based on Branch-and-Bound (BaB). We show that our family contains previous verification methods as special cases.With the help of the BaB framework, we make three key contributions. Firstly, we identifynew methods that combine the strengths of multiple existing approaches, accomplishingsignificant performance improvements over previous state of the art. Secondly, we introducean effective branching strategy on ReLU non-linearities. This branching strategy allows usto efficiently and successfully deal with high input dimensional problems with convolutionalnetwork architecture, on which previous methods fail frequently. Finally, we proposecomprehensive test data sets and benchmarks which includes a collection of previouslyreleased testcases. We use the data sets to conduct a thorough experimental comparison ofexisting and new algorithms and to provide an inclusive analysis of the factors impactingthe hardness of verification problems.




al

Greedy Attack and Gumbel Attack: Generating Adversarial Examples for Discrete Data

We present a probabilistic framework for studying adversarial attacks on discrete data. Based on this framework, we derive a perturbation-based method, Greedy Attack, and a scalable learning-based method, Gumbel Attack, that illustrate various tradeoffs in the design of attacks. We demonstrate the effectiveness of these methods using both quantitative metrics and human evaluation on various state-of-the-art models for text classification, including a word-based CNN, a character-based CNN and an LSTM. As an example of our results, we show that the accuracy of character-based convolutional networks drops to the level of random selection by modifying only five characters through Greedy Attack.




al

Dynamical Systems as Temporal Feature Spaces

Parametrised state space models in the form of recurrent networks are often used in machine learning to learn from data streams exhibiting temporal dependencies. To break the black box nature of such models it is important to understand the dynamical features of the input-driving time series that are formed in the state space. We propose a framework for rigorous analysis of such state representations in vanishing memory state space models such as echo state networks (ESN). In particular, we consider the state space a temporal feature space and the readout mapping from the state space a kernel machine operating in that feature space. We show that: (1) The usual ESN strategy of randomly generating input-to-state, as well as state coupling leads to shallow memory time series representations, corresponding to cross-correlation operator with fast exponentially decaying coefficients; (2) Imposing symmetry on dynamic coupling yields a constrained dynamic kernel matching the input time series with straightforward exponentially decaying motifs or exponentially decaying motifs of the highest frequency; (3) Simple ring (cycle) high-dimensional reservoir topology specified only through two free parameters can implement deep memory dynamic kernels with a rich variety of matching motifs. We quantify richness of feature representations imposed by dynamic kernels and demonstrate that for dynamic kernel associated with cycle reservoir topology, the kernel richness undergoes a phase transition close to the edge of stability.




al

A Convex Parametrization of a New Class of Universal Kernel Functions

The accuracy and complexity of kernel learning algorithms is determined by the set of kernels over which it is able to optimize. An ideal set of kernels should: admit a linear parameterization (tractability); be dense in the set of all kernels (accuracy); and every member should be universal so that the hypothesis space is infinite-dimensional (scalability). Currently, there is no class of kernel that meets all three criteria - e.g. Gaussians are not tractable or accurate; polynomials are not scalable. We propose a new class that meet all three criteria - the Tessellated Kernel (TK) class. Specifically, the TK class: admits a linear parameterization using positive matrices; is dense in all kernels; and every element in the class is universal. This implies that the use of TK kernels for learning the kernel can obviate the need for selecting candidate kernels in algorithms such as SimpleMKL and parameters such as the bandwidth. Numerical testing on soft margin Support Vector Machine (SVM) problems show that algorithms using TK kernels outperform other kernel learning algorithms and neural networks. Furthermore, our results show that when the ratio of the number of training data to features is high, the improvement of TK over MKL increases significantly.




al

Ancestral Gumbel-Top-k Sampling for Sampling Without Replacement

We develop ancestral Gumbel-Top-$k$ sampling: a generic and efficient method for sampling without replacement from discrete-valued Bayesian networks, which includes multivariate discrete distributions, Markov chains and sequence models. The method uses an extension of the Gumbel-Max trick to sample without replacement by finding the top $k$ of perturbed log-probabilities among all possible configurations of a Bayesian network. Despite the exponentially large domain, the algorithm has a complexity linear in the number of variables and sample size $k$. Our algorithm allows to set the number of parallel processors $m$, to trade off the number of iterations versus the total cost (iterations times $m$) of running the algorithm. For $m = 1$ the algorithm has minimum total cost, whereas for $m = k$ the number of iterations is minimized, and the resulting algorithm is known as Stochastic Beam Search. We provide extensions of the algorithm and discuss a number of related algorithms. We analyze the properties of ancestral Gumbel-Top-$k$ sampling and compare against alternatives on randomly generated Bayesian networks with different levels of connectivity. In the context of (deep) sequence models, we show its use as a method to generate diverse but high-quality translations and statistical estimates of translation quality and entropy.




al

Skill Rating for Multiplayer Games. Introducing Hypernode Graphs and their Spectral Theory

We consider the skill rating problem for multiplayer games, that is how to infer player skills from game outcomes in multiplayer games. We formulate the problem as a minimization problem $arg min_{s} s^T Delta s$ where $Delta$ is a positive semidefinite matrix and $s$ a real-valued function, of which some entries are the skill values to be inferred and other entries are constrained by the game outcomes. We leverage graph-based semi-supervised learning (SSL) algorithms for this problem. We apply our algorithms on several data sets of multiplayer games and obtain very promising results compared to Elo Duelling (see Elo, 1978) and TrueSkill (see Herbrich et al., 2006).. As we leverage graph-based SSL algorithms and because games can be seen as relations between sets of players, we then generalize the approach. For this aim, we introduce a new finite model, called hypernode graph, defined to be a set of weighted binary relations between sets of nodes. We define Laplacians of hypernode graphs. Then, we show that the skill rating problem for multiplayer games can be formulated as $arg min_{s} s^T Delta s$ where $Delta$ is the Laplacian of a hypernode graph constructed from a set of games. From a fundamental perspective, we show that hypernode graph Laplacians are symmetric positive semidefinite matrices with constant functions in their null space. We show that problems on hypernode graphs can not be solved with graph constructions and graph kernels. We relate hypernode graphs to signed graphs showing that positive relations between groups can lead to negative relations between individuals.




al

Ensemble Learning for Relational Data

We present a theoretical analysis framework for relational ensemble models. We show that ensembles of collective classifiers can improve predictions for graph data by reducing errors due to variance in both learning and inference. In addition, we propose a relational ensemble framework that combines a relational ensemble learning approach with a relational ensemble inference approach for collective classification. The proposed ensemble techniques are applicable for both single and multiple graph settings. Experiments on both synthetic and real-world data demonstrate the effectiveness of the proposed framework. Finally, our experimental results support the theoretical analysis and confirm that ensemble algorithms that explicitly focus on both learning and inference processes and aim at reducing errors associated with both, are the best performers.




al

Learning Causal Networks via Additive Faithfulness

In this paper we introduce a statistical model, called additively faithful directed acyclic graph (AFDAG), for causal learning from observational data. Our approach is based on additive conditional independence (ACI), a recently proposed three-way statistical relation that shares many similarities with conditional independence but without resorting to multi-dimensional kernels. This distinct feature strikes a balance between a parametric model and a fully nonparametric model, which makes the proposed model attractive for handling large networks. We develop an estimator for AFDAG based on a linear operator that characterizes ACI, and establish the consistency and convergence rates of this estimator, as well as the uniform consistency of the estimated DAG. Moreover, we introduce a modified PC-algorithm to implement the estimating procedure efficiently, so that its complexity is determined by the level of sparseness rather than the dimension of the network. Through simulation studies we show that our method outperforms existing methods when commonly assumed conditions such as Gaussian or Gaussian copula distributions do not hold. Finally, the usefulness of AFDAG formulation is demonstrated through an application to a proteomics data set.




al

High-Dimensional Inference for Cluster-Based Graphical Models

Motivated by modern applications in which one constructs graphical models based on a very large number of features, this paper introduces a new class of cluster-based graphical models, in which variable clustering is applied as an initial step for reducing the dimension of the feature space. We employ model assisted clustering, in which the clusters contain features that are similar to the same unobserved latent variable. Two different cluster-based Gaussian graphical models are considered: the latent variable graph, corresponding to the graphical model associated with the unobserved latent variables, and the cluster-average graph, corresponding to the vector of features averaged over clusters. Our study reveals that likelihood based inference for the latent graph, not analyzed previously, is analytically intractable. Our main contribution is the development and analysis of alternative estimation and inference strategies, for the precision matrix of an unobservable latent vector Z. We replace the likelihood of the data by an appropriate class of empirical risk functions, that can be specialized to the latent graphical model and to the simpler, but under-analyzed, cluster-average graphical model. The estimators thus derived can be used for inference on the graph structure, for instance on edge strength or pattern recovery. Inference is based on the asymptotic limits of the entry-wise estimates of the precision matrices associated with the conditional independence graphs under consideration. While taking the uncertainty induced by the clustering step into account, we establish Berry-Esseen central limit theorems for the proposed estimators. It is noteworthy that, although the clusters are estimated adaptively from the data, the central limit theorems regarding the entries of the estimated graphs are proved under the same conditions one would use if the clusters were known in advance. As an illustration of the usage of these newly developed inferential tools, we show that they can be reliably used for recovery of the sparsity pattern of the graphs we study, under FDR control, which is verified via simulation studies and an fMRI data analysis. These experimental results confirm the theoretically established difference between the two graph structures. Furthermore, the data analysis suggests that the latent variable graph, corresponding to the unobserved cluster centers, can help provide more insight into the understanding of the brain connectivity networks relative to the simpler, average-based, graph.




al

Fast Rates for General Unbounded Loss Functions: From ERM to Generalized Bayes

We present new excess risk bounds for general unbounded loss functions including log loss and squared loss, where the distribution of the losses may be heavy-tailed. The bounds hold for general estimators, but they are optimized when applied to $eta$-generalized Bayesian, MDL, and empirical risk minimization estimators. In the case of log loss, the bounds imply convergence rates for generalized Bayesian inference under misspecification in terms of a generalization of the Hellinger metric as long as the learning rate $eta$ is set correctly. For general loss functions, our bounds rely on two separate conditions: the $v$-GRIP (generalized reversed information projection) conditions, which control the lower tail of the excess loss; and the newly introduced witness condition, which controls the upper tail. The parameter $v$ in the $v$-GRIP conditions determines the achievable rate and is akin to the exponent in the Tsybakov margin condition and the Bernstein condition for bounded losses, which the $v$-GRIP conditions generalize; favorable $v$ in combination with small model complexity leads to $ ilde{O}(1/n)$ rates. The witness condition allows us to connect the excess risk to an 'annealed' version thereof, by which we generalize several previous results connecting Hellinger and Rényi divergence to KL divergence.




al

Robust Asynchronous Stochastic Gradient-Push: Asymptotically Optimal and Network-Independent Performance for Strongly Convex Functions

We consider the standard model of distributed optimization of a sum of functions $F(mathbf z) = sum_{i=1}^n f_i(mathbf z)$, where node $i$ in a network holds the function $f_i(mathbf z)$. We allow for a harsh network model characterized by asynchronous updates, message delays, unpredictable message losses, and directed communication among nodes. In this setting, we analyze a modification of the Gradient-Push method for distributed optimization, assuming that (i) node $i$ is capable of generating gradients of its function $f_i(mathbf z)$ corrupted by zero-mean bounded-support additive noise at each step, (ii) $F(mathbf z)$ is strongly convex, and (iii) each $f_i(mathbf z)$ has Lipschitz gradients. We show that our proposed method asymptotically performs as well as the best bounds on centralized gradient descent that takes steps in the direction of the sum of the noisy gradients of all the functions $f_1(mathbf z), ldots, f_n(mathbf z)$ at each step.




al

Exact Guarantees on the Absence of Spurious Local Minima for Non-negative Rank-1 Robust Principal Component Analysis

This work is concerned with the non-negative rank-1 robust principal component analysis (RPCA), where the goal is to recover the dominant non-negative principal components of a data matrix precisely, where a number of measurements could be grossly corrupted with sparse and arbitrary large noise. Most of the known techniques for solving the RPCA rely on convex relaxation methods by lifting the problem to a higher dimension, which significantly increase the number of variables. As an alternative, the well-known Burer-Monteiro approach can be used to cast the RPCA as a non-convex and non-smooth $ell_1$ optimization problem with a significantly smaller number of variables. In this work, we show that the low-dimensional formulation of the symmetric and asymmetric positive rank-1 RPCA based on the Burer-Monteiro approach has benign landscape, i.e., 1) it does not have any spurious local solution, 2) has a unique global solution, and 3) its unique global solution coincides with the true components. An implication of this result is that simple local search algorithms are guaranteed to achieve a zero global optimality gap when directly applied to the low-dimensional formulation. Furthermore, we provide strong deterministic and probabilistic guarantees for the exact recovery of the true principal components. In particular, it is shown that a constant fraction of the measurements could be grossly corrupted and yet they would not create any spurious local solution.




al

Generalized Optimal Matching Methods for Causal Inference

We develop an encompassing framework for matching, covariate balancing, and doubly-robust methods for causal inference from observational data called generalized optimal matching (GOM). The framework is given by generalizing a new functional-analytical formulation of optimal matching, giving rise to the class of GOM methods, for which we provide a single unified theory to analyze tractability and consistency. Many commonly used existing methods are included in GOM and, using their GOM interpretation, can be extended to optimally and automatically trade off balance for variance and outperform their standard counterparts. As a subclass, GOM gives rise to kernel optimal matching (KOM), which, as supported by new theoretical and empirical results, is notable for combining many of the positive properties of other methods in one. KOM, which is solved as a linearly-constrained convex-quadratic optimization problem, inherits both the interpretability and model-free consistency of matching but can also achieve the $sqrt{n}$-consistency of well-specified regression and the bias reduction and robustness of doubly robust methods. In settings of limited overlap, KOM enables a very transparent method for interval estimation for partial identification and robust coverage. We demonstrate this in examples with both synthetic and real data.




al

Unique Sharp Local Minimum in L1-minimization Complete Dictionary Learning

We study the problem of globally recovering a dictionary from a set of signals via $ell_1$-minimization. We assume that the signals are generated as i.i.d. random linear combinations of the $K$ atoms from a complete reference dictionary $D^*in mathbb R^{K imes K}$, where the linear combination coefficients are from either a Bernoulli type model or exact sparse model. First, we obtain a necessary and sufficient norm condition for the reference dictionary $D^*$ to be a sharp local minimum of the expected $ell_1$ objective function. Our result substantially extends that of Wu and Yu (2015) and allows the combination coefficient to be non-negative. Secondly, we obtain an explicit bound on the region within which the objective value of the reference dictionary is minimal. Thirdly, we show that the reference dictionary is the unique sharp local minimum, thus establishing the first known global property of $ell_1$-minimization dictionary learning. Motivated by the theoretical results, we introduce a perturbation based test to determine whether a dictionary is a sharp local minimum of the objective function. In addition, we also propose a new dictionary learning algorithm based on Block Coordinate Descent, called DL-BCD, which is guaranteed to decrease the obective function monotonically. Simulation studies show that DL-BCD has competitive performance in terms of recovery rate compared to other state-of-the-art dictionary learning algorithms when the reference dictionary is generated from random Gaussian matrices.




al

Community-Based Group Graphical Lasso

A new strategy for probabilistic graphical modeling is developed that draws parallels to community detection analysis. The method jointly estimates an undirected graph and homogeneous communities of nodes. The structure of the communities is taken into account when estimating the graph and at the same time, the structure of the graph is accounted for when estimating communities of nodes. The procedure uses a joint group graphical lasso approach with community detection-based grouping, such that some groups of edges co-occur in the estimated graph. The grouping structure is unknown and is estimated based on community detection algorithms. Theoretical derivations regarding graph convergence and sparsistency, as well as accuracy of community recovery are included, while the method's empirical performance is illustrated in an fMRI context, as well as with simulated examples.




al

(1 + epsilon)-class Classification: an Anomaly Detection Method for Highly Imbalanced or Incomplete Data Sets

Anomaly detection is not an easy problem since distribution of anomalous samples is unknown a priori. We explore a novel method that gives a trade-off possibility between one-class and two-class approaches, and leads to a better performance on anomaly detection problems with small or non-representative anomalous samples. The method is evaluated using several data sets and compared to a set of conventional one-class and two-class approaches.




al

Scalable Approximate MCMC Algorithms for the Horseshoe Prior

The horseshoe prior is frequently employed in Bayesian analysis of high-dimensional models, and has been shown to achieve minimax optimal risk properties when the truth is sparse. While optimization-based algorithms for the extremely popular Lasso and elastic net procedures can scale to dimension in the hundreds of thousands, algorithms for the horseshoe that use Markov chain Monte Carlo (MCMC) for computation are limited to problems an order of magnitude smaller. This is due to high computational cost per step and growth of the variance of time-averaging estimators as a function of dimension. We propose two new MCMC algorithms for computation in these models that have significantly improved performance compared to existing alternatives. One of the algorithms also approximates an expensive matrix product to give orders of magnitude speedup in high-dimensional applications. We prove guarantees for the accuracy of the approximate algorithm, and show that gradually decreasing the approximation error as the chain extends results in an exact algorithm. The scalability of the algorithm is illustrated in simulations with problem size as large as $N=5,000$ observations and $p=50,000$ predictors, and an application to a genome-wide association study with $N=2,267$ and $p=98,385$. The empirical results also show that the new algorithm yields estimates with lower mean squared error, intervals with better coverage, and elucidates features of the posterior that were often missed by previous algorithms in high dimensions, including bimodality of posterior marginals indicating uncertainty about which covariates belong in the model.




al

High-dimensional Gaussian graphical models on network-linked data

Graphical models are commonly used to represent conditional dependence relationships between variables. There are multiple methods available for exploring them from high-dimensional data, but almost all of them rely on the assumption that the observations are independent and identically distributed. At the same time, observations connected by a network are becoming increasingly common, and tend to violate these assumptions. Here we develop a Gaussian graphical model for observations connected by a network with potentially different mean vectors, varying smoothly over the network. We propose an efficient estimation algorithm and demonstrate its effectiveness on both simulated and real data, obtaining meaningful and interpretable results on a statistics coauthorship network. We also prove that our method estimates both the inverse covariance matrix and the corresponding graph structure correctly under the assumption of network “cohesion”, which refers to the empirically observed phenomenon of network neighbors sharing similar traits.




al

Identifiability of Additive Noise Models Using Conditional Variances

This paper considers a new identifiability condition for additive noise models (ANMs) in which each variable is determined by an arbitrary Borel measurable function of its parents plus an independent error. It has been shown that ANMs are fully recoverable under some identifiability conditions, such as when all error variances are equal. However, this identifiable condition could be restrictive, and hence, this paper focuses on a relaxed identifiability condition that involves not only error variances, but also the influence of parents. This new class of identifiable ANMs does not put any constraints on the form of dependencies, or distributions of errors, and allows different error variances. It further provides a statistically consistent and computationally feasible structure learning algorithm for the identifiable ANMs based on the new identifiability condition. The proposed algorithm assumes that all relevant variables are observed, while it does not assume faithfulness or a sparse graph. Demonstrated through extensive simulated and real multivariate data is that the proposed algorithm successfully recovers directed acyclic graphs.