rt

Synchrotron infrared nanospectroscopy in fourth-generation storage rings

Fourth-generation synchrotron storage rings represent a significant milestone in synchrotron technology, offering outstandingly bright and tightly focused X-ray beams for a wide range of scientific applications. However, due to their inherently tight magnetic lattices, these storage rings have posed critical challenges for accessing lower-energy radiation, such as infrared (IR) and THz. Here the first-ever IR beamline to be installed and to operate at a fourth-generation synchrotron storage ring is introduced. This work encompasses several notable advancements, including a thorough examination of the new IR source at Sirius, a detailed description of the radiation extraction scheme, and the successful validation of our optical concept through both measurements and simulations. This optimal optical setup has enabled us to achieve an exceptionally wide frequency range for our nanospectroscopy experiments. Through the utilization of synchrotron IR nanospectroscopy on biological and hard matter samples, the practicality and effectiveness of this beamline has been successfully demonstrated. The advantages of fourth-generation synchrotron IR sources, which can now operate with unparalleled stability as a result of the stringent requirements for producing low-emittance X-rays, are emphasized.




rt

Ion beam figuring for X-ray mirrors: history, state-of-the-art and future prospects

Synchrotron light sources require X-ray optics with extremely demanding accuracy for the surface profile, with less than 100 nrad slope errors and sub-nanometre height errors. Such errors are challenging to achieve for aspheres using traditional polishing methods. However, post-polishing error correction can be performed using techniques such as ion beam figuring (IBF) to improve optics to the desired quality. This work presents a brief overview of the history of IBF, introduces some of the challenges for obtaining such demanding figure errors, and highlights the work done at several in-house IBF facilities at synchrotron light sources worldwide to obtain state-of-the-art optical quality.




rt

Teaching about the birth of synchrotron light: the role of Frascati and a missed opportunity

The users of synchrotron light are now tens of thousands throughout the world. Paradoxically, many of them do not know much about the early history of their domain. This is regrettable, since education about the initial developments makes it easier to fully understand synchrotron radiation and effectively use its amazing features. Scarcely known, in particular, is the key role of scientists working in Frascati, Italy. Partly based on his personal experiences, the author reports here relevant aspects of this story, including a pioneering French–Italian experiment that started in the early 1960s, and the Frascati contributions in the 1970s and 1980s to the birth of synchrotron light research. Finally, the unwise strategic decisions that prevented Italy from achieving absolute leadership in this domain – in spite of its unique initial advantages – are analyzed.




rt

Development of a portable and cost-effective femtosecond fibre laser synchronizable with synchrotron X-ray pulses

This study introduces a compact, portable femtosecond fibre laser system designed for synchronization with SPring-8 synchrotron X-ray pulses in a uniform filling mode. Unlike traditional titanium–sapphire mode-locked lasers, which are fixed installations, our system utilizes fibre laser technology to provide a practical alternative for time-resolved spectroscopy, striking a balance between usability, portability and cost-efficiency. Comprehensive evaluations, including pulse characterization, timing jitter and frequency stability tests revealed a centre wavelength of 1600 nm, a pulse energy of 4.5 nJ, a pulse duration of 35 fs with a timing jitter of less than 9 ps, confirming the suitability of the system for time-resolved spectroscopic studies. This development enhances the feasibility of experiments that combine synchrotron X-rays and laser pulses, offering significant scientific contributions by enabling more flexible and diverse research applications.




rt

The effect of transport apertures on relay-imaged, sharp-edged laser profiles in photoinjectors and the impact on electron beam properties

In a photoinjector electron source, the initial transverse electron bunch properties are determined by the spatial properties of the laser beam on the photocathode. Spatial shaping of the laser is commonly achieved by relay imaging an illuminated circular mask onto the photocathode. However, the Gibbs phenomenon shows that recreating the sharp edge and discontinuity of the cut profile at the mask on the cathode is not possible with an optical relay of finite aperture. Furthermore, the practical injection of the laser into the photoinjector results in the beam passing through small or asymmetrically positioned apertures. This work uses wavefront propagation to show how the transport apertures cause ripple structures to appear in the transverse laser profile even when effectively the full laser power is transmitted. The impact of these structures on the propagated electron bunch has also been studied with electron bunches of high and low charge density. With high charge density, the ripples in the initial charge distribution rapidly wash-out through space charge effects. However, for bunches with low charge density, the ripples can persist through the bunch transport. Although statistical properties of the electron bunch in the cases studied are not greatly affected, there is the potential for the distorted electron bunch to negatively impact machine performance. Therefore, these effects should be considered in the design phase of accelerators using photoinjectors.




rt

Mango wiggler as a novel insertion device providing a large and symmetrical imaging field of view

A novel insertion device is introduced, designated as the Mango wiggler, designed for synchrotron radiation (SR) imaging that provides a large field of view. This innovative device is constructed from two orthogonal planar wigglers with a small difference in their period lengths, eliciting the phase difference of the magnetic fields to incrementally transitions from 0 to π/2. Such a configuration enlarges the vertical divergence of the light source, as with the horizontal divergence. The appellation `Mango wiggler' derives from the distinctive mango-shaped contour of its radiation field. A comprehensive suite of theoretical analyses and simulations has been executed to elucidate the radiation properties of the Mango wiggler, employing SPECTRA and Mathematica as calculation tools. In conjunction with the ongoing construction of the High Energy Photon Source in Beijing a practical Mango wiggler device has been fabricated for utilization in SR imaging applications. Theoretical analyses were applied to this particular Mango wiggler to yield several theoretical conclusions, and several simulations were performed according to the measured magnetic field results.




rt

In situ photodeposition of ultra-small palladium particles on TiO2

In situ and operando investigation of photocatalysts plays a fundamental role in understanding the processes of active phase formation and the mechanisms of catalytic reactions, which is crucial for the rational design of more efficient materials. Using a custom-made operando photocatalytic cell, an in situ procedure to follow the formation steps of Pd/TiO2 photocatalyst by synchrotron-based X-ray absorption spectroscopy (XAS) is proposed. The procedure resulted in the formation of ∼1 nm Pd particles with a much narrower size distribution and homogeneous spreading over TiO2 support compared with the samples generated in a conventional batch reactor. The combination of in situ XAS spectroscopy with high-angle annular dark-field scanning transmission electron microscopy demonstrated the formation of single-atom Pd(0) sites on TiO2 as the initial step of the photodeposition process. Palladium hydride particles were observed for all investigated samples upon exposure to formic acid solutions.




rt

New opportunities for time-resolved imaging using diffraction-limited storage rings

The advent of diffraction-limited storage rings (DLSRs) has boosted the brilliance or coherent flux by one to two orders of magnitude with respect to the previous generation. One consequence of this brilliance enhancement is an increase in the flux density or number of photons per unit of area and time, which opens new possibilities for the spatiotemporal resolution of X-ray imaging techniques. This paper studies the time-resolved microscopy capabilities of such facilities by benchmarking the ForMAX beamline at the MAX IV storage ring. It is demonstrated that this enhanced flux density using a single harmonic of the source allows micrometre-resolution time-resolved imaging at 2000 tomograms per second and 1.1 MHz 2D acquisition rates using the full dynamic range of the detector system.




rt

A versatile sample-delivery system for X-ray photoelectron spectroscopy of in-flight aerosols and free nanoparticles at MAX IV Laboratory

Aerosol science is of utmost importance for both climate and public health research, and in recent years X-ray techniques have proven effective tools for aerosol-particle characterization. To date, such methods have often involved the study of particles collected onto a substrate, but a high photon flux may cause radiation damage to such deposited particles and volatile components can potentially react with the surrounding environment after sampling. These and many other factors make studies on collected aerosol particles challenging. Therefore, a new aerosol sample-delivery system dedicated to X-ray photoelectron spectroscopy studies of aerosol particles and gas molecules in-flight has been developed at the MAX IV Laboratory. The aerosol particles are brought from atmospheric pressure to vacuum in a continuous flow, ensuring that the sample is constantly renewed, thus avoiding radiation damage, and allowing measurements on the true unsupported aerosol. At the same time, available gas molecules can be used for energy calibration and to study gas-particle partitioning. The design features of the aerosol sample-delivery system and important information on the operation procedures are described in detail here. Furthermore, to demonstrate the experimental range of the aerosol sample-delivery system, results from aerosol particles of different shape, size and composition are presented, including inorganic atmospheric aerosols, secondary organic aerosols and engineered nanoparticles.




rt

New achievements in orbital angular momentum beam characterization using a Hartmann wavefront sensor and the Kirkpatrick–Baez active optical system KAOS

Advances in physics have been significantly driven by state-of-the-art technology, and in photonics and X-ray science this calls for the ability to manipulate the characteristics of optical beams. Orbital angular momentum (OAM) beams hold substantial promise in various domains such as ultra-high-capacity optical communication, rotating body detection, optical tweezers, laser processing, super-resolution imaging etc. Hence, the advancement of OAM beam-generation technology and the enhancement of its technical proficiency and characterization capabilities are of paramount importance. These endeavours will not only facilitate the use of OAM beams in the aforementioned sectors but also extend the scope of applications in diverse fields related to OAM beams. At the FERMI Free-Electron Laser (Trieste, Italy), OAM beams are generated either by tailoring the emission process on the undulator side or, in most cases, by coupling a spiral zone plate (SZP) in tandem with the refocusing Kirkpatrick–Baez active optic system (KAOS). To provide a robust and reproducible workflow to users, a Hartmann wavefront sensor (WFS) is used for both optics tuning and beam characterization. KAOS is capable of delivering both tightly focused and broad spots, with independent control over vertical and horizontal magnification. This study explores a novel non-conventional `near collimation' operational mode aimed at generating beams with OAM that employs the use of a lithographically manufactured SZP to achieve this goal. The article evaluates the mirror's performance through Hartmann wavefront sensing, offers a discussion of data analysis methodologies, and provides a quantitative analysis of these results with ptychographic reconstructions.




rt

Correcting angular distortions in Bragg coherent X-ray diffraction imaging

Bragg coherent X-ray diffraction imaging (BCDI) has emerged as a powerful technique for strain imaging and morphology reconstruction of nanometre-scale crystals. However, BCDI often suffers from angular distortions that appear during data acquisition, caused by radiation pressure, heating or imperfect scanning stages. This limits the applicability of BCDI, in particular for small crystals and high-flux X-ray beams. Here, we present a pre-processing algorithm that recovers the 3D datasets from the BCDI dataset measured under the impact of large angular distortions. We systematically investigate the performance of this method for different levels of distortion and find that the algorithm recovers the correct angles for distortions up to 16.4× (1640%) the angular step size dθ = 0.004°. We also show that the angles in a continuous scan can be recovered with high accuracy. As expected, the correction provides marked improvements in the subsequent phase retrieval.




rt

6-[4-(tert-Butyl­dimethyl­sil­yloxy)phen­yl]-1-oxa­spiro­[2.5]hepta­ne

The title compound, C19H30O2Si, has triclinic (Poverline{1}) symmetry at 100 K. The O atom of the epoxide group has a pseudoaxial orientation and the dihedral angle between the cyclo­hexyl and benzene rings is 85.80 (8)°. The C—O—Si—Ct (t = tert-but­yl) torsion angle is −177.40 (14)°. In the crystal, pairwise C—H⋯O links connect the mol­ecules into inversion dimers featuring R22(8) loops.




rt

Relationship between synthesis method–crystal structure–melting properties in co­crystals: the case of caffeine–citric acid

The influence of the crystal synthesis method on the crystallographic structure of caffeine–citric acid co­crystals was analyzed thanks to the synthesis of a new polymorphic form of the cocrystal. In order to com­pare the new form to the already known forms, the crystal structure of the new cocrystal (C8H10N4O2·C6H8O7) was solved by powder X-ray diffraction thanks to synchrotron experiments. The structure determination was performed using `GALLOP', a recently developed hybrid approach based on a local optimization with a particle swarm optimizer, particularly powerful when applied to the structure resolution of materials of pharmaceutical inter­est, com­pared to classical Monte-Carlo simulated annealing. The final structure was obtained through Rietveld refinement, and first-principles density functional theory (DFT) calculations were used to locate the H atoms. The symmetry is triclinic with the space group Poverline{1} and contains one mol­ecule of caffeine and one mol­ecule of citric acid per asymmetric unit. The crystallographic structure of this cocrystal involves different hydrogen-bond associations com­pared to the already known structures. The analysis of these hydrogen bonds indicates that the cocrystal obtained here is less stable than the co­crystals already identified in the literature. This analysis is confirmed by the determination of the melting point of this cocrystal, which is lower than that of the previously known co­crystals.




rt

Rebuttal to the article Pathological crystal structures

A section in the Acta Crystallographica Section C article by Raymond & Girolami [Acta Cryst. (2023), C79, 445–455] stated that the product of the reaction of [(Cp*Rh)2(μ-OH)3]+ (Cp* is 1,2,3,4,5-penta­methyl­cyclo­penta­diene) with 1-methyl­thymine (1-MT) at pH 10 and 60 °C, to synthesize the anionic com­ponent [RhI(η1-N3-1-MT)2]−, was not an RhI com­plex, but rather an AgI com­plex, due to the use of silver triflate (AgOTf) to remove Cl− from [Cp*RhCl2]2 to synthesize [Cp*Rh(H2O)3](OTf)2, a water-soluble crystalline com­plex. We will clearly show that this premise, as stated, is invalid, while the authors have simply avoided several important facts, including that Cp*OH, a reductive elimination product, at pH 10 and 60 °C, was unequivocally identified, thus leading to the RhI anionic com­ponent [RhI(η1-N3-1-MT)2]−. More importantly, AgOH, from the reaction of NaOH at pH 10 with any potentially remaining AgOTf, after the AgCl was filtered off, would be insoluble in water. Furthermore, a control experiment with the inorganic com­plex Rh(OH)3, reacting with 1-methyl­thymine at pH 10, provided no product, and this bodes well for a similar fate with AgOTf and 1-methyl­thymine, i.e. at pH 10, AgOTf would again be converted to the water-insoluble AgOH; therefore, no reaction would occur! Finally, a 1H NMR spectroscopy experiment was carried out with synthesized and crystallized [Cp*Rh(H2O)3](OTf)2 in D2O at various pD values; at pD 8.65 no reaction took place, while at pD 13.6, and at 60 °C for 2 h, a reductive elimination reaction caused the precipitation of Cp*OH. The subsequent 1H NMR spectrum clearly demonstrated, in the absence of any AgI com­plexes, that the solution structure and the X-ray crystals in D2O were similar. A postulated mechanism for this novel anionic com­ponent structure, as published previously [Smith et al. (2014). Organometallics, 33, 2389–2404], will be presented, along with the experimental data, to insure the credibility of our results. We will also answer the comments in the response of Drs Raymond and Girolami to this rebuttal.




rt

Response to the rebuttal of the article Pathological crystal structures

We stand fully behind our earlier suggestion [Raymond & Girolami (2023). Acta Cryst. C79, 445–455] that the claim by Fish and co-workers [Chen et al. (1995). J. Am. Chem. Soc. 117, 9097–9098; Smith et al. (2014). Organometallics, 33, 2389–2404] of a linear two-coordinate rhodium(I) species is incorrect, and that the putative rhodium atom is in fact silver.




rt

Na[GeF5]·2HF: the first quarternary phase in the H–Na–Ge–F system

The structure of cis- or trans-bridged [GeF5]− anionic chains have been investigated [Mallouk et al. (1984). Inorg. Chem. 23, 3160–3166] showing the first crystal structures of μ-F-bridged penta­fluoro­germanates. Herein, we report the second crystal structure of trans-penta­fluoro­germanate anions present in the crystal structure of sodium trans-penta­fluoro­germanate(IV) bis­(hy­dro­gen fluoride), Na[GeF5]·2HF. The crystal structure [ortho­rhom­bic Pca21, a = 12.3786 (3), b = 7.2189 (2), c = 11.4969 (3) Å and Z = 8] is built up from infinite chains of trans-linked [GeF6]2− octa­hedra, extending along the b axis and spanning a network of penta­gonal bipyramidal distorted Na-centred polyhedra. These [NaF7] polyhedra are linked in a trans-edge fashion via hy­dro­gen fluoride mol­ecules, in analogy to already known sodium hy­dro­gen fluorides and potassium hy­dro­gen fluorides.




rt

Further evaluation of the shape of atomic Hirshfeld surfaces: M⋯H contacts and homoatomic bonds

It is well known that Hirshfeld surfaces provide an easy and straightforward way of analysing inter­molecular inter­actions in the crystal environment. The use of atomic Hirshfeld surfaces has also demonstrated that such surfaces carry information related to chemical bonds which allow a deeper evaluation of the structures. Here we briefly summarize the approach of atomic Hirshfeld surfaces while further evaluating the kind of information that can be retrieved from them. We show that the analysis of the metal-centre Hirshfeld surfaces from structures refined via Hirshfeld Atom Refinement (HAR) allow accurate evaluation of contacts of type M⋯H, and that such contacts can be related to the overall shape of the surfaces. The com­pounds analysed were tetra­aqua­bis­(3-carb­oxy­propionato)metal(II), [M(C4H3O4)2(H2O)4], for metal(II)/M = manganese/Mn, cobalt/Co, nickel/Ni and zinc/Zn. We also evaluate the sensitivity of the surfaces by an investigation of seemingly flat surfaces through analysis of the curvature functions in the direction of C—C bonds. The obtained values not only demonstrate variations in curvature but also show a correlation with the hybridization of the C atoms involved in the bond.




rt

On the importance of crystal structures for organic thin film transistors

Historically, knowledge of the mol­ecular packing within the crystal structures of organic semi­con­duc­tors has been instrumental in understanding their solid-state electronic properties. Nowadays, crystal structures are thus becoming increasingly important for enabling engineering properties, understanding poly­mor­phism in bulk and in thin films, exploring dynamics and elucidating phase-transition mech­a­nisms. This review article introduces the most salient and recent results of the field.




rt

Characterization of novel mevalonate kinases from the tardigrade Ramazzottius varieornatus and the psychrophilic archaeon Methanococcoides burtonii

Mevalonate kinase is central to the isoprenoid biosynthesis pathway. Here, high-resolution X-ray crystal structures of two mevalonate kinases are presented: a eukaryotic protein from Ramazzottius varieornatus and an archaeal protein from Methanococcoides burtonii. Both enzymes possess the highly conserved motifs of the GHMP enzyme superfamily, with notable differences between the two enzymes in the N-terminal part of the structures. Biochemical characterization of the two enzymes revealed major differences in their sensitivity to geranyl pyrophosphate and farnesyl pyrophosphate, and in their thermal stabilities. This work adds to the understanding of the structural basis of enzyme inhibition and thermostability in mevalonate kinases.




rt

A small step towards an important goal: fragment screen of the c-di-AMP-synthesizing enzyme CdaA

CdaA is the most widespread diadenylate cyclase in many bacterial species, including several multidrug-resistant human pathogens. The enzymatic product of CdaA, cyclic di-AMP, is a secondary messenger that is essential for the viability of many bacteria. Its absence in humans makes CdaA a very promising and attractive target for the development of new antibiotics. Here, the structural results are presented of a crystallographic fragment screen against CdaA from Listeria monocytogenes, a saprophytic Gram-positive bacterium and an opportunistic food-borne pathogen that can cause listeriosis in humans and animals. Two of the eight fragment molecules reported here were localized in the highly conserved ATP-binding site. These fragments could serve as potential starting points for the development of antibiotics against several CdaA-dependent bacterial species.




rt

Introduction of the Capsules environment to support further growth of the SBGrid structural biology software collection

The expansive scientific software ecosystem, characterized by millions of titles across various platforms and formats, poses significant challenges in maintaining reproducibility and provenance in scientific research. The diversity of independently developed applications, evolving versions and heterogeneous components highlights the need for rigorous methodologies to navigate these complexities. In response to these challenges, the SBGrid team builds, installs and configures over 530 specialized software applications for use in the on-premises and cloud-based computing environments of SBGrid Consortium members. To address the intricacies of supporting this diverse application collection, the team has developed the Capsule Software Execution Environment, generally referred to as Capsules. Capsules rely on a collection of programmatically generated bash scripts that work together to isolate the runtime environment of one application from all other applications, thereby providing a transparent cross-platform solution without requiring specialized tools or elevated account privileges for researchers. Capsules facilitate modular, secure software distribution while maintaining a centralized, conflict-free environment. The SBGrid platform, which combines Capsules with the SBGrid collection of structural biology applications, aligns with FAIR goals by enhancing the findability, accessibility, interoperability and reusability of scientific software, ensuring seamless functionality across diverse computing environments. Its adaptability enables application beyond structural biology into other scientific fields.




rt

Cryo2RT: a high-throughput method for room-temperature macromolecular crystallography from cryo-cooled crystals

Advances in structural biology have relied heavily on synchrotron cryo-crystallography and cryogenic electron microscopy to elucidate biological processes and for drug discovery. However, disparities between cryogenic and room-temperature (RT) crystal structures pose challenges. Here, Cryo2RT, a high-throughput RT data-collection method from cryo-cooled crystals that leverages the cryo-crystallography workflow, is introduced. Tested on endothiapepsin crystals with four soaked fragments, thaumatin and SARS-CoV-2 3CLpro, Cryo2RT reveals unique ligand-binding poses, offers a comparable throughput to cryo-crystallography and eases the exploration of structural dynamics at various temperatures.




rt

Structure determination using high-order spatial correlations in single-particle X-ray scattering

Single-particle imaging using X-ray free-electron lasers (XFELs) is a promising technique for observing nanoscale biological samples under near-physiological conditions. However, as the sample's orientation in each diffraction pattern is unknown, advanced algorithms are required to reconstruct the 3D diffraction intensity volume and subsequently the sample's density model. While most approaches perform 3D reconstruction via determining the orientation of each diffraction pattern, a correlation-based approach utilizes the averaged spatial correlations of diffraction intensities over all patterns, making it well suited for processing experimental data with a poor signal-to-noise ratio of individual patterns. Here, a method is proposed to determine the 3D structure of a sample by analyzing the double, triple and quadruple spatial correlations in diffraction patterns. This ab initio method can reconstruct the basic shape of an irregular unsymmetric 3D sample without requiring any prior knowledge of the sample. The impact of background and noise on correlations is investigated and corrected to ensure the success of reconstruction under simulated experimental conditions. Additionally, the feasibility of using the correlation-based approach to process incomplete partial diffraction patterns is demonstrated. The proposed method is a variable addition to existing algorithms for 3D reconstruction and will further promote the development and adoption of XFEL single-particle imaging techniques.




rt

Orientational ordering and assembly of silica–nickel Janus particles in a magnetic field

The orientation ordering and assembly behavior of silica–nickel Janus particles in a static external magnetic field were probed by ultra small-angle X-ray scattering (USAXS). Even in a weak applied field, the net magnetic moments of the individual particles aligned in the direction of the field, as indicated by the anisotropy in the recorded USAXS patterns. X-ray photon correlation spectroscopy (XPCS) measurements on these suspensions revealed that the corresponding particle dynamics are primarily Brownian diffusion [Zinn, Sharpnack & Narayanan (2023). Soft Matter, 19, 2311–2318]. At higher fields, the magnetic forces led to chain-like configurations of particles, as indicated by an additional feature in the USAXS pattern. A theoretical framework is provided for the quantitative interpretation of the observed anisotropic scattering diagrams and the corresponding degree of orientation. No anisotropy was detected when the magnetic field was applied along the beam direction, which is also replicated by the model. The method presented here could be useful for the interpretation of oriented scattering patterns from a wide variety of particulate systems. The combination of USAXS and XPCS is a powerful approach for investigating asymmetric colloidal particles in external fields.




rt

Refining short-range order parameters from the three-dimensional diffuse scattering in single-crystal electron diffraction data

Our study compares short-range order parameters refined from the diffuse scattering in single-crystal X-ray and single-crystal electron diffraction data. Nb0.84CoSb was chosen as a reference material. The correlations between neighbouring vacancies and the displacements of Sb and Co atoms were refined from the diffuse scattering using a Monte Carlo refinement in DISCUS. The difference between the Sb and Co displacements refined from the diffuse scattering and the Sb and Co displacements refined from the Bragg reflections in single-crystal X-ray diffraction data is 0.012 (7) Å for the refinement on diffuse scattering in single-crystal X-ray diffraction data and 0.03 (2) Å for the refinement on the diffuse scattering in single-crystal electron diffraction data. As electron diffraction requires much smaller crystals than X-ray diffraction, this opens up the possibility of refining short-range order parameters in many technologically relevant materials for which no crystals large enough for single-crystal X-ray diffraction are available.




rt

The prediction of single-molecule magnet properties via deep learning

This paper uses deep learning to present a proof-of-concept for data-driven chemistry in single-molecule magnets (SMMs). Previous discussions within SMM research have proposed links between molecular structures (crystal structures) and single-molecule magnetic properties; however, these have only interpreted the results. Therefore, this study introduces a data-driven approach to predict the properties of SMM structures using deep learning. The deep-learning model learns the structural features of the SMM molecules by extracting the single-molecule magnetic properties from the 3D coordinates presented in this paper. The model accurately determined whether a molecule was a single-molecule magnet, with an accuracy rate of approximately 70% in predicting the SMM properties. The deep-learning model found SMMs from 20 000 metal complexes extracted from the Cambridge Structural Database. Using deep-learning models for predicting SMM properties and guiding the design of novel molecules is promising.




rt

RCSB Protein Data Bank: supporting research and education worldwide through explorations of experimentally determined and computationally predicted atomic level 3D biostructures

The Protein Data Bank (PDB) was established as the first open-access digital data resource in biology and medicine in 1971 with seven X-ray crystal structures of proteins. Today, the PDB houses >210 000 experimentally determined, atomic level, 3D structures of proteins and nucleic acids as well as their complexes with one another and small molecules (e.g. approved drugs, enzyme cofactors). These data provide insights into fundamental biology, biomedicine, bioenergy and biotechnology. They proved particularly important for understanding the SARS-CoV-2 global pandemic. The US-funded Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) and other members of the Worldwide Protein Data Bank (wwPDB) partnership jointly manage the PDB archive and support >60 000 `data depositors' (structural biologists) around the world. wwPDB ensures the quality and integrity of the data in the ever-expanding PDB archive and supports global open access without limitations on data usage. The RCSB PDB research-focused web portal at https://www.rcsb.org/ (RCSB.org) supports millions of users worldwide, representing a broad range of expertise and interests. In addition to retrieving 3D structure data, PDB `data consumers' access comparative data and external annotations, such as information about disease-causing point mutations and genetic variations. RCSB.org also provides access to >1 000 000 computed structure models (CSMs) generated using artificial intelligence/machine-learning methods. To avoid doubt, the provenance and reliability of experimentally determined PDB structures and CSMs are identified. Related training materials are available to support users in their RCSB.org explorations.




rt

Evolution of structure and spectroscopic properties of a new 1,3-diacetylpyrene polymorph with temperature and pressure

A new polymorph of 1,3-diacetylpyrene has been obtained from its melt and thoroughly characterized using single-crystal X-ray diffraction, steady-state UV–Vis spectroscopy and periodic density functional theory calculations. Experimental studies covered the temperature range from 90 to 390 K and the pressure range from atmospheric to 4.08 GPa. Optimal sample placement in a diamond anvil cell according to our previously presented methodology ensured over 80% data coverage up to 0.8 Å for a monoclinic sample. Unrestrained Hirshfeld atom refinement of the high-pressure crystal structures was successful and anharmonic behavior of carbonyl oxygen atoms was observed. Unlike the previously characterized polymorph, the structure of 2°AP-β is based on infinite π-stacks of antiparallel 2°AP molecules. 2°AP-β displays piezochromism and piezofluorochromism which are directly related to the variation in interplanar distances within the π-stacking. The importance of weak intermolecular interactions is reflected in the substantial negative thermal expansion coefficient of −55.8 (57) MK−1 in the direction of C—H⋯O interactions.




rt

The importance of definitions in crystallography

This paper was motivated by the articles `Same or different – that is the question' in CrystEngComm (July 2020) and `Change to the definition of a crystal' in the IUCr Newsletter (June 2021). Experimental approaches to crystal comparisons require rigorously defined classifications in crystallography and beyond. Since crystal structures are determined in a rigid form, their strongest equivalence in practice is rigid motion, which is a composition of translations and rotations in 3D space. Conventional representations based on reduced cells and standardizations theoretically distinguish all periodic crystals. However, all cell-based representations are inherently discontinuous under almost any atomic displacement that can arbitrarily scale up a reduced cell. Hence, comparison of millions of known structures in materials databases requires continuous distance metrics.




rt

The evolution of raw data archiving and the growth of its importance in crystallography

The hardware for data archiving has expanded capacities for digital storage enormously in the past decade or more. The IUCr evaluated the costs and benefits of this within an official working group which advised that raw data archiving would allow ground truth reproducibility in published studies. Consultations of the IUCr's Commissions ensued via a newly constituted standing advisory committee, the Committee on Data. At all stages, the IUCr financed workshops to facilitate community discussions and possible methods of raw data archiving implementation. The recent launch of the IUCrData journal's Raw Data Letters is a milestone in the implementation of raw data archiving beyond the currently published studies: it includes diffraction patterns that have not been fully interpreted, if at all. The IUCr 75th Congress in Melbourne included a workshop on raw data reuse, discussing the successes and ongoing challenges of raw data reuse. This article charts the efforts of the IUCr to facilitate discussions and plans relating to raw data archiving and reuse within the various communities of crystallography, diffraction and scattering.




rt

A predicted model-aided reconstruction algorithm for X-ray free-electron laser single-particle imaging

Ultra-intense, ultra-fast X-ray free-electron lasers (XFELs) enable the imaging of single protein molecules under ambient temperature and pressure. A crucial aspect of structure reconstruction involves determining the relative orientations of each diffraction pattern and recovering the missing phase information. In this paper, we introduce a predicted model-aided algorithm for orientation determination and phase retrieval, which has been tested on various simulated datasets and has shown significant improvements in the success rate, accuracy and efficiency of XFEL data reconstruction.




rt

Structure–property relationship of a complex photoluminescent arylacetylide-gold(I) compound. I: a pressure-induced phase transformation caught in the act

A pressure-induced triclinic-to-monoclinic phase transition has been caught `in the act' over a wider series of high-pressure synchrotron diffraction experiments conducted on a large, photoluminescent organo-gold(I) compound. Here, we describe the mechanism of this single-crystal-to-single-crystal phase transition, the onset of which occurs at ∼0.6 GPa, and we report a high-quality structure of the new monoclinic phase, refined using aspherical atomic scattering factors. Our case illustrates how conducting a fast series of diffraction experiments, enabled by modern equipment at synchrotron facilities, can lead to overestimation of the actual pressure of a phase transition due to slow transformation kinetics.




rt

A predicted model-aided one-step classification–multireconstruction algorithm for X-ray free-electron laser single-particle imaging

Ultrafast, high-intensity X-ray free-electron lasers can perform diffraction imaging of single protein molecules. Various algorithms have been developed to determine the orientation of each single-particle diffraction pattern and reconstruct the 3D diffraction intensity. Most of these algorithms rely on the premise that all diffraction patterns originate from identical protein molecules. However, in actual experiments, diffraction patterns from multiple different molecules may be collected simultaneously. Here, we propose a predicted model-aided one-step classification–multireconstruction algorithm that can handle mixed diffraction patterns from various molecules. The algorithm uses predicted structures of different protein molecules as templates to classify diffraction patterns based on correlation coefficients and determines orientations using a correlation maximization method. Tests on simulated data demonstrated high accuracy and efficiency in classification and reconstruction.




rt

Tuning structural modulation and magnetic properties in metal–organic coordination polymers [CH3NH3]CoxNi1−x(HCOO)3

Three solid solutions of [CH3NH3]CoxNi1−x(HCOO)3, with x = 0.25 (1), x = 0.50 (2) and x = 0.75 (3), were synthesized and their nuclear structures and magnetic properties were characterized using single-crystal neutron diffraction and magnetization measurements. At room temperature, all three compounds crystallize in the Pnma orthorhombic space group, akin to the cobalt and nickel end series members. On cooling, each compound undergoes a distinct series of structural transitions to modulated structures. Compound 1 exhibits a phase transition to a modulated structure analogous to the pure Ni compound [Cañadillas-Delgado, L., Mazzuca, L., Fabelo, O., Rodríguez-Carvajal, J. & Petricek, V. (2020). Inorg. Chem. 59, 17896–17905], whereas compound 3 maintains the behaviour observed in the pure Co compound reported previously [Canadillas-Delgado, L., Mazzuca, L., Fabelo, O., Rodriguez-Velamazan, J. A. & Rodriguez-Carvajal, J. (2019). IUCrJ, 6, 105–115], although in both cases the temperatures at which the phase transitions occur differ slightly from the pure phases. Monochromatic neutron diffraction measurements showed that the structural evolution of 2 diverges from that of either parent compound, with competing hydrogen bond interactions that drive the modulation throughout the series, producing a unique sequence of phases. It involves two modulated phases below 96 (3) and 59 (3) K, with different q vectors, similar to the pure Co compound (with modulated phases below 128 and 96 K); however, it maintains the modulated phase below magnetic order [at 22.5 (7) K], resembling the pure Ni compound (which presents magnetic order below 34 K), resulting in an improper modulated magnetic structure. Despite these large-scale structural changes, magnetometry data reveal that the bulk magnetic properties of these solid solutions form a linear continuum between the end members. Notably, doping of the metal site in these solid solutions allows for tuning of bulk magnetic properties, including magnetic ordering temperature, transition temperatures and the nature of nuclear phase transitions, through adjustment of metal ratios.




rt

Synthesis, structural and spectroscopic characterization of defect-rich forsterite as a representative phase of Martian regolith

Regolith draws intensive research attention because of its importance as the basis for fabricating materials for future human space exploration. Martian regolith is predicted to consist of defect-rich crystal structures due to long-term space weathering. The present report focuses on the structural differences between defect-rich and defect-poor forsterite (Mg2SiO4) – one of the major phases in Martian regolith. In this work, forsterites were synthesized using reverse strike co-precipitation and high-energy ball milling (BM). Subsequent post-processing was also carried out using BM to enhance the defects. The crystal structures of the samples were characterized by X-ray powder diffraction and total scattering using Cu and synchrotron radiation followed by Rietveld refinement and pair distribution function (PDF) analysis, respectively. The structural models were deduced by density functional theory assisted PDF refinements, describing both long-range and short-range order caused by defects. The Raman spectral features of the synthetic forsterites complement the ab initio simulation for an in-depth understanding of the associated structural defects.




rt

Unity gives strength: combining Bertaut's and Belov's concepts and the formalism of aperiodic crystals to solve magnetic structures of unprecedented complexity




rt

Importance of powder diffraction raw data archival in a curated database for materials science applications

In recent years, there is a significant interest from the crystallographic and materials science communities to have access to raw diffraction data. The effort in archiving raw data for access by the user community is spearheaded by the International Union of Crystallography (IUCr) Committee on Data. In materials science, where powder diffraction is extensively used, the challenge in archiving raw data is different to that from single crystal data, owing to the very nature of the contributions involved. Powder diffraction (X-ray or neutron) data consist of contributions from the material under study as well as instrument specific parameters. Having raw powder diffraction data can be essential in cases of analysing materials with poor crystallinity, disorder, micro structure (size/strain) etc. Here, the initiative and progress made by the International Centre for Diffraction Data (ICDDR) in archiving powder X-ray diffraction raw data in the Powder Diffraction FileTM (PDFR) database is outlined. The upcoming 2025 release of the PDF-5+ database will have more than 20 800 raw powder diffraction patterns that are available for reference.




rt

A short note on the use of irreducible representations for tilted octahedra in perovskites

It is pointed out that many authors are unaware that the particular choice of unit-cell origin determines the irreducible representations to which octahedral tilts in perovskites belong. Furthermore, a recommendation is made that the preferred option is with the origin at the B-cation site rather than that of the A site.




rt

Synthesis and properties of Sr2La2NiW2O12, a new S = 1 triangular lattice magnet

Magnetic materials featuring triangular arrangements of spins are frequently investigated as platforms hosting magnetic frustration. Hexagonal perovskites with ordered vacancies serve as excellent candidates for two-dimensional triangular magnetism due to the considerable separation of the magnetic planes. In this work, the effects of chemical pressure on the ferromagnetic ground state of Ba2La2NiW2O12 by substitution of Ba2+ with Sr2+ to produce Sr2La2NiW2O12 are investigated. The two materials are characterized using synchrotron-based XRD, XANES and EXAFS in addition to magnetometry in order to correlate their crystal structures and magnetic properties. Both materials form in space group R3, yet as a result of the enhanced bending of key bond angles due to the effects of chemical pressure, the TC value of the magnetic Ni2+ sublattice is reduced from ∼6 K in Ba2La2NiW2O12 to 4 K in Sr2La2NiW2O12.




rt

Crystal structure reinvestigation and spectroscopic analysis of tricadmium orthophosphate

Single crystals of tricadmium orthophosphate, Cd3(PO4)2, have been synthesized successfully by the hydro­thermal route, while its powder form was obtained by a solid-solid process. The corresponding crystal structure was determined using X-ray diffraction data in the monoclinic space group P21/n. The crystal structure consists of Cd2O8 or Cd2O10 dimers linked together by PO4 tetra­hedra through sharing vertices or edges. Scanning electron microscopy (SEM) was used to investigate the morphology and to confirm the chemical composition of the synthesized powder. Infrared analysis corroborates the presence of isolated phosphate tetra­hedrons in the structure. UV–Visible studies showed an absorbance peak at 289 nm and a band gap energy of 3.85 eV, as determined by the Kubelka–Munk model.




rt

Synthesis, crystal structure and properties of chlorido­tetra­kis­(pyridine-3-carbo­nitrile)­thio­cyanato­iron(II)

Reaction of FeCl2·4H2O with KSCN and 3-cyano­pyridine (pyridine-3-carbo­nitrile) in ethanol accidentally leads to the formation of single crystals of Fe(NCS)(Cl)(3-cyano­pyridine)4 or [FeCl(NCS)(C6H4N2)4]. The asymmetric unit of this compound consists of one FeII cation, one chloride and one thio­cyanate anion that are located on a fourfold rotation axis as well as of one 3-cyano­pyridine coligand in a general position. The FeII cations are sixfold coordinated by one chloride anion and one terminally N-bonding thio­cyanate anion in trans-positions and four 3-cyano­pyridine coligands that coordinate via the pyridine N atom to the FeII cations. The complexes are arranged in columns with the chloride anions, with the thio­cyanate anions always oriented in the same direction, which shows the non-centrosymmetry of this structure. No pronounced inter­molecular inter­actions are observed between the complexes. Initially, FeCl2 and KSCN were reacted in a 1:2 ratio, which lead to a sample that contains the title compound as the major phase together with a small amount of an unknown crystalline phase, as proven by powder X-ray diffraction (PXRD). If FeCl2 and KSCN is reacted in a 1:1 ratio, the title compound is obtained as a nearly pure phase. IR investigations reveal that the CN stretching vibration for the thio­cyanate anion is observed at 2074 cm−1, and that of the cyano group at 2238 cm−1, which also proves that the anionic ligands are only terminally bonded and that the cyano group is not involved in the metal coordination. Measurements with thermogravimetry and differential thermoanalysis reveal that the title compound decomposes at 169°C when heated at a rate of 4°C min−1 and that the 3-cyano­pyridine ligands are emitted in two separate poorly resolved steps. After the first step, an inter­mediate compound with the composition Fe(NCS)(Cl)(3-cyano­pyridine)2 of unknown structure is formed, for which the CN stretching vibration of the thio­cyanate anion is observed at 2025 cm−1, whereas the CN stretching vibration of the cyano group remain constant. This strongly indicates that the FeII cations are linked by μ-1,3-bridg­ing thio­cyanate anions into chains or layers.




rt

Synthesis, crystal structure and hydrogenation properties of MgxLi3 − xB48 − y (x = 1.11, y = 0.40)

The ternary magnesium/lithium boride, MgxLi3 − xB48 − y (x = 1.11, y = 0.40, idealized formula MgLi2B48), crystallizes as its own structure type in P43212, which is closely related to the structural family comprising α-AlB12, Be0.7Al1.1B22 and tetra­gonal β-boron. The asymmetric unit of title structure contains two statistical mixtures Mg/Li in Wyckoff sites 8b with relative occupancies Mg:Li = 0.495 (9):0.505 (9) and 4a with Mg:Li = 0.097 (8):0.903 (8). The boron atoms occupy 23 8b sites and two 4a sites. One of the latter sites has a partial occupancy factor of 0.61 (2). Both unique Mg/Li atoms adopt a twelvefold coordination environment in the form of truncated tetra­hedra (Laves polyhedra). These polyhedra are connected by triangular faces to four [B12] icosa­hedra. The boron atoms exhibit four kinds of polyhedra, namely penta­gonal pyramid (coordination number CN = 6), distorted tetra­gonal pyramid (CN = 5), bicapped hexa­gon (CN = 8) and gyrobifastigium (CN = 8). At the gas hydrogenation of MgLi2B48 alloy, formation of the eutectic composite hydride LiBH4+Mg(BH4)2 and amorphous boron is observed. In the temperature range 543–623 K, the hydride eutectics decompose, forming MgH2, LiH, MgB4, B and H2.




rt

The synthesis and structural properties of a chlorido­bis­{N-[(4-meth­oxy­phen­yl)imino]­pyrrolidine-1-carboxamide}­zinc(II) (aceto­nitrile)­trichlorido­zincate coordination complex

The title complex, [ZnCl(C12H15N3O2)2][ZnCl3(CH3CN)], was synthesized and its structure was fully characterized through single-crystal X-ray diffraction analysis. The complex crystallizes in the ortho­rhom­bic system, space group Pbca (61), with a central zinc atom coordinating one chlorine atom and two pyrrolidinyl-4-meth­oxy­phenyl azoformamide ligands in a bidentate manner, utilizing both the nitro­gen and oxygen atoms in a 1,3-heterodiene (N=N—C=O) motif for coordinative bonding, yielding an overall positively (+1) charged complex. The complex is accompanied by a [(CH3CN)ZnCl3]− counter-ion. The crystal data show that the harder oxygen atoms in the heterodiene zinc chelate form bonding inter­actions with distances of 2.002 (3) and 2.012 (3) Å, while nitro­gen atoms are coordinated by the central zinc cation with bond lengths of 2.207 (3) and 2.211 (3) Å. To gain further insight into the inter­molecular inter­actions within the crystal, Hirshfeld surface analysis was performed, along with the calculation of two-dimensional fingerprint plots. This analysis revealed that H⋯H (39.9%), Cl⋯H/H⋯Cl (28.2%) and C⋯H/H⋯C (7.2%) inter­actions are dominant. This unique crystal structure sheds light on arrangement and bonding inter­actions with azo­formamide ligands, and their unique qualities over similar semicarbazone and azo­thio­formamide structures.




rt

When a dream comes true: birth of the African Crystallographic Association (AfCA)

This paper summarizes brief perspectives on the historic process of establishing an African Crystallographic Association (AfCA) and includes representative references. It covers activities within four arbitrarily selected, approximate time slots, i.e., 1890s–1999, 2000–2013, 2014–2019 and 2020–2023. A genuine attempt is made to include appropriate role players, organizations and accompanying events within these periods. It concludes with the official admission of AfCA as the fifth Regional Associate of the IUCr at the 26th Congress and General Assembly of the IUCr in Melbourne, Australia in 2023.




rt

Synthesis, crystal structure and properties of poly[(μ-2-methyl­pyridine N-oxide-κ2O:O)bis­(μ-thio­cyanato-κ2N:S)cobalt(II)]

The title compound, [Co(NCS)2(C6H7NO)]n or Co(NCS)2(2-methyl­pyridine N-oxide), was prepared by the reaction of Co(NCS)2 and 2-methyl­pyridine N-oxide in methanol. All crystals obtained by this procedure show reticular pseudo-merohedric twinning, but after recrystallization, one crystal was found that had a minor component with only a very few overlapping reflections. The asymmetric unit consists of one CoII cation, two thio­cyanate anions and one 2-methyl­pyridine N-oxide coligand in general positions. The CoII cations are octa­hedrally coordinated by two O-bonding 2-methyl­pyridine N-oxide ligands, as well as two S- and two N-bonding thio­cyanate anions, and are connected via μ-1,3(N,S)-bridging thio­cyanate anions into chains that are linked by μ-1,1(O,O) bridging coligands into layers. No pronounced directional inter­molecular inter­actions are observed between the layers. The 2-methyl­pyridine coligand is disordered over two orientations and was refined using a split model with restraints. Powder X-ray diffraction (PXRD) indicates that a pure sample was obtained and IR spectroscopy confirms that bridging thio­cyanate anions are present. Thermogravimetry and differential thermoanalysis (TG-DTA) shows one poorly resolved mass loss in the TG curve that is accompanied by an exothermic and an endothermic signal in the DTA curve, which indicate the decomposition of the 2-methyl­pyridine N-oxide coligands.




rt

JUAMI, the joint undertaking for an African materials institute: building materials science research collaborations and capabilities between continents

JUAMI, the joint undertaking for an African materials institute, is a project to build collaborations and materials research capabilities between PhD researchers in Africa, the United States, and the world. Focusing on research-active universities in the East African countries of Kenya, Ethiopia, Tanzania and Uganda, the effort has run a series of schools focused on materials for sustainable energy and materials for sustainable development. These bring together early-career researchers from Africa, the US, and beyond, for two weeks in a close-knit environment. The program includes lectures on cutting-edge research from internationally renowned speakers, highly interactive tutorial lectures on the science behind the research, also from internationally known researchers, and hands-on practicals and team-building exercises that culminate in group proposals from self-formed student teams. The schools have benefited more than 300 early-career students and led to proposals that have received funding and have led to research collaborations and educational non-profits. JUAMI continues and has an ongoing community of alumni who share resources and expertise, and is open to like-minded people who want to join and develop contacts and collaborations internationally.




rt

Synthesis, structure and Hirshfeld surface analysis of 2-oxo-2H-chromen-6-yl 4-tert-butyl­benzoate: work carried out as part of the AFRAMED project

In the title compound, C20H18O4, the dihedral angle between the 2H-chromen-2-one ring system and the phenyl ring is 89.12 (5)°. In the crystal, the mol­ecules are connected through C—H⋯O hydrogen bonds to generate [010] double chains that are reinforced by weak aromatic π–π stacking inter­actions. The unit-cell packing can be described as a tilted herringbone motif. The H⋯H, H⋯O/O⋯H, H⋯C/C⋯H and C⋯C contacts contribute 46.7, 24.2, 16.7 and 7.6%, respectively, to its Hirshfeld surface.




rt

Synthesis, crystal structure and thermal properties of di­bromido­bis­(2-methyl­pyridine N-oxide-κO)cobalt(II)

Reaction of CoBr2 with 2-methyl­pyridine N-oxide in n-butanol leads to the formation of the title compound, [CoBr2(C6H7NO)2] or [CoBr2(2-methyl­pyridine N-oxide)2]. Its asymmetric unit consists of one CoII cation as well as two bromide anions and two 2-methyl­pyridine N-oxide coligands in general positions. The CoII cations are tetra­hedrally coordinated by two bromide anions and two 2-methyl­pyridine N-oxides, forming discrete complexes. In the crystal structure, these complexes are linked predominantly by weak C–H⋯Br hydrogen bonding into chains that propagate along the crystallographic a-axis. Powder X-ray diffraction (PXRD) measurements indicate that a pure phase was obtained. Thermoanalytical investigations prove that the title compound melts before decomposition; before melting, a further endothermic signal of unknown origin was observed that does not correspond to a phase transition.




rt

Synthesis and crystal structures of boryl ortho-silylaryl tri­fluoro­methane­sulfonates

We report the synthesis and structural characterization of three crystalline borylated ortho-silylaryl tri­fluoro­methane­sulfonates: 5-(4,4,5,5-tetra­methyl-1,3,2-dioxaborolan-2-yl)-2-(tri­methyl­sil­yl)phenyl tri­fluoro­methane­sulfonate, C16H24BF3O5SSi (1a), 4-(4,4,5,5-tetra­methyl-1,3,2-dioxaborolan-2-yl)-2-(tri­methyl­sil­yl)phenyl tri­fluoro­methane­sulfonate, C16H24BF3O5SSi (1b), and 2-methyl-4-(4,4,5,5-tetra­methyl-1,3,2-dioxaborolan-2-yl)-6-(tri­methyl­silyl)phen­yl tri­fluoro­methane­sulfonate, C17H26BF3O5SSi (2), which are versatile aryne precursors. For all three compounds, the heteroatom substituents are almost coplanar with the central aromatic moiety. C—heteroatom bonding metrics are unexceptional and fall withing the typical range of C—B, C—Si, and C—O single bonds. Despite numerous electronegative sites, only weak inter­molecular inter­actions are observed in the solid state.




rt

Crystal structures of sulfonamide protected bicyclic guanidines: (S)-8-{[(tert-butyl­dimethyl­sil­yl)­oxy]meth­yl}-1-[(2,2,4,6,7-penta­methyl-2,3-di­hydro­benzo­furan-5-yl)sulfon­yl]-1,3,4,6,7,8-hexa­

Two compounds, (S)-8-{[(tert-butyl­dimethyl­sil­yl)­oxy]meth­yl}-1-[(2,2,4,6,7-penta­methyl-2,3-di­hydro­benzo­furan-5-yl)sulfon­yl]-1,3,4,6,7,8-hexa­hydro-2H-pyrimido[1,2-a]pyrimidin-1-ium tri­fluoro­methane­sulfonate, C27H46N3O4SSi+·CF3O3S−, (1) and (S)-8-(iodo­meth­yl)-1-tosyl-1,3,4,6,7,8-hexa­hydro-2H-pyrimido[1,2-a]pyrimidin-1-ium iodide, C15H21IN3O2S+·I−, (2), have been synthesized and characterized. They are bicyclic guanidinium salts and were synthesized from N-(tert-but­oxy­carbon­yl)-l-me­thio­nine (Boc-l-Met-OH). The guanidine is protected by a 2,2,4,6,7-penta­methyl­dihydro­benzo­furan-5-sulfonyl (Pbf, 1) or a tosyl (2) group. In the crystals of both compounds, the guanidinium group is almost planar and the N–H forms an intra­molecular hydrogen bond in a six-membered ring to the oxygen atom of the sulfonamide protecting group.