ndi

A young poor Irish woman, sadly mending fishing nets or textiles outside a stone cottage, is approached by a young man; inside the cottage, a woman is spinning. Engraving after F.W. Topham.




ndi

A Scottish gamekeeper armed with a gun, standing on a mountain-top in the falling snow: he holds a shot eagle in his right hand, and a hound stands at his side. Engraving by J. Outrim, 1856, after E.H. Landseer.

[1856]




ndi

A Scottish gamekeeper armed with a gun, standing on a mountain-top in the falling snow: he holds a shot eagle in his right hand, and a hound stands at his side. Engraving by J. Outrim, 1856, after E.H. Landseer.

London (6, Pall Mall) : Published ... by Henry Graves, & Comp.y, May 10th, 1856.




ndi

King Charles II landing in Dover in 1660. Coloured lithograph after B. West.

[between 1800 and 1899]




ndi

Banditti in Italy: a brigand sleeps, a woman watches him, and another man stands guard. Mezzotint after C.L. Eastake.

[London], [between 1820 and 1829?]




ndi

Two Italian bandits about to ambush a stagecoach on a mountain pass. Etching by H. Melling, 1854.

Liverpool (82, Duke Street) ; And in London (13 St. James's Place, Hampstead Road) : Published ... by the artist, April 10th. 1854.




ndi

Italian bandits robbing a traveller on a mountain pass. Etching by H. Melling, 1854.

Liverpool (82, Duke Street) ; And in London (13 St. James's Place, Hampstead Road) : Published ... by the artist, April 10th. 1854.




ndi

Banditti in Italy: a brigand leans against a rock by a river, as a woman stands in front of him to protect him from soldiers shooting at them across the river. Mezzotint by W. Say, 1824, after C.L. Eastake.

London (No. 90, Cheapside, & 8, Pall Mall) : Published ... by Hurst, Robinson & Co., March 1st. 1824.




ndi

Banditti in Italy: a brigand leans against a rock by a river, as a woman stands in front of him to protect him from soldiers shooting at them across the river. Mezzotint by W. Say, 1824, after C.L. Eastake.

London (No. 90, Cheapside, & 8, Pall Mall) : Published ... by Hurst, Robinson & Co., March 1st. 1824.




ndi

Banditti in Italy: a brigand leans against a rock by a river, as a woman stands in front of him to protect him from soldiers shooting at them across the river. Mezzotint by W. Say, 1824, after C.L. Eastake.

[London], [1824]




ndi

A dish is brought to the table of the Border chiefs of Northumberland: instead of food, the dish contains a spur, indicating that the men should ride out and plunder for food. Photograph after W.B. Scott.

[19--?]




ndi

An ivory statue of the standing Buddha from Candy, Sri Lanka. Line engraving by H. Mutlow, 1804.

[London] : Published by C. & R. Baldwin, [1804]




ndi

Tashkent: two mendicant Dervish men in conversation. Process print after G.S. Sedoff after V.V. Vereshchagin.




ndi

Plaintiffs say education-funding lawsuit still necessary




ndi

Earthing | Grounding | Nature | Zine

2019




ndi

Don't feed the worry bug : a WorryWoo tale / by Andi Green.

Jersey City, NJ : Monsters In My Head, LLC, 2011.




ndi

Geschichte der Appendizitis : von der Entdeckung des Organs bis hin zur minimalinvasiven Appendektomie / Mali Kallenberger.

Berlin : Peter Lang [2019]




ndi

Top three Mikayla Pivec moments: Pivec's OSU rebounding record highlights her impressive career

All-Pac-12 talent Mikayla Pivec's career in Corvallis has been memorable to say the least. While it's difficult to choose just three, her top moments include a career-high 19 rebounds against Washington, a buzzer-beating layup against ASU, and breaking Ruth Hamblin's Oregon State rebounding record this year against Stanford.




ndi

WNBA Draft Profile: Productive forward Ruthy Hebard has uncanny handling, scoring, rebounding ability

Ruthy Hebard, who ranks 2nd in Oregon history in points (2,368) and 3rd in rebounds (1,299), prepares to play in the WNBA following four years in Eugene. Hebard is the Oregon and Pac-12 all-time leader in career field-goal percentage (65.1) and averaged 17.3 points per game and a career-high 9.6 rebounds per game as a senior.




ndi

Nonparametric confidence intervals for conditional quantiles with large-dimensional covariates

Laurent Gardes.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 661--701.

Abstract:
The first part of the paper is dedicated to the construction of a $gamma$ - nonparametric confidence interval for a conditional quantile with a level depending on the sample size. When this level tends to 0 or 1 as the sample size increases, the conditional quantile is said to be extreme and is located in the tail of the conditional distribution. The proposed confidence interval is constructed by approximating the distribution of the order statistics selected with a nearest neighbor approach by a Beta distribution. We show that its coverage probability converges to the preselected probability $gamma $ and its accuracy is illustrated on a simulation study. When the dimension of the covariate increases, the coverage probability of the confidence interval can be very different from $gamma $. This is a well known consequence of the data sparsity especially in the tail of the distribution. In a second part, a dimension reduction procedure is proposed in order to select more appropriate nearest neighbors in the right tail of the distribution and in turn to obtain a better coverage probability for extreme conditional quantiles. This procedure is based on the Tail Conditional Independence assumption introduced in (Gardes, Extremes , pp. 57–95, 18(3) , 2018).




ndi

On polyhedral estimation of signals via indirect observations

Anatoli Juditsky, Arkadi Nemirovski.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 458--502.

Abstract:
We consider the problem of recovering linear image of unknown signal belonging to a given convex compact signal set from noisy observation of another linear image of the signal. We develop a simple generic efficiently computable non linear in observations “polyhedral” estimate along with computation-friendly techniques for its design and risk analysis. We demonstrate that under favorable circumstances the resulting estimate is provably near-optimal in the minimax sense, the “favorable circumstances” being less restrictive than the weakest known so far assumptions ensuring near-optimality of estimates which are linear in observations.




ndi

Parseval inequalities and lower bounds for variance-based sensitivity indices

Olivier Roustant, Fabrice Gamboa, Bertrand Iooss.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 386--412.

Abstract:
The so-called polynomial chaos expansion is widely used in computer experiments. For example, it is a powerful tool to estimate Sobol’ sensitivity indices. In this paper, we consider generalized chaos expansions built on general tensor Hilbert basis. In this frame, we revisit the computation of the Sobol’ indices with Parseval equalities and give general lower bounds for these indices obtained by truncation. The case of the eigenfunctions system associated with a Poincaré differential operator leads to lower bounds involving the derivatives of the analyzed function and provides an efficient tool for variable screening. These lower bounds are put in action both on toy and real life models demonstrating their accuracy.




ndi

Bias correction in conditional multivariate extremes

Mikael Escobar-Bach, Yuri Goegebeur, Armelle Guillou.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1773--1795.

Abstract:
We consider bias-corrected estimation of the stable tail dependence function in the regression context. To this aim, we first estimate the bias of a smoothed estimator of the stable tail dependence function, and then we subtract it from the estimator. The weak convergence, as a stochastic process, of the resulting asymptotically unbiased estimator of the conditional stable tail dependence function, correctly normalized, is established under mild assumptions, the covariate argument being fixed. The finite sample behaviour of our asymptotically unbiased estimator is then illustrated on a simulation study and compared to two alternatives, which are not bias corrected. Finally, our methodology is applied to a dataset of air pollution measurements.




ndi

Non-parametric adaptive estimation of order 1 Sobol indices in stochastic models, with an application to Epidemiology

Gwenaëlle Castellan, Anthony Cousien, Viet Chi Tran.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 50--81.

Abstract:
Global sensitivity analysis is a set of methods aiming at quantifying the contribution of an uncertain input parameter of the model (or combination of parameters) on the variability of the response. We consider here the estimation of the Sobol indices of order 1 which are commonly-used indicators based on a decomposition of the output’s variance. In a deterministic framework, when the same inputs always give the same outputs, these indices are usually estimated by replicated simulations of the model. In a stochastic framework, when the response given a set of input parameters is not unique due to randomness in the model, metamodels are often used to approximate the mean and dispersion of the response by deterministic functions. We propose a new non-parametric estimator without the need of defining a metamodel to estimate the Sobol indices of order 1. The estimator is based on warped wavelets and is adaptive in the regularity of the model. The convergence of the mean square error to zero, when the number of simulations of the model tend to infinity, is computed and an elbow effect is shown, depending on the regularity of the model. Applications in Epidemiology are carried to illustrate the use of non-parametric estimators.




ndi

Simultaneous transformation and rounding (STAR) models for integer-valued data

Daniel R. Kowal, Antonio Canale.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1744--1772.

Abstract:
We propose a simple yet powerful framework for modeling integer-valued data, such as counts, scores, and rounded data. The data-generating process is defined by Simultaneously Transforming and Rounding (STAR) a continuous-valued process, which produces a flexible family of integer-valued distributions capable of modeling zero-inflation, bounded or censored data, and over- or underdispersion. The transformation is modeled as unknown for greater distributional flexibility, while the rounding operation ensures a coherent integer-valued data-generating process. An efficient MCMC algorithm is developed for posterior inference and provides a mechanism for adaptation of successful Bayesian models and algorithms for continuous data to the integer-valued data setting. Using the STAR framework, we design a new Bayesian Additive Regression Tree model for integer-valued data, which demonstrates impressive predictive distribution accuracy for both synthetic data and a large healthcare utilization dataset. For interpretable regression-based inference, we develop a STAR additive model, which offers greater flexibility and scalability than existing integer-valued models. The STAR additive model is applied to study the recent decline in Amazon river dolphins.




ndi

Conditional density estimation with covariate measurement error

Xianzheng Huang, Haiming Zhou.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 970--1023.

Abstract:
We consider estimating the density of a response conditioning on an error-prone covariate. Motivated by two existing kernel density estimators in the absence of covariate measurement error, we propose a method to correct the existing estimators for measurement error. Asymptotic properties of the resultant estimators under different types of measurement error distributions are derived. Moreover, we adjust bandwidths readily available from existing bandwidth selection methods developed for error-free data to obtain bandwidths for the new estimators. Extensive simulation studies are carried out to compare the proposed estimators with naive estimators that ignore measurement error, which also provide empirical evidence for the effectiveness of the proposed bandwidth selection methods. A real-life data example is used to illustrate implementation of these methods under practical scenarios. An R package, lpme, is developed for implementing all considered methods, which we demonstrate via an R code example in Appendix B.2.




ndi

Identifiability of Additive Noise Models Using Conditional Variances

This paper considers a new identifiability condition for additive noise models (ANMs) in which each variable is determined by an arbitrary Borel measurable function of its parents plus an independent error. It has been shown that ANMs are fully recoverable under some identifiability conditions, such as when all error variances are equal. However, this identifiable condition could be restrictive, and hence, this paper focuses on a relaxed identifiability condition that involves not only error variances, but also the influence of parents. This new class of identifiable ANMs does not put any constraints on the form of dependencies, or distributions of errors, and allows different error variances. It further provides a statistically consistent and computationally feasible structure learning algorithm for the identifiable ANMs based on the new identifiability condition. The proposed algorithm assumes that all relevant variables are observed, while it does not assume faithfulness or a sparse graph. Demonstrated through extensive simulated and real multivariate data is that the proposed algorithm successfully recovers directed acyclic graphs.




ndi

Multi-Player Bandits: The Adversarial Case

We consider a setting where multiple players sequentially choose among a common set of actions (arms). Motivated by an application to cognitive radio networks, we assume that players incur a loss upon colliding, and that communication between players is not possible. Existing approaches assume that the system is stationary. Yet this assumption is often violated in practice, e.g., due to signal strength fluctuations. In this work, we design the first multi-player Bandit algorithm that provably works in arbitrarily changing environments, where the losses of the arms may even be chosen by an adversary. This resolves an open problem posed by Rosenski et al. (2016).




ndi

Youth & Community Initiatives Funding available




ndi

The limiting distribution of the Gibbs sampler for the intrinsic conditional autoregressive model

Marco A. R. Ferreira.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 4, 734--744.

Abstract:
We study the limiting behavior of the one-at-a-time Gibbs sampler for the intrinsic conditional autoregressive model with centering on the fly. The intrinsic conditional autoregressive model is widely used as a prior for random effects in hierarchical models for spatial modeling. This model is defined by full conditional distributions that imply an improper joint “density” with a multivariate Gaussian kernel and a singular precision matrix. To guarantee propriety of the posterior distribution, usually at the end of each iteration of the Gibbs sampler the random effects are centered to sum to zero in what is widely known as centering on the fly. While this works well in practice, this informal computational way to recenter the random effects obscures their implied prior distribution and prevents the development of formal Bayesian procedures. Here we show that the implied prior distribution, that is, the limiting distribution of the one-at-a-time Gibbs sampler for the intrinsic conditional autoregressive model with centering on the fly is a singular Gaussian distribution with a covariance matrix that is the Moore–Penrose inverse of the precision matrix. This result has important implications for the development of formal Bayesian procedures such as reference priors and Bayes-factor-based model selection for spatial models.




ndi

A temporal perspective on the rate of convergence in first-passage percolation under a moment condition

Daniel Ahlberg.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 2, 397--401.

Abstract:
We study the rate of convergence in the celebrated Shape Theorem in first-passage percolation, obtaining the precise asymptotic rate of decay for the probability of linear order deviations under a moment condition. Our results are presented from a temporal perspective and complement previous work by the same author, in which the rate of convergence was studied from the standard spatial perspective.




ndi

Necessary and sufficient conditions for the convergence of the consistent maximal displacement of the branching random walk

Bastien Mallein.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 2, 356--373.

Abstract:
Consider a supercritical branching random walk on the real line. The consistent maximal displacement is the smallest of the distances between the trajectories followed by individuals at the $n$th generation and the boundary of the process. Fang and Zeitouni, and Faraud, Hu and Shi proved that under some integrability conditions, the consistent maximal displacement grows almost surely at rate $lambda^{*}n^{1/3}$ for some explicit constant $lambda^{*}$. We obtain here a necessary and sufficient condition for this asymptotic behaviour to hold.




ndi

Reclaiming indigenous governance : reflections and insights from Australia, Canada, New Zealand, and the United States

9780816539970 (paperback)




ndi

Semi-parametric estimation for conditional independence multivariate finite mixture models

Didier Chauveau, David R. Hunter, Michael Levine.

Source: Statistics Surveys, Volume 9, 1--31.

Abstract:
The conditional independence assumption for nonparametric multivariate finite mixture models, a weaker form of the well-known conditional independence assumption for random effects models for longitudinal data, is the subject of an increasing number of theoretical and algorithmic developments in the statistical literature. After presenting a survey of this literature, including an in-depth discussion of the all-important identifiability results, this article describes and extends an algorithm for estimation of the parameters in these models. The algorithm works for any number of components in three or more dimensions. It possesses a descent property and can be easily adapted to situations where the data are grouped in blocks of conditionally independent variables. We discuss how to adapt this algorithm to various location-scale models that link component densities, and we even adapt it to a particular class of univariate mixture problems in which the components are assumed symmetric. We give a bandwidth selection procedure for our algorithm. Finally, we demonstrate the effectiveness of our algorithm using a simulation study and two psychometric datasets.




ndi

Short-term forecasts of COVID-19 spread across Indian states until 1 May 2020. (arXiv:2004.13538v2 [q-bio.PE] UPDATED)

The very first case of corona-virus illness was recorded on 30 January 2020, in India and the number of infected cases, including the death toll, continues to rise. In this paper, we present short-term forecasts of COVID-19 for 28 Indian states and five union territories using real-time data from 30 January to 21 April 2020. Applying Holt's second-order exponential smoothing method and autoregressive integrated moving average (ARIMA) model, we generate 10-day ahead forecasts of the likely number of infected cases and deaths in India for 22 April to 1 May 2020. Our results show that the number of cumulative cases in India will rise to 36335.63 [PI 95% (30884.56, 42918.87)], concurrently the number of deaths may increase to 1099.38 [PI 95% (959.77, 1553.76)] by 1 May 2020. Further, we have divided the country into severity zones based on the cumulative cases. According to this analysis, Maharashtra is likely to be the most affected states with around 9787.24 [PI 95% (6949.81, 13757.06)] cumulative cases by 1 May 2020. However, Kerala and Karnataka are likely to shift from the red zone (i.e. highly affected) to the lesser affected region. On the other hand, Gujarat and Madhya Pradesh will move to the red zone. These results mark the states where lockdown by 3 May 2020, can be loosened.




ndi

Temporomandibular disorders : a translational approach from basic science to clinical applicability

9783319572475 (electronic bk.)




ndi

Neuroradiological imaging of skin diseases and related conditions

9783319909318 (electronic bk.)




ndi

Mental Conditioning to Perform Common Operations in General Surgery Training

9783319911649 978-3-319-91164-9




ndi

Imaging of the temporomandibular joint

9783319994680 (electronic book)




ndi

Human behavior analysis : sensing and understanding

Yu, Zhiwen, author
9789811521096 (electronic bk.)




ndi

Handbook of immunosenescence : basic understanding and clinical implications

9783319645971 (electronic bk.)




ndi

Gapenski's understanding healthcare financial management

Pink, George H., author.
9781640551145 (electronic bk.)




ndi

Ecology, conservation, and restoration of Chilika Lagoon, India

9783030334246 (electronic bk.)




ndi

Commercial status of plant breeding in India

Tiwari, Aparna, author.
9789811519062




ndi

Aquatic biopolymers : understanding their industrial significance and environmental implications

Olatunji, Ololade.
9783030347093 (electronic bk.)




ndi

Anxiety disorders : rethinking and understanding recent discoveries

9789813297050 (electronic bk.)




ndi

The multi-armed bandit problem: An efficient nonparametric solution

Hock Peng Chan.

Source: The Annals of Statistics, Volume 48, Number 1, 346--373.

Abstract:
Lai and Robbins ( Adv. in Appl. Math. 6 (1985) 4–22) and Lai ( Ann. Statist. 15 (1987) 1091–1114) provided efficient parametric solutions to the multi-armed bandit problem, showing that arm allocation via upper confidence bounds (UCB) achieves minimum regret. These bounds are constructed from the Kullback–Leibler information of the reward distributions, estimated from specified parametric families. In recent years, there has been renewed interest in the multi-armed bandit problem due to new applications in machine learning algorithms and data analytics. Nonparametric arm allocation procedures like $epsilon $-greedy, Boltzmann exploration and BESA were studied, and modified versions of the UCB procedure were also analyzed under nonparametric settings. However, unlike UCB these nonparametric procedures are not efficient under general parametric settings. In this paper, we propose efficient nonparametric procedures.




ndi

Bootstrap confidence regions based on M-estimators under nonstandard conditions

Stephen M. S. Lee, Puyudi Yang.

Source: The Annals of Statistics, Volume 48, Number 1, 274--299.

Abstract:
Suppose that a confidence region is desired for a subvector $ heta $ of a multidimensional parameter $xi =( heta ,psi )$, based on an M-estimator $hat{xi }_{n}=(hat{ heta }_{n},hat{psi }_{n})$ calculated from a random sample of size $n$. Under nonstandard conditions $hat{xi }_{n}$ often converges at a nonregular rate $r_{n}$, in which case consistent estimation of the distribution of $r_{n}(hat{ heta }_{n}- heta )$, a pivot commonly chosen for confidence region construction, is most conveniently effected by the $m$ out of $n$ bootstrap. The above choice of pivot has three drawbacks: (i) the shape of the region is either subjectively prescribed or controlled by a computationally intensive depth function; (ii) the region is not transformation equivariant; (iii) $hat{xi }_{n}$ may not be uniquely defined. To resolve the above difficulties, we propose a one-dimensional pivot derived from the criterion function, and prove that its distribution can be consistently estimated by the $m$ out of $n$ bootstrap, or by a modified version of the perturbation bootstrap. This leads to a new method for constructing confidence regions which are transformation equivariant and have shapes driven solely by the criterion function. A subsampling procedure is proposed for selecting $m$ in practice. Empirical performance of the new method is illustrated with examples drawn from different nonstandard M-estimation settings. Extension of our theory to row-wise independent triangular arrays is also explored.




ndi

On testing conditional qualitative treatment effects

Chengchun Shi, Rui Song, Wenbin Lu.

Source: The Annals of Statistics, Volume 47, Number 4, 2348--2377.

Abstract:
Precision medicine is an emerging medical paradigm that focuses on finding the most effective treatment strategy tailored for individual patients. In the literature, most of the existing works focused on estimating the optimal treatment regime. However, there has been less attention devoted to hypothesis testing regarding the optimal treatment regime. In this paper, we first introduce the notion of conditional qualitative treatment effects (CQTE) of a set of variables given another set of variables and provide a class of equivalent representations for the null hypothesis of no CQTE. The proposed definition of CQTE does not assume any parametric form for the optimal treatment rule and plays an important role for assessing the incremental value of a set of new variables in optimal treatment decision making conditional on an existing set of prescriptive variables. We then propose novel testing procedures for no CQTE based on kernel estimation of the conditional contrast functions. We show that our test statistics have asymptotically correct size and nonnegligible power against some nonstandard local alternatives. The empirical performance of the proposed tests are evaluated by simulations and an application to an AIDS data set.




ndi

Bayesian indicator variable selection to incorporate hierarchical overlapping group structure in multi-omics applications

Li Zhu, Zhiguang Huo, Tianzhou Ma, Steffi Oesterreich, George C. Tseng.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2611--2636.

Abstract:
Variable selection is a pervasive problem in modern high-dimensional data analysis where the number of features often exceeds the sample size (a.k.a. small-n-large-p problem). Incorporation of group structure knowledge to improve variable selection has been widely studied. Here, we consider prior knowledge of a hierarchical overlapping group structure to improve variable selection in regression setting. In genomics applications, for instance, a biological pathway contains tens to hundreds of genes and a gene can be mapped to multiple experimentally measured features (such as its mRNA expression, copy number variation and methylation levels of possibly multiple sites). In addition to the hierarchical structure, the groups at the same level may overlap (e.g., two pathways can share common genes). Incorporating such hierarchical overlapping groups in traditional penalized regression setting remains a difficult optimization problem. Alternatively, we propose a Bayesian indicator model that can elegantly serve the purpose. We evaluate the model in simulations and two breast cancer examples, and demonstrate its superior performance over existing models. The result not only enhances prediction accuracy but also improves variable selection and model interpretation that lead to deeper biological insight of the disease.