al

Oregon's Sabrina Ionescu, Ruthy Hebard, Satou Sabally share meaning of Naismith Starting 5 honor

Pac-12 Networks' Ashley Adamson speaks with Oregon stars Sabrina Ionescu, Ruthy Hebard and Satou Sabally to hear how special their recent Naismith Starting 5 honor was, as the Ducks comprise three of the nation's top five players. Ionescu (point guard), Sabally (small forward) and Hebard (power forward) led the Ducks to a 31-2 record in the 2019-20 season before it was cut short.




al

Sabrina Ionescu, Ruthy Hebard, Satou Sabally on staying connected, WNBA Draft, Oregon's historic season

Pac-12 Networks' Ashley Adamson catches up with Oregon's "Big 3" of Sabrina Ionescu, Ruthy Hebard and Satou Sabally to hear how they're adjusting to the new world without sports while still preparing for the WNBA Draft on April 17. They also share how they're staying hungry for basketball during the hiatus.




al

Staley thinks No. 1 South Carolina is national champs

South Carolina coach Dawn Staley believes her top-ranked Gamecocks are the women's basketball national champions, even without an NCAA Tournament trophy to put in their display case due to the pandemic-shortened season. The NCAA decided against officially crowning champions after its signature tournaments were called off due to the coronavirus pandemic that has sent much of the world into lock down. Staley spoke from her home where she's spent the past month managing her program and ensuring her players don't linger too much on what they missed.




al

WNBA Draft Profile: Versatile forward Satou Sabally can provide instant impact

Athletic forward Satou Sabally is preparing to take the leap to the WNBA level following three productive seasons at Oregon. As a junior, she averaged 16.2 points and 6.9 rebounds per game while helping the Ducks sweep the Pac-12 regular season and tournament titles. At 6-foot-4, she also drained 45 3-pointers for Oregon in 2019-20 while notching a career-best average of 2.3 assists per game.




al

Aari McDonald on returning for her senior year at Arizona: 'We're ready to set the bar higher'

Arizona's Aari McDonald and Pac-12 Networks' Ashley Adamson discuss the guard's decision to return for her senior season in Tucson and how she now has the opportunity to be the face of the league. McDonald, the Pac-12 Defensive Player of the Year, was one of the nation's top scorers in 2019-20, averaging 20.6 points per game.




al

WNBA Draft Profile: Do-it-all OSU talent Mikayla Pivec has her sights set on a pro breakout

Oregon State guard Mikayla Pivec is the epitome of a versatile player. Her 1,030 career rebounds were the most in school history, and she finished just one assist shy of becoming the first in OSU history to tally 1,500 points, 1,000 rebounds and 500 assists. She'll head to the WNBA looking to showcase her talents at the next level following the 2020 WNBA Draft.




al

Ruthy Hebard, Sabrina Ionescu 'represent everything that is great about basketball'

Ruthy Hebard and Sabrina Ionescu have had a remarkable four years together in Eugene, rewriting the history books and pushing the Ducks into the national spotlight. Catch the debut of "Our Stories Unfinished Business: Sabrina Ionescu and Ruthy Hebard" at Wednesday, April 15 at 7 p.m. PT/ 8 p.m. MT on Pac-12 Network.




al

Former Alabama prep star Davenport transfers to Georgia

Maori Davenport, who drew national attention over an eligibility dispute during her senior year of high school, is transferring to Georgia after playing sparingly in her lone season at Rutgers. Lady Bulldogs coach Joni Taylor announced Davenport's decision Wednesday. The 6-foot-4 center from Troy, Alabama will have to sit out a season under NCAA transfer rules before she is eligible to join Georgia in 2021-22.




al

Chicago State women's basketball coach Misty Opat resigns

CHICAGO (AP) -- Chicago State women’s coach Misty Opat resigned Thursday after two seasons and a 3-55 record.




al

Bill Walton joins Pac-12 Perspective to talk about Bike for Humanity

Pac-12 Networks' Yogi Roth and Ashley Adamson talk with Hall of Fame player and Pac-12 Networks talent Bill Walton during Thursday's Pac-12 Perspective podcast.




al

Notre Dame's Muffet McGraw retires; won 2 national titles

Just two years removed from the euphoria of winning her second national championship, Muffet McGraw knew it was time. The Hall of Fame coach retired Wednesday with a resume that includes two national championships in 33 seasons at the school, a surprising decision to many of the countless players and coaches she has influenced on and off the court as a mentor and advocate for women. ''I am proud of what we have accomplished and I can turn the page to the next chapter in my life with no regrets, knowing that I gave it my best every day,'' said McGraw, a four-time winner of the AP women's basketball Coach of the Year.




al

Detroit Mercy hires Gilbert as women's basketball coach

DETROIT (AP) -- Detroit Mercy hired AnnMarie Gilbert as women’s basketball coach.




al

Natalie Chou on why she took a stand against anti-Asian racism in wake of coronavirus

During Wednesday's "Pac-12 Perspective" podcast, Natalie Chou shared why she is using her platform to speak out against racism she sees in her community related to the novel coronavirus.




al

UCLA's Natalie Chou on her role models, inspiring Asian-American girls in basketball

Pac-12 Networks' Mike Yam has a conversation with UCLA's Natalie Chou during Wednesday's "Pac-12 Perspective" podcast. Chou reflects on her role models, passion for basketball and how her mom has made a big impact on her hoops career.




al

Oregon State's Aleah Goodman, Maddie Washington reflect on earning 2020 Pac-12 Sportsmanship Award

The Pac-12 Student-Athlete Advisory Committee voted to award the Oregon State women’s basketball team with the Pac-12 Sportsmanship Award for the 2019-20 season, honoring their character and sportsmanship before a rivalry game against Oregon in Jan. 2020 -- the day Kobe Bryant, his daughter, Gigi, and seven others passed away in a helicopter crash in Southern California. In the above video, Aleah Goodman and Madison Washington share how the teams came together as one in a circle of prayer before the game.




al

Oregon State women's basketball receives Pac-12 Sportsmanship Award for supporting rival Oregon in tragedy

On the day Kobe Bryant suddenly passed away, the Beavers embraced their rivals at midcourt in a moment of strength to support the Ducks, many of whom had personal connections to Bryant and his daughter, Gigi. For this, Oregon State is the 2020 recipient of the Pac-12 Sportsmanship Award.




al

Natalie Chou breaks through stereotypes, inspires young Asian American girls on 'Our Stories' quick look

Watch the debut of "Our Stories - Natalie Chou" on Sunday, May 10 at 12:30 p.m. PT/ 1:30 p.m. MT on Pac-12 Network.




al

Stanford's Tara VanDerveer on Haley Jones' versatile freshman year: 'It was really incredible'

During Friday's "Pac-12 Perspective," Stanford head coach Tara VanDerveer spoke about Haley Jones' positionless game and how the Cardinal used the dynamic freshman in 2019-20. Download and listen wherever you get your podcasts.




al

Pac-12 women's basketball student-athletes reflect on the influence of their moms ahead of Mother's Day

Pac-12 student-athletes give shout-outs to their moms ahead of Mother's Day on May 10th, 2020 including UCLA's Michaela Onyenwere, Oregon's Sabrina Ionescu and Satou Sabally, Arizona's Aari McDonald, Cate Reese, and Lacie Hull, Stanford's Kiana Williams, USC's Endyia Rogers, and Aliyah Jeune, and Utah's Brynna Maxwell.




al

Nonparametric confidence intervals for conditional quantiles with large-dimensional covariates

Laurent Gardes.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 661--701.

Abstract:
The first part of the paper is dedicated to the construction of a $gamma$ - nonparametric confidence interval for a conditional quantile with a level depending on the sample size. When this level tends to 0 or 1 as the sample size increases, the conditional quantile is said to be extreme and is located in the tail of the conditional distribution. The proposed confidence interval is constructed by approximating the distribution of the order statistics selected with a nearest neighbor approach by a Beta distribution. We show that its coverage probability converges to the preselected probability $gamma $ and its accuracy is illustrated on a simulation study. When the dimension of the covariate increases, the coverage probability of the confidence interval can be very different from $gamma $. This is a well known consequence of the data sparsity especially in the tail of the distribution. In a second part, a dimension reduction procedure is proposed in order to select more appropriate nearest neighbors in the right tail of the distribution and in turn to obtain a better coverage probability for extreme conditional quantiles. This procedure is based on the Tail Conditional Independence assumption introduced in (Gardes, Extremes , pp. 57–95, 18(3) , 2018).




al

Statistical convergence of the EM algorithm on Gaussian mixture models

Ruofei Zhao, Yuanzhi Li, Yuekai Sun.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 632--660.

Abstract:
We study the convergence behavior of the Expectation Maximization (EM) algorithm on Gaussian mixture models with an arbitrary number of mixture components and mixing weights. We show that as long as the means of the components are separated by at least $Omega (sqrt{min {M,d}})$, where $M$ is the number of components and $d$ is the dimension, the EM algorithm converges locally to the global optimum of the log-likelihood. Further, we show that the convergence rate is linear and characterize the size of the basin of attraction to the global optimum.




al

Generalised cepstral models for the spectrum of vector time series

Maddalena Cavicchioli.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 605--631.

Abstract:
The paper treats the modeling of stationary multivariate stochastic processes via a frequency domain model expressed in terms of cepstrum theory. The proposed model nests the vector exponential model of [20] as a special case, and extends the generalised cepstral model of [36] to the multivariate setting, answering a question raised by the last authors in their paper. Contemporarily, we extend the notion of generalised autocovariance function of [35] to vector time series. Then we derive explicit matrix formulas connecting generalised cepstral and autocovariance matrices of the process, and prove the consistency and asymptotic properties of the Whittle likelihood estimators of model parameters. Asymptotic theory for the special case of the vector exponential model is a significant addition to the paper of [20]. We also provide a mathematical machinery, based on matrix differentiation, and computational methods to derive our results, which differ significantly from those employed in the univariate case. The utility of the proposed model is illustrated through Monte Carlo simulation from a bivariate process characterized by a high dynamic range, and an empirical application on time varying minimum variance hedge ratios through the second moments of future and spot prices in the corn commodity market.




al

On the Letac-Massam conjecture and existence of high dimensional Bayes estimators for graphical models

Emanuel Ben-David, Bala Rajaratnam.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 580--604.

Abstract:
The Wishart distribution defined on the open cone of positive-definite matrices plays a central role in multivariate analysis and multivariate distribution theory. Its domain of parameters is often referred to as the Gindikin set. In recent years, varieties of useful extensions of the Wishart distribution have been proposed in the literature for the purposes of studying Markov random fields and graphical models. In particular, generalizations of the Wishart distribution, referred to as Type I and Type II (graphical) Wishart distributions introduced by Letac and Massam in Annals of Statistics (2007) play important roles in both frequentist and Bayesian inference for Gaussian graphical models. These distributions have been especially useful in high-dimensional settings due to the flexibility offered by their multiple-shape parameters. Concerning Type I and Type II Wishart distributions, a conjecture of Letac and Massam concerns the domain of multiple-shape parameters of these distributions. The conjecture also has implications for the existence of Bayes estimators corresponding to these high dimensional priors. The conjecture, which was first posed in the Annals of Statistics, has now been an open problem for about 10 years. In this paper, we give a necessary condition for the Letac and Massam conjecture to hold. More precisely, we prove that if the Letac and Massam conjecture holds on a decomposable graph, then no two separators of the graph can be nested within each other. For this, we analyze Type I and Type II Wishart distributions on appropriate Markov equivalent perfect DAG models and succeed in deriving the aforementioned necessary condition. This condition in particular identifies a class of counterexamples to the conjecture.




al

On polyhedral estimation of signals via indirect observations

Anatoli Juditsky, Arkadi Nemirovski.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 458--502.

Abstract:
We consider the problem of recovering linear image of unknown signal belonging to a given convex compact signal set from noisy observation of another linear image of the signal. We develop a simple generic efficiently computable non linear in observations “polyhedral” estimate along with computation-friendly techniques for its design and risk analysis. We demonstrate that under favorable circumstances the resulting estimate is provably near-optimal in the minimax sense, the “favorable circumstances” being less restrictive than the weakest known so far assumptions ensuring near-optimality of estimates which are linear in observations.




al

Parseval inequalities and lower bounds for variance-based sensitivity indices

Olivier Roustant, Fabrice Gamboa, Bertrand Iooss.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 386--412.

Abstract:
The so-called polynomial chaos expansion is widely used in computer experiments. For example, it is a powerful tool to estimate Sobol’ sensitivity indices. In this paper, we consider generalized chaos expansions built on general tensor Hilbert basis. In this frame, we revisit the computation of the Sobol’ indices with Parseval equalities and give general lower bounds for these indices obtained by truncation. The case of the eigenfunctions system associated with a Poincaré differential operator leads to lower bounds involving the derivatives of the analyzed function and provides an efficient tool for variable screening. These lower bounds are put in action both on toy and real life models demonstrating their accuracy.




al

Asymptotic properties of the maximum likelihood and cross validation estimators for transformed Gaussian processes

François Bachoc, José Betancourt, Reinhard Furrer, Thierry Klein.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1962--2008.

Abstract:
The asymptotic analysis of covariance parameter estimation of Gaussian processes has been subject to intensive investigation. However, this asymptotic analysis is very scarce for non-Gaussian processes. In this paper, we study a class of non-Gaussian processes obtained by regular non-linear transformations of Gaussian processes. We provide the increasing-domain asymptotic properties of the (Gaussian) maximum likelihood and cross validation estimators of the covariance parameters of a non-Gaussian process of this class. We show that these estimators are consistent and asymptotically normal, although they are defined as if the process was Gaussian. They do not need to model or estimate the non-linear transformation. Our results can thus be interpreted as a robustness of (Gaussian) maximum likelihood and cross validation towards non-Gaussianity. Our proofs rely on two technical results that are of independent interest for the increasing-domain asymptotic literature of spatial processes. First, we show that, under mild assumptions, coefficients of inverses of large covariance matrices decay at an inverse polynomial rate as a function of the corresponding observation location distances. Second, we provide a general central limit theorem for quadratic forms obtained from transformed Gaussian processes. Finally, our asymptotic results are illustrated by numerical simulations.




al

Univariate mean change point detection: Penalization, CUSUM and optimality

Daren Wang, Yi Yu, Alessandro Rinaldo.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1917--1961.

Abstract:
The problem of univariate mean change point detection and localization based on a sequence of $n$ independent observations with piecewise constant means has been intensively studied for more than half century, and serves as a blueprint for change point problems in more complex settings. We provide a complete characterization of this classical problem in a general framework in which the upper bound $sigma ^{2}$ on the noise variance, the minimal spacing $Delta $ between two consecutive change points and the minimal magnitude $kappa $ of the changes, are allowed to vary with $n$. We first show that consistent localization of the change points is impossible in the low signal-to-noise ratio regime $frac{kappa sqrt{Delta }}{sigma }preceq sqrt{log (n)}$. In contrast, when $frac{kappa sqrt{Delta }}{sigma }$ diverges with $n$ at the rate of at least $sqrt{log (n)}$, we demonstrate that two computationally-efficient change point estimators, one based on the solution to an $ell _{0}$-penalized least squares problem and the other on the popular wild binary segmentation algorithm, are both consistent and achieve a localization rate of the order $frac{sigma ^{2}}{kappa ^{2}}log (n)$. We further show that such rate is minimax optimal, up to a $log (n)$ term.




al

Sparse equisigned PCA: Algorithms and performance bounds in the noisy rank-1 setting

Arvind Prasadan, Raj Rao Nadakuditi, Debashis Paul.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 345--385.

Abstract:
Singular value decomposition (SVD) based principal component analysis (PCA) breaks down in the high-dimensional and limited sample size regime below a certain critical eigen-SNR that depends on the dimensionality of the system and the number of samples. Below this critical eigen-SNR, the estimates returned by the SVD are asymptotically uncorrelated with the latent principal components. We consider a setting where the left singular vector of the underlying rank one signal matrix is assumed to be sparse and the right singular vector is assumed to be equisigned, that is, having either only nonnegative or only nonpositive entries. We consider six different algorithms for estimating the sparse principal component based on different statistical criteria and prove that by exploiting sparsity, we recover consistent estimates in the low eigen-SNR regime where the SVD fails. Our analysis reveals conditions under which a coordinate selection scheme based on a sum-type decision statistic outperforms schemes that utilize the $ell _{1}$ and $ell _{2}$ norm-based statistics. We derive lower bounds on the size of detectable coordinates of the principal left singular vector and utilize these lower bounds to derive lower bounds on the worst-case risk. Finally, we verify our findings with numerical simulations and a illustrate the performance with a video data where the interest is in identifying objects.




al

Asymptotics and optimal bandwidth for nonparametric estimation of density level sets

Wanli Qiao.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 302--344.

Abstract:
Bandwidth selection is crucial in the kernel estimation of density level sets. A risk based on the symmetric difference between the estimated and true level sets is usually used to measure their proximity. In this paper we provide an asymptotic $L^{p}$ approximation to this risk, where $p$ is characterized by the weight function in the risk. In particular the excess risk corresponds to an $L^{2}$ type of risk, and is adopted to derive an optimal bandwidth for nonparametric level set estimation of $d$-dimensional density functions ($dgeq 1$). A direct plug-in bandwidth selector is developed for kernel density level set estimation and its efficacy is verified in numerical studies.




al

Bayesian variance estimation in the Gaussian sequence model with partial information on the means

Gianluca Finocchio, Johannes Schmidt-Hieber.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 239--271.

Abstract:
Consider the Gaussian sequence model under the additional assumption that a fixed fraction of the means is known. We study the problem of variance estimation from a frequentist Bayesian perspective. The maximum likelihood estimator (MLE) for $sigma^{2}$ is biased and inconsistent. This raises the question whether the posterior is able to correct the MLE in this case. By developing a new proving strategy that uses refined properties of the posterior distribution, we find that the marginal posterior is inconsistent for any i.i.d. prior on the mean parameters. In particular, no assumption on the decay of the prior needs to be imposed. Surprisingly, we also find that consistency can be retained for a hierarchical prior based on Gaussian mixtures. In this case we also establish a limiting shape result and determine the limit distribution. In contrast to the classical Bernstein-von Mises theorem, the limit is non-Gaussian. We show that the Bayesian analysis leads to new statistical estimators outperforming the correctly calibrated MLE in a numerical simulation study.




al

Perspective maximum likelihood-type estimation via proximal decomposition

Patrick L. Combettes, Christian L. Müller.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 207--238.

Abstract:
We introduce a flexible optimization model for maximum likelihood-type estimation (M-estimation) that encompasses and generalizes a large class of existing statistical models, including Huber’s concomitant M-estimator, Owen’s Huber/Berhu concomitant estimator, the scaled lasso, support vector machine regression, and penalized estimation with structured sparsity. The model, termed perspective M-estimation, leverages the observation that convex M-estimators with concomitant scale as well as various regularizers are instances of perspective functions, a construction that extends a convex function to a jointly convex one in terms of an additional scale variable. These nonsmooth functions are shown to be amenable to proximal analysis, which leads to principled and provably convergent optimization algorithms via proximal splitting. We derive novel proximity operators for several perspective functions of interest via a geometrical approach based on duality. We then devise a new proximal splitting algorithm to solve the proposed M-estimation problem and establish the convergence of both the scale and regression iterates it produces to a solution. Numerical experiments on synthetic and real-world data illustrate the broad applicability of the proposed framework.




al

Estimation of linear projections of non-sparse coefficients in high-dimensional regression

David Azriel, Armin Schwartzman.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 174--206.

Abstract:
In this work we study estimation of signals when the number of parameters is much larger than the number of observations. A large body of literature assumes for these kind of problems a sparse structure where most of the parameters are zero or close to zero. When this assumption does not hold, one can focus on low-dimensional functions of the parameter vector. In this work we study one-dimensional linear projections. Specifically, in the context of high-dimensional linear regression, the parameter of interest is ${oldsymbol{eta}}$ and we study estimation of $mathbf{a}^{T}{oldsymbol{eta}}$. We show that $mathbf{a}^{T}hat{oldsymbol{eta}}$, where $hat{oldsymbol{eta}}$ is the least squares estimator, using pseudo-inverse when $p>n$, is minimax and admissible. Thus, for linear projections no regularization or shrinkage is needed. This estimator is easy to analyze and confidence intervals can be constructed. We study a high-dimensional dataset from brain imaging where it is shown that the signal is weak, non-sparse and significantly different from zero.




al

Exact recovery in block spin Ising models at the critical line

Matthias Löwe, Kristina Schubert.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1796--1815.

Abstract:
We show how to exactly reconstruct the block structure at the critical line in the so-called Ising block model. This model was recently re-introduced by Berthet, Rigollet and Srivastava in [2]. There the authors show how to exactly reconstruct blocks away from the critical line and they give an upper and a lower bound on the number of observations one needs; thereby they establish a minimax optimal rate (up to constants). Our technique relies on a combination of their methods with fluctuation results obtained in [20]. The latter are extended to the full critical regime. We find that the number of necessary observations depends on whether the interaction parameter between two blocks is positive or negative: In the first case, there are about $Nlog N$ observations required to exactly recover the block structure, while in the latter case $sqrt{N}log N$ observations suffice.




al

Nonparametric false discovery rate control for identifying simultaneous signals

Sihai Dave Zhao, Yet Tien Nguyen.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 110--142.

Abstract:
It is frequently of interest to identify simultaneous signals, defined as features that exhibit statistical significance across each of several independent experiments. For example, genes that are consistently differentially expressed across experiments in different animal species can reveal evolutionarily conserved biological mechanisms. However, in some problems the test statistics corresponding to these features can have complicated or unknown null distributions. This paper proposes a novel nonparametric false discovery rate control procedure that can identify simultaneous signals even without knowing these null distributions. The method is shown, theoretically and in simulations, to asymptotically control the false discovery rate. It was also used to identify genes that were both differentially expressed and proximal to differentially accessible chromatin in the brains of mice exposed to a conspecific intruder. The proposed method is available in the R package github.com/sdzhao/ssa.




al

Bias correction in conditional multivariate extremes

Mikael Escobar-Bach, Yuri Goegebeur, Armelle Guillou.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1773--1795.

Abstract:
We consider bias-corrected estimation of the stable tail dependence function in the regression context. To this aim, we first estimate the bias of a smoothed estimator of the stable tail dependence function, and then we subtract it from the estimator. The weak convergence, as a stochastic process, of the resulting asymptotically unbiased estimator of the conditional stable tail dependence function, correctly normalized, is established under mild assumptions, the covariate argument being fixed. The finite sample behaviour of our asymptotically unbiased estimator is then illustrated on a simulation study and compared to two alternatives, which are not bias corrected. Finally, our methodology is applied to a dataset of air pollution measurements.




al

Simultaneous transformation and rounding (STAR) models for integer-valued data

Daniel R. Kowal, Antonio Canale.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1744--1772.

Abstract:
We propose a simple yet powerful framework for modeling integer-valued data, such as counts, scores, and rounded data. The data-generating process is defined by Simultaneously Transforming and Rounding (STAR) a continuous-valued process, which produces a flexible family of integer-valued distributions capable of modeling zero-inflation, bounded or censored data, and over- or underdispersion. The transformation is modeled as unknown for greater distributional flexibility, while the rounding operation ensures a coherent integer-valued data-generating process. An efficient MCMC algorithm is developed for posterior inference and provides a mechanism for adaptation of successful Bayesian models and algorithms for continuous data to the integer-valued data setting. Using the STAR framework, we design a new Bayesian Additive Regression Tree model for integer-valued data, which demonstrates impressive predictive distribution accuracy for both synthetic data and a large healthcare utilization dataset. For interpretable regression-based inference, we develop a STAR additive model, which offers greater flexibility and scalability than existing integer-valued models. The STAR additive model is applied to study the recent decline in Amazon river dolphins.




al

On the predictive potential of kernel principal components

Ben Jones, Andreas Artemiou, Bing Li.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1--23.

Abstract:
We give a probabilistic analysis of a phenomenon in statistics which, until recently, has not received a convincing explanation. This phenomenon is that the leading principal components tend to possess more predictive power for a response variable than lower-ranking ones despite the procedure being unsupervised. Our result, in its most general form, shows that the phenomenon goes far beyond the context of linear regression and classical principal components — if an arbitrary distribution for the predictor $X$ and an arbitrary conditional distribution for $Yvert X$ are chosen then any measureable function $g(Y)$, subject to a mild condition, tends to be more correlated with the higher-ranking kernel principal components than with the lower-ranking ones. The “arbitrariness” is formulated in terms of unitary invariance then the tendency is explicitly quantified by exploring how unitary invariance relates to the Cauchy distribution. The most general results, for technical reasons, are shown for the case where the kernel space is finite dimensional. The occurency of this tendency in real world databases is also investigated to show that our results are consistent with observation.




al

A fast MCMC algorithm for the uniform sampling of binary matrices with fixed margins

Guanyang Wang.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1690--1706.

Abstract:
Uniform sampling of binary matrix with fixed margins is an important and difficult problem in statistics, computer science, ecology and so on. The well-known swap algorithm would be inefficient when the size of the matrix becomes large or when the matrix is too sparse/dense. Here we propose the Rectangle Loop algorithm, a Markov chain Monte Carlo algorithm to sample binary matrices with fixed margins uniformly. Theoretically the Rectangle Loop algorithm is better than the swap algorithm in Peskun’s order. Empirically studies also demonstrates the Rectangle Loop algorithm is remarkablely more efficient than the swap algorithm.




al

Random distributions via Sequential Quantile Array

Annalisa Fabretti, Samantha Leorato.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1611--1647.

Abstract:
We propose a method to generate random distributions with known quantile distribution, or, more generally, with known distribution for some form of generalized quantile. The method takes inspiration from the random Sequential Barycenter Array distributions (SBA) proposed by Hill and Monticino (1998) which generates a Random Probability Measure (RPM) with known expected value. We define the Sequential Quantile Array (SQA) and show how to generate a random SQA from which we can derive RPMs. The distribution of the generated SQA-RPM can have full support and the RPMs can be both discrete, continuous and differentiable. We face also the problem of the efficient implementation of the procedure that ensures that the approximation of the SQA-RPM by a finite number of steps stays close to the SQA-RPM obtained theoretically by the procedure. Finally, we compare SQA-RPMs with similar approaches as Polya Tree.




al

Estimating piecewise monotone signals

Kentaro Minami.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1508--1576.

Abstract:
We study the problem of estimating piecewise monotone vectors. This problem can be seen as a generalization of the isotonic regression that allows a small number of order-violating changepoints. We focus mainly on the performance of the nearly-isotonic regression proposed by Tibshirani et al. (2011). We derive risk bounds for the nearly-isotonic regression estimators that are adaptive to piecewise monotone signals. The estimator achieves a near minimax convergence rate over certain classes of piecewise monotone signals under a weak assumption. Furthermore, we present an algorithm that can be applied to the nearly-isotonic type estimators on general weighted graphs. The simulation results suggest that the nearly-isotonic regression performs as well as the ideal estimator that knows the true positions of changepoints.




al

Beta-Binomial stick-breaking non-parametric prior

María F. Gil–Leyva, Ramsés H. Mena, Theodoros Nicoleris.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1479--1507.

Abstract:
A new class of nonparametric prior distributions, termed Beta-Binomial stick-breaking process, is proposed. By allowing the underlying length random variables to be dependent through a Beta marginals Markov chain, an appealing discrete random probability measure arises. The chain’s dependence parameter controls the ordering of the stick-breaking weights, and thus tunes the model’s label-switching ability. Also, by tuning this parameter, the resulting class contains the Dirichlet process and the Geometric process priors as particular cases, which is of interest for MCMC implementations. Some properties of the model are discussed and a density estimation algorithm is proposed and tested with simulated datasets.




al

Nonconcave penalized estimation in sparse vector autoregression model

Xuening Zhu.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1413--1448.

Abstract:
High dimensional time series receive considerable attention recently, whose temporal and cross-sectional dependency could be captured by the vector autoregression (VAR) model. To tackle with the high dimensionality, penalization methods are widely employed. However, theoretically, the existing studies of the penalization methods mainly focus on $i.i.d$ data, therefore cannot quantify the effect of the dependence level on the convergence rate. In this work, we use the spectral properties of the time series to quantify the dependence and derive a nonasymptotic upper bound for the estimation errors. By focusing on the nonconcave penalization methods, we manage to establish the oracle properties of the penalized VAR model estimation by considering the effects of temporal and cross-sectional dependence. Extensive numerical studies are conducted to compare the finite sample performance using different penalization functions. Lastly, an air pollution data of mainland China is analyzed for illustration purpose.




al

A fast and consistent variable selection method for high-dimensional multivariate linear regression with a large number of explanatory variables

Ryoya Oda, Hirokazu Yanagihara.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1386--1412.

Abstract:
We put forward a variable selection method for selecting explanatory variables in a normality-assumed multivariate linear regression. It is cumbersome to calculate variable selection criteria for all subsets of explanatory variables when the number of explanatory variables is large. Therefore, we propose a fast and consistent variable selection method based on a generalized $C_{p}$ criterion. The consistency of the method is provided by a high-dimensional asymptotic framework such that the sample size and the sum of the dimensions of response vectors and explanatory vectors divided by the sample size tend to infinity and some positive constant which are less than one, respectively. Through numerical simulations, it is shown that the proposed method has a high probability of selecting the true subset of explanatory variables and is fast under a moderate sample size even when the number of dimensions is large.




al

Rate optimal Chernoff bound and application to community detection in the stochastic block models

Zhixin Zhou, Ping Li.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1302--1347.

Abstract:
The Chernoff coefficient is known to be an upper bound of Bayes error probability in classification problem. In this paper, we will develop a rate optimal Chernoff bound on the Bayes error probability. The new bound is not only an upper bound but also a lower bound of Bayes error probability up to a constant factor. Moreover, we will apply this result to community detection in the stochastic block models. As a clustering problem, the optimal misclassification rate of community detection problem can be characterized by our rate optimal Chernoff bound. This can be formalized by deriving a minimax error rate over certain parameter space of stochastic block models, then achieving such an error rate by a feasible algorithm employing multiple steps of EM type updates.




al

Differential network inference via the fused D-trace loss with cross variables

Yichong Wu, Tiejun Li, Xiaoping Liu, Luonan Chen.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1269--1301.

Abstract:
Detecting the change of biological interaction networks is of great importance in biological and medical research. We proposed a simple loss function, named as CrossFDTL, to identify the network change or differential network by estimating the difference between two precision matrices under Gaussian assumption. The CrossFDTL is a natural fusion of the D-trace loss for the considered two networks by imposing the $ell _{1}$ penalty to the differential matrix to ensure sparsity. The key point of our method is to utilize the cross variables, which correspond to the sum and difference of two precision matrices instead of using their original forms. Moreover, we developed an efficient minimization algorithm for the proposed loss function and further rigorously proved its convergence. Numerical results showed that our method outperforms the existing methods in both accuracy and convergence speed for the simulated and real data.




al

Consistency and asymptotic normality of Latent Block Model estimators

Vincent Brault, Christine Keribin, Mahendra Mariadassou.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1234--1268.

Abstract:
The Latent Block Model (LBM) is a model-based method to cluster simultaneously the $d$ columns and $n$ rows of a data matrix. Parameter estimation in LBM is a difficult and multifaceted problem. Although various estimation strategies have been proposed and are now well understood empirically, theoretical guarantees about their asymptotic behavior is rather sparse and most results are limited to the binary setting. We prove here theoretical guarantees in the valued settings. We show that under some mild conditions on the parameter space, and in an asymptotic regime where $log (d)/n$ and $log (n)/d$ tend to $0$ when $n$ and $d$ tend to infinity, (1) the maximum-likelihood estimate of the complete model (with known labels) is consistent and (2) the log-likelihood ratios are equivalent under the complete and observed (with unknown labels) models. This equivalence allows us to transfer the asymptotic consistency, and under mild conditions, asymptotic normality, to the maximum likelihood estimate under the observed model. Moreover, the variational estimator is also consistent and, under the same conditions, asymptotically normal.




al

Sparsely observed functional time series: estimation and prediction

Tomáš Rubín, Victor M. Panaretos.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1137--1210.

Abstract:
Functional time series analysis, whether based on time or frequency domain methodology, has traditionally been carried out under the assumption of complete observation of the constituent series of curves, assumed stationary. Nevertheless, as is often the case with independent functional data, it may well happen that the data available to the analyst are not the actual sequence of curves, but relatively few and noisy measurements per curve, potentially at different locations in each curve’s domain. Under this sparse sampling regime, neither the established estimators of the time series’ dynamics nor their corresponding theoretical analysis will apply. The subject of this paper is to tackle the problem of estimating the dynamics and of recovering the latent process of smooth curves in the sparse regime. Assuming smoothness of the latent curves, we construct a consistent nonparametric estimator of the series’ spectral density operator and use it to develop a frequency-domain recovery approach, that predicts the latent curve at a given time by borrowing strength from the (estimated) dynamic correlations in the series across time. This new methodology is seen to comprehensively outperform a naive recovery approach that would ignore temporal dependence and use only methodology employed in the i.i.d. setting and hinging on the lag zero covariance. Further to predicting the latent curves from their noisy point samples, the method fills in gaps in the sequence (curves nowhere sampled), denoises the data, and serves as a basis for forecasting. Means of providing corresponding confidence bands are also investigated. A simulation study interestingly suggests that sparse observation for a longer time period may provide better performance than dense observation for a shorter period, in the presence of smoothness. The methodology is further illustrated by application to an environmental data set on fair-weather atmospheric electricity, which naturally leads to a sparse functional time series.




al

A general drift estimation procedure for stochastic differential equations with additive fractional noise

Fabien Panloup, Samy Tindel, Maylis Varvenne.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1075--1136.

Abstract:
In this paper we consider the drift estimation problem for a general differential equation driven by an additive multidimensional fractional Brownian motion, under ergodic assumptions on the drift coefficient. Our estimation procedure is based on the identification of the invariant measure, and we provide consistency results as well as some information about the convergence rate. We also give some examples of coefficients for which the identifiability assumption for the invariant measure is satisfied.




al

Testing goodness of fit for point processes via topological data analysis

Christophe A. N. Biscio, Nicolas Chenavier, Christian Hirsch, Anne Marie Svane.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1024--1074.

Abstract:
We introduce tests for the goodness of fit of point patterns via methods from topological data analysis. More precisely, the persistent Betti numbers give rise to a bivariate functional summary statistic for observed point patterns that is asymptotically Gaussian in large observation windows. We analyze the power of tests derived from this statistic on simulated point patterns and compare its performance with global envelope tests. Finally, we apply the tests to a point pattern from an application context in neuroscience. As the main methodological contribution, we derive sufficient conditions for a functional central limit theorem on bounded persistent Betti numbers of point processes with exponential decay of correlations.




al

Conditional density estimation with covariate measurement error

Xianzheng Huang, Haiming Zhou.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 970--1023.

Abstract:
We consider estimating the density of a response conditioning on an error-prone covariate. Motivated by two existing kernel density estimators in the absence of covariate measurement error, we propose a method to correct the existing estimators for measurement error. Asymptotic properties of the resultant estimators under different types of measurement error distributions are derived. Moreover, we adjust bandwidths readily available from existing bandwidth selection methods developed for error-free data to obtain bandwidths for the new estimators. Extensive simulation studies are carried out to compare the proposed estimators with naive estimators that ignore measurement error, which also provide empirical evidence for the effectiveness of the proposed bandwidth selection methods. A real-life data example is used to illustrate implementation of these methods under practical scenarios. An R package, lpme, is developed for implementing all considered methods, which we demonstrate via an R code example in Appendix B.2.