hy

Nanodomains can persist at physiologic temperature in plasma membrane vesicles and be modulated by altering cell lipids [Research Articles]

The formation and properties of liquid-ordered (Lo) lipid domains (rafts) in the plasma membrane are still poorly understood. This limits our ability to manipulate ordered lipid domain-dependent biological functions. Giant plasma membrane vesicles (GPMVs) undergo large-scale phase separations into coexisting Lo and liquid-disordered lipid domains. However, large-scale phase separation in GPMVs detected by light microscopy is observed only at low temperatures. Comparing Förster resonance energy transfer-detected versus light microscopy-detected domain formation, we found that nanodomains, domains of nanometer size, persist at temperatures up to 20°C higher than large-scale phases, up to physiologic temperature. The persistence of nanodomains at higher temperatures is consistent with previously reported theoretical calculations. To investigate the sensitivity of nanodomains to lipid composition, GPMVs were prepared from mammalian cells in which sterol, phospholipid, or sphingolipid composition in the plasma membrane outer leaflet had been altered by cyclodextrin-catalyzed lipid exchange. Lipid substitutions that stabilize or destabilize ordered domain formation in artificial lipid vesicles had a similar effect on the thermal stability of nanodomains and large-scale phase separation in GPMVs, with nanodomains persisting at higher temperatures than large-scale phases for a wide range of lipid compositions. This indicates that it is likely that plasma membrane nanodomains can form under physiologic conditions more readily than large-scale phase separation. We also conclude that membrane lipid substitutions carried out in intact cells are able to modulate the propensity of plasma membranes to form ordered domains. This implies lipid substitutions can be used to alter biological processes dependent upon ordered domains.




hy

Schnyder corneal dystrophy-associated UBIAD1 is defective in MK-4 synthesis and resists autophagy-mediated degradation [Research Articles]

The autosomal dominant disorder Schnyder corneal dystrophy (SCD) is caused by mutations in UbiA prenyltransferase domain-containing protein-1 (UBIAD1), which uses geranylgeranyl pyrophosphate (GGpp) to synthesize the vitamin K2 subtype menaquinone-4 (MK-4). SCD is characterized by opacification of the cornea, owing to aberrant build-up of cholesterol in the tissue. We previously discovered that sterols stimulate association of UBIAD1 with ER-localized HMG-CoA reductase, which catalyzes a rate-limiting step in the synthesis of cholesterol and nonsterol isoprenoids, including GGpp. Binding to UBIAD1 inhibits sterol-accelerated ER-associated degradation (ERAD) of reductase and permits continued synthesis of GGpp in cholesterol-replete cells. GGpp disrupts UBIAD1-reductase binding and thereby allows for maximal ERAD of reductase as well as ER-to-Golgi translocation of UBIAD1. SCD-associated UBIAD1 is refractory to GGpp-mediated dissociation from reductase and remains sequestered in the ER to inhibit ERAD. Here, we report development of a biochemical assay for UBIAD1-mediated synthesis of MK-4 in isolated membranes and intact cells. Using this assay, we compared enzymatic activity of WT UBIAD1 with that of SCD-associated variants. Our studies revealed that SCD-associated UBIAD1 exhibited reduced MK-4 synthetic activity, which may result from its reduced affinity for GGpp. Sequestration in the ER protects SCD-associated UBIAD1 from autophagy and allows intracellular accumulation of the mutant protein, which amplifies the inhibitory effect on reductase ERAD. These findings have important implications not only for the understanding of SCD etiology but also for the efficacy of cholesterol-lowering statin therapy, which becomes limited, in part, because of UBIAD1-mediated inhibition of reductase ERAD.




hy

The grease trap: uncovering the mechanism of the hydrophobic lid in Cutibacterium acnes lipase [Research Articles]

Acne is one of the most common dermatological conditions, but the details of its pathology are unclear, and current management regimens often have adverse effects. Cutibacterium acnes is known as a major acne-associated bacterium that derives energy from lipase-mediated sebum lipid degradation. C. acnes is commensal, but lipase activity has been observed to differ among C. acnes types. For example, higher populations of the type IA strains are present in acne lesions with higher lipase activity. In the present study, we examined a conserved lipase in types IB and II that was truncated in type IA C. acnes strains. Closed, blocked, and open structures of C. acnes ATCC11828 lipases were elucidated by X-ray crystallography at 1.6–2.4 Å. The closed crystal structure, which is the most common form in aqueous solution, revealed that a hydrophobic lid domain shields the active site. By comparing closed, blocked, and open structures, we found that the lid domain-opening mechanisms of C. acnes lipases (CAlipases) involve the lid-opening residues, Phe-179 and Phe-211. To the best of our knowledge, this is the first structure-function study of CAlipases, which may help to shed light on the mechanisms involved in acne development and may aid in future drug design.




hy

Lipid rafts and neurodegeneration: structural and functional roles in physiologic aging and neurodegenerative diseases [Thematic Reviews]

Lipid rafts are small, dynamic membrane areas characterized by the clustering of selected membrane lipids as the result of the spontaneous separation of glycolipids, sphingolipids, and cholesterol in a liquid-ordered phase. The exact dynamics underlying phase separation of membrane lipids in the complex biological membranes are still not fully understood. Nevertheless, alterations in the membrane lipid composition affect the lateral organization of molecules belonging to lipid rafts. Neural lipid rafts are found in brain cells, including neurons, astrocytes, and microglia, and are characterized by a high enrichment of specific lipids depending on the cell type. These lipid rafts seem to organize and determine the function of multiprotein complexes involved in several aspects of signal transduction, thus regulating the homeostasis of the brain. The progressive decline of brain performance along with physiological aging is at least in part associated with alterations in the composition and structure of neural lipid rafts. In addition, neurodegenerative conditions, such as lysosomal storage disorders, multiple sclerosis, and Parkinson’s, Huntington’s, and Alzheimer’s diseases, are frequently characterized by dysregulated lipid metabolism, which in turn affects the structure of lipid rafts. Several events underlying the pathogenesis of these diseases appear to depend on the altered composition of lipid rafts. Thus, the structure and function of lipid rafts play a central role in the pathogenesis of many common neurodegenerative diseases.




hy

Peptidoglycan Hydrolases RipA and Ami1 Are Critical for Replication and Persistence of Mycobacterium tuberculosis in the Host

ABSTRACT

Synthesis and cleavage of the cell wall polymer peptidoglycan (PG) are carefully orchestrated processes and are essential for the growth and survival of bacteria. Yet, the function and importance of many enzymes that act on PG in Mycobacterium tuberculosis remain to be elucidated. We demonstrate that the activity of the N-acetylmuramyl-l-alanine amidase Ami1 is dispensable for cell division in M. tuberculosis in vitro yet contributes to the bacterium’s ability to persist during chronic infection in mice. Furthermore, the d,l-endopeptidase RipA, a predicted essential enzyme, is dispensable for the viability of M. tuberculosis but required for efficient cell division in vitro and in vivo. Depletion of RipA sensitizes M. tuberculosis to rifampin and to cell envelope-targeting antibiotics. Ami1 helps sustain residual cell division in cells lacking RipA, but the partial redundancy provided by Ami1 is not sufficient during infection, as depletion of RipA prevents M. tuberculosis from replicating in macrophages and leads to dramatic killing of the bacteria in mice. Notably, RipA is essential for persistence of M. tuberculosis in mice, suggesting that cell division is required during chronic mouse infection. Despite the multiplicity of enzymes acting on PG with redundant functions, we have identified two PG hydrolases that are important for M. tuberculosis to replicate and persist in the host.

IMPORTANCE Tuberculosis (TB) is a major global heath burden, with 1.6 million people succumbing to the disease every year. The search for new drugs to improve the current chemotherapeutic regimen is crucial to reducing this global health burden. The cell wall polymer peptidoglycan (PG) has emerged as a very successful drug target in bacterial pathogens, as many currently used antibiotics target the synthesis of this macromolecule. However, the multitude of genes encoding PG-synthesizing and PG-modifying enzymes with apparent redundant functions has hindered the identification of novel drug targets in PG synthesis in Mycobacterium tuberculosis. Here, we demonstrate that two PG-cleaving enzymes are important for virulence of M. tuberculosis. In particular, the d,l-endopeptidase RipA represents a potentially attractive drug target, as its depletion results in the clearance of M. tuberculosis from the host and renders the bacteria hypersusceptible to rifampin, a frontline TB drug, and to several cell wall-targeting antibiotics.




hy

In Vivo Assay Reveals Microbial OleA Thiolases Initiating Hydrocarbon and {beta}-Lactone Biosynthesis

ABSTRACT

OleA, a member of the thiolase superfamily, is known to catalyze the Claisen condensation of long-chain acyl coenzyme A (acyl-CoA) substrates, initiating metabolic pathways in bacteria for the production of membrane lipids and β-lactone natural products. OleA homologs are found in diverse bacterial phyla, but to date, only one homodimeric OleA has been successfully purified to homogeneity and characterized in vitro. A major impediment for the identification of new OleA enzymes has been protein instability and time-consuming in vitro assays. Here, we developed a bioinformatic pipeline to identify OleA homologs and a new rapid assay to screen OleA enzyme activity in vivo and map their taxonomic diversity. The screen is based on the discovery that OleA displayed surprisingly high rates of p-nitrophenyl ester hydrolysis, an activity not shared by other thiolases, including FabH. The high rates allowed activity to be determined in vitro and with heterologously expressed OleA in vivo via the release of the yellow p-nitrophenol product. Seventy-four putative oleA genes identified in the genomes of diverse bacteria were heterologously expressed in Escherichia coli, and 25 showed activity with p-nitrophenyl esters. The OleA proteins tested were encoded in variable genomic contexts from seven different phyla and are predicted to function in distinct membrane lipid and β-lactone natural product metabolic pathways. This study highlights the diversity of unstudied OleA proteins and presents a rapid method for their identification and characterization.

IMPORTANCE Microbially produced β-lactones are found in antibiotic, antitumor, and antiobesity drugs. Long-chain olefinic membrane hydrocarbons have potential utility as fuels and specialty chemicals. The metabolic pathway to both end products share bacterial enzymes denoted as OleA, OleC, and OleD that transform acyl-CoA cellular intermediates into β-lactones. Bacteria producing membrane hydrocarbons via the Ole pathway additionally express a β-lactone decarboxylase, OleB. Both β-lactone and olefin biosynthesis pathways are initiated by OleA enzymes that define the overall structure of the final product. There is currently very limited information on OleA enzymes apart from the single representative from Xanthomonas campestris. In this study, bioinformatic analysis identified hundreds of new, putative OleA proteins, 74 proteins were screened via a rapid whole-cell method, leading to the identification of 25 stably expressed OleA proteins representing seven bacteria phyla.




hy

Latent Toxoplasmosis Effects on Rodents and Humans: How Much is Real and How Much is Media Hype?

ABSTRACT

Toxoplasma gondii is a ubiquitous, intracellular protozoan parasite with a broad range of intermediate hosts, including humans and rodents. In many hosts, T. gondii establishes a latent long-term infection by converting from its rapidly dividing or lytic form to its slowly replicating and encysting form. In humans and rodents, the major organ for encystment is the central nervous system (CNS), which has led many to investigate how this persistent CNS infection might influence rodent and human behavior and, more recently, neurodegenerative diseases. Given the interest in this topic, here we seek to take a global approach to the data for and against the effects of latent T. gondii on behavior and neurodegeneration and the proposed mechanisms that might underlie behavior modifications.




hy

Erratum for Townsend et al., "A Master Regulator of Bacteroides thetaiotaomicron Gut Colonization Controls Carbohydrate Utilization and an Alternative Protein Synthesis Factor"




hy

Localized Hypermutation is the Major Driver of Meningococcal Genetic Variability during Persistent Asymptomatic Carriage

ABSTRACT

Host persistence of bacteria is facilitated by mutational and recombinatorial processes that counteract loss of genetic variation during transmission and selection from evolving host responses. Genetic variation was investigated during persistent asymptomatic carriage of Neisseria meningitidis. Interrogation of whole-genome sequences for paired isolates from 25 carriers showed that de novo mutations were infrequent, while horizontal gene transfer occurred in 16% of carriers. Examination of multiple isolates per time point enabled separation of sporadic and transient allelic variation from directional variation. A comprehensive comparative analysis of directional allelic variation with hypermutation of simple sequence repeats and hyperrecombination of class 1 type IV pilus genes detected an average of seven events per carrier and 2:1 bias for changes due to localized hypermutation. Directional genetic variation was focused on the outer membrane with 69% of events occurring in genes encoding enzymatic modifiers of surface structures or outer membrane proteins. Multiple carriers exhibited directional and opposed switching of allelic variants of the surface-located Opa proteins that enables continuous expression of these adhesins alongside antigenic variation. A trend for switching from PilC1 to PilC2 expression was detected, indicating selection for specific alterations in the activities of the type IV pilus, whereas phase variation of restriction modification (RM) systems, as well as associated phasevarions, was infrequent. We conclude that asymptomatic meningococcal carriage on mucosal surfaces is facilitated by frequent localized hypermutation and horizontal gene transfer affecting genes encoding surface modifiers such that optimization of adhesive functions occurs alongside escape of immune responses by antigenic variation.

IMPORTANCE Many bacterial pathogens coexist with host organisms, rarely causing disease while adapting to host responses. Neisseria meningitidis, a major cause of meningitis and septicemia, is a frequent persistent colonizer of asymptomatic teenagers/young adults. To assess how genetic variation contributes to host persistence, whole-genome sequencing and hypermutable sequence analyses were performed on multiple isolates obtained from students naturally colonized with meningococci. High frequencies of gene transfer were observed, occurring in 16% of carriers and affecting 51% of all nonhypermutable variable genes. Comparative analyses showed that hypermutable sequences were the major mechanism of variation, causing 2-fold more changes in gene function than other mechanisms. Genetic variation was focused on genes affecting the outer membrane, with directional changes in proteins responsible for bacterial adhesion to host surfaces. This comprehensive examination of genetic plasticity in individual hosts provides a significant new platform for rationale design of approaches to prevent the spread of this pathogen.




hy

The Hypercomplex Genome of an Insect Reproductive Parasite Highlights the Importance of Lateral Gene Transfer in Symbiont Biology

ABSTRACT

Mobile elements—plasmids and phages—are important components of microbial function and evolution via traits that they encode and their capacity to shuttle genetic material between species. We here report the unusually rich array of mobile elements within the genome of Arsenophonus nasoniae, the son-killer symbiont of the parasitic wasp Nasonia vitripennis. This microbe’s genome has the highest prophage complement reported to date, with over 50 genomic regions that represent either intact or degraded phage material. Moreover, the genome is predicted to include 17 extrachromosomal genetic elements, which carry many genes predicted to be important at the microbe-host interface, derived from a diverse assemblage of insect-associated gammaproteobacteria. In our system, this diversity was previously masked by repetitive mobile elements that broke the assembly derived from short reads. These findings suggest that other complex bacterial genomes will be revealed in the era of long-read sequencing.

IMPORTANCE The biology of many bacteria is critically dependent on genes carried on plasmid and phage mobile elements. These elements shuttle between microbial species, thus providing an important source of biological innovation across taxa. It has recently been recognized that mobile elements are also important in symbiotic bacteria, which form long-lasting interactions with their host. In this study, we report a bacterial symbiont genome that carries a highly complex array of these elements. Arsenophonus nasoniae is the son-killer microbe of the parasitic wasp Nasonia vitripennis and exists with the wasp throughout its life cycle. We completed its genome with the aid of recently developed long-read technology. This assembly contained over 50 chromosomal regions of phage origin and 17 extrachromosomal elements within the genome, encoding many important traits at the host-microbe interface. Thus, the biology of this symbiont is enabled by a complex array of mobile elements.




hy

Dimethylsulfoniopropionate Sulfur and Methyl Carbon Assimilation in Ruegeria Species

ABSTRACT

Dimethylsulfoniopropionate (DMSP) is abundant in marine environments and an important source of reduced carbon and sulfur for marine bacteria. While both Ruegeria pomeroyi and Ruegeria lacuscaerulensis possessed genes encoding the DMSP demethylation and cleavage pathways, their responses to DMSP differed. A glucose-fed, chemostat culture of R. pomeroyi consumed 99% of the DMSP even when fed a high concentration of 5 mM. At the same time, cultures released 19% and 7.1% of the DMSP as dimethylsulfide (DMS) and methanethiol, respectively. Under the same conditions, R. lacuscaerulensis consumed only 28% of the DMSP and formed one-third of the amount of gases. To examine the pathways of sulfur and methyl C assimilation, glucose-fed chemostats of both species were fed 100 μM mixtures of unlabeled and doubly labeled [dimethyl-13C, 34S]DMSP. Both species derived nearly all of their sulfur from DMSP despite high sulfate availability. In addition, only 33% and 50% of the methionine was biosynthesized from the direct capture of methanethiol in R. pomeroyi and R. lacuscaerulensis, respectively. The remaining methionine was biosynthesized by the random assembly of free sulfide and methyl-tetrahydrofolate derived from DMSP. Thus, although the two species possessed similar genes encoding DMSP metabolism, their growth responses were very different.

IMPORTANCE Dimethylsulfoniopropionate (DMSP) is abundant in marine environments and an important source of reduced carbon and sulfur for marine bacteria. DMSP is the precursor for the majority of atmospheric dimethylsulfide (DMS), a climatically active gas that connects the marine and terrestrial sulfur cycles. Although research into the assimilation of DMSP has been conducted for over 20 years, the fate of DMSP in microbial biomass is not well understood. In particular, the biosynthesis of methionine from DMSP has been a focal point, and it has been widely believed that most methionine was synthesized via the direct capture of methanethiol. Using an isotopic labeling strategy, we have demonstrated that the direct capture of methanethiol is not the primary pathway used for methionine biosynthesis in two Ruegeria species, a genus comprised primarily of globally abundant marine bacteria. Furthermore, although the catabolism of DMSP by these species varied greatly, the anabolic pathways were highly conserved.




hy

Deletion of the Zinc Transporter Lipoprotein AdcAII Causes Hyperencapsulation of Streptococcus pneumoniae Associated with Distinct Alleles of the Type I Restriction-Modification System

ABSTRACT

The capsule is the dominant Streptococcus pneumoniae virulence factor, yet how variation in capsule thickness is regulated is poorly understood. Here, we describe an unexpected relationship between mutation of adcAII, which encodes a zinc uptake lipoprotein, and capsule thickness. Partial deletion of adcAII in three of five capsular serotypes frequently resulted in a mucoid phenotype that biochemical analysis and electron microscopy of the D39 adcAII mutants confirmed was caused by markedly increased capsule thickness. Compared to D39, the hyperencapsulated adcAII mutant strain was more resistant to complement-mediated neutrophil killing and was hypervirulent in mouse models of invasive infection. Transcriptome analysis of D39 and the adcAII mutant identified major differences in transcription of the Sp_0505-0508 locus, which encodes an SpnD39III (ST5556II) type I restriction-modification system and allelic variation of which correlates with capsule thickness. A PCR assay demonstrated close linkage of the SpnD39IIIC and F alleles with the hyperencapsulated adcAII strains. However, transformation of adcAII with fixed SpnD39III alleles associated with normal capsule thickness did not revert the hyperencapsulated phenotype. Half of hyperencapsulated adcAII strains contained the same single nucleotide polymorphism in the capsule locus gene cps2E, which is required for the initiation of capsule synthesis. These results provide further evidence for the importance of the SpnD39III (ST5556II) type I restriction-modification system for modulating capsule thickness and identified an unexpected linkage between capsule thickness and mutation of adcAII. Further investigation will be needed to characterize how mutation of adcAII affects SpnD39III (ST5556II) allele dominance and results in the hyperencapsulated phenotype.

IMPORTANCE The Streptococcus pneumoniae capsule affects multiple interactions with the host including contributing to colonization and immune evasion. During infection, the capsule thickness varies, but the mechanisms regulating this are poorly understood. We have identified an unsuspected relationship between mutation of adcAII, a gene that encodes a zinc uptake lipoprotein, and capsule thickness. Mutation of adcAII resulted in a striking hyperencapsulated phenotype, increased resistance to complement-mediated neutrophil killing, and increased S. pneumoniae virulence in mouse models of infection. Transcriptome and PCR analysis linked the hyperencapsulated phenotype of the adcAII strain to specific alleles of the SpnD39III (ST5556II) type I restriction-modification system, a system which has previously been shown to affect capsule thickness. Our data provide further evidence for the importance of the SpnD39III (ST5556II) type I restriction-modification system for modulating capsule thickness and identify an unexpected link between capsule thickness and adcAII, further investigation of which could further characterize mechanisms of capsule regulation.




hy

Histidine-Triad Hydrolases Provide Resistance to Peptide-Nucleotide Antibiotics

ABSTRACT

The Escherichia coli microcin C (McC) and related compounds are potent Trojan horse peptide-nucleotide antibiotics. The peptide part facilitates transport into sensitive cells. Inside the cell, the peptide part is degraded by nonspecific peptidases releasing an aspartamide-adenylate containing a phosphoramide bond. This nonhydrolyzable compound inhibits aspartyl-tRNA synthetase. In addition to the efficient export of McC outside the producing cells, special mechanisms have evolved to avoid self-toxicity caused by the degradation of the peptide part inside the producers. Here, we report that histidine-triad (HIT) hydrolases encoded in biosynthetic clusters of some McC homologs or by standalone genes confer resistance to McC-like compounds by hydrolyzing the phosphoramide bond in toxic aspartamide-adenosine, rendering them inactive.

IMPORTANCE Uncovering the mechanisms of resistance is a required step for countering the looming antibiotic resistance crisis. In this communication, we show how universally conserved histidine-triad hydrolases provide resistance to microcin C, a potent inhibitor of bacterial protein synthesis.




hy

Targeting Hidden Pathogens: Cell-Penetrating Enzybiotics Eradicate Intracellular Drug-Resistant Staphylococcus aureus

ABSTRACT

Staphylococcus aureus is a major concern in human health care, mostly due to the increasing prevalence of antibiotic resistance. Intracellular localization of S. aureus plays a key role in recurrent infections by protecting the pathogens from antibiotics and immune responses. Peptidoglycan hydrolases (PGHs) are highly specific bactericidal enzymes active against both drug-sensitive and -resistant bacteria. However, PGHs able to effectively target intracellular S. aureus are not yet available. To overcome this limitation, we first screened 322 recombineered PGHs for staphylolytic activity under conditions found inside eukaryotic intracellular compartments. The most active constructs were modified by fusion to different cell-penetrating peptides (CPPs), resulting in increased uptake and enhanced intracellular killing (reduction by up to 4.5 log units) of various S. aureus strains (including methicillin-resistant S. aureus [MRSA]) in different tissue culture infection models. The combined application of synergistic PGH-CPP constructs further enhanced their intracellular efficacy. Finally, synergistically active PGH-CPP cocktails reduced the total S. aureus by more than 2.2 log units in a murine abscess model after peripheral injection. Significantly more intracellular bacteria were killed by the PGH-CPPs than by the PGHs alone. Collectively, our findings show that CPP-fused PGHs are effective novel protein therapeutics against both intracellular and drug-resistant S. aureus.

IMPORTANCE The increasing prevalence of antibiotic-resistant bacteria is one of the most urgent problems of our time. Staphylococcus aureus is an important human pathogen that has acquired several mechanisms to evade antibiotic treatment. In addition, S. aureus is able to invade and persist within human cells, hiding from the immune response and antibiotic therapies. For these reasons, novel antibacterial strategies against these pathogens are needed. Here, we developed lytic enzymes which are able to effectively target drug-resistant and intracellular S. aureus. Fusion of these so-called enzybiotics to cell-penetrating peptides enhanced their uptake and intracellular bactericidal activity in cell culture and in an abscess mouse model. Our results suggest that cell-penetrating enzybiotics are a promising new class of therapeutics against staphylococcal infections.




hy

Processing, Export, and Identification of Novel Linear Peptides from Staphylococcus aureus

ABSTRACT

Staphylococcus aureus can colonize the human host and cause a variety of superficial and invasive infections. The success of S. aureus as a pathogen derives from its ability to modulate its virulence through the release, sensing of and response to cyclic signaling peptides. Here we provide, for the first time, evidence that S. aureus processes and secretes small linear peptides through a specialized pathway that converts a lipoprotein leader into an extracellular peptide signal. We have identified and confirmed the machinery for each step and demonstrate that the putative membrane metalloprotease Eep and the EcsAB transporter are required to complete the processing and secretion of the peptides. In addition, we have identified several linear peptides, including the interspecies signaling molecule staph-cAM373, that are dependent on this processing and secretion pathway. These findings are particularly important because multiple Gram-positive bacteria rely on small linear peptides to control bacterial gene expression and virulence.

IMPORTANCE Here, we provide evidence indicating that S. aureus secretes small linear peptides into the environment via a novel processing and secretion pathway. The discovery of a specialized pathway for the production of small linear peptides and the identification of these peptides leads to several important questions regarding their role in S. aureus biology, most interestingly, their potential to act as signaling molecules. The observations in this study provide a foundation for further in-depth studies into the biological activity of small linear peptides in S. aureus.




hy

Coping with COVID: How a Research Team Learned To Stay Engaged in This Time of Physical Distancing

ABSTRACT

Physical distancing imposed by the COVID-19 pandemic has led to alterations in routines and new responsibilities for much of the research community. We provide some tips for how research teams can cope with physical distancing, some of which require a change in how we define productivity. Importantly, we need to maintain and strengthen social connections in this time when we can’t be physically together.




hy

X-Linked RNA-Binding Motif Protein Modulates HIV-1 Infection of CD4+ T Cells by Maintaining the Trimethylation of Histone H3 Lysine 9 at the Downstream Region of the 5' Long Terminal Repeat of HIV Proviral DNA

ABSTRACT

Reversible repression of HIV-1 5' long terminal repeat (5'-LTR)-mediated transcription represents the main mechanism for HIV-1 to maintain latency. Identification of host factors that modulate LTR activity and viral latency may help develop new antiretroviral therapies. The heterogeneous nuclear ribonucleoproteins (hnRNPs) are known to regulate gene expression and possess multiple physiological functions. hnRNP family members have recently been identified as the sensors for viral nucleic acids to induce antiviral responses, highlighting the crucial roles of hnRNPs in regulating viral infection. A member of the hnRNP family, X-linked RNA-binding motif protein (RBMX), has been identified in this study as a novel HIV-1 restriction factor that modulates HIV-1 5'-LTR-driven transcription of viral genome in CD4+ T cells. Mechanistically, RBMX binds to HIV-1 proviral DNA at the LTR downstream region and maintains the repressive trimethylation of histone H3 lysine 9 (H3K9me3), leading to a blockage of the recruitment of the positive transcription factor phosphorylated RNA polymerase II (RNA pol II) and consequential impediment of transcription elongation. This RBMX-mediated modulation of HIV-1 transcription maintains viral latency by inhibiting viral reactivation from an integrated proviral DNA. Our findings provide a new understanding of how host factors modulate HIV-1 infection and latency and suggest a potential new target for the development of HIV-1 therapies.

IMPORTANCE HIV-1 latency featuring silence of transcription from HIV-1 proviral DNA represents a major obstacle for HIV-1 eradication. Reversible repression of HIV-1 5'-LTR-mediated transcription represents the main mechanism for HIV-1 to maintain latency. The 5'-LTR-driven HIV gene transcription can be modulated by multiple host factors and mechanisms. The hnRNPs are known to regulate gene expression. A member of the hnRNP family, RBMX, has been identified in this study as a novel HIV-1 restriction factor that modulates HIV-1 5'-LTR-driven transcription of viral genome in CD4+ T cells and maintains viral latency. These findings provide a new understanding of how host factors modulate HIV-1 infection and latency and suggest a potential new target for the development of HIV-1 therapies.




hy

Conductance Mechanisms of Rapidly Desensitizing Cation Channelrhodopsins from Cryptophyte Algae

ABSTRACT

Channelrhodopsins guide algal phototaxis and are widely used as optogenetic probes for control of membrane potential with light. "Bacteriorhodopsin-like" cation channelrhodopsins (BCCRs) from cryptophytes differ in primary structure from other CCRs, lacking usual residues important for their cation conductance. Instead, the sequences of BCCR match more closely those of rhodopsin proton pumps, containing residues responsible for critical proton transfer reactions. We report 19 new BCCRs which, together with the earlier 6 known members of this family, form three branches (subfamilies) of a phylogenetic tree. Here, we show that the conductance mechanisms in two subfamilies differ with respect to involvement of the homolog of the proton donor in rhodopsin pumps. Two BCCRs from the genus Rhodomonas generate photocurrents that rapidly desensitize under continuous illumination. Using a combination of patch clamp electrophysiology, absorption, Raman spectroscopy, and flash photolysis, we found that the desensitization is due to rapid accumulation of a long-lived nonconducting intermediate of the photocycle with unusually blue-shifted absorption with a maximum at 330 nm. These observations reveal diversity within the BCCR family and contribute to deeper understanding of their independently evolved cation channel function.

IMPORTANCE Cation channelrhodopsins, light-gated channels from flagellate green algae, are extensively used as optogenetic photoactivators of neurons in research and recently have progressed to clinical trials for vision restoration. However, the molecular mechanisms of their photoactivation remain poorly understood. We recently identified cryptophyte cation channelrhodopsins, structurally different from those of green algae, which have separately evolved to converge on light-gated cation conductance. This study reveals diversity within this new protein family and describes a subclade with unusually rapid desensitization that results in short transient photocurrents in continuous light. Such transient currents have not been observed in the green algae channelrhodopsins and are potentially useful in optogenetic protocols. Kinetic UV-visible (UV-vis) spectroscopy and photoelectrophysiology reveal that the desensitization is caused by rapid accumulation of a nonconductive photointermediate in the photochemical reaction cycle. The absorption maximum of the intermediate is 330 nm, the shortest wavelength reported in any rhodopsin, indicating a novel chromophore structure.




hy

Simian Immunodeficiency Virus-Infected Memory CD4+ T Cells Infiltrate to the Site of Infected Macrophages in the Neuroparenchyma of a Chronic Macaque Model of Neurological Complications of AIDS

ABSTRACT

Simian immunodeficiency virus (SIV)-infected nonhuman primates can serve as a relevant model for AIDS neuropathogenesis. Current SIV-induced encephalitis (SIVE)/neurological complications of AIDS (neuroAIDS) models are generally associated with rapid progression to neuroAIDS, which does not reflect the tempo of neuroAIDS progression in humans. Recently, we isolated a neuropathogenic clone, SIVsm804E-CL757 (CL757), obtained from an SIV-infected rhesus macaque (RM). CL757 causes a more protracted progression to disease, inducing SIVE in 50% of inoculated animals, with high cerebral spinal fluid viral loads, multinucleated giant cells (MNGCs), and perivascular lymphocytic cuffing in the central nervous system (CNS). This latter finding is reminiscent of human immunodeficiency virus (HIV) encephalitis in humans but not generally observed in rapid progressor animals with neuroAIDS. Here, we studied which subsets of cells within the CNS were targeted by CL757 in animals with neurological symptoms of SIVE. Immunohistochemistry of brain sections demonstrated infiltration of CD4+ T cells (CD4) and macrophages (Ms) to the site of MNGCs. Moreover, an increase in mononuclear cells isolated from the brain tissues of RMs with SIVE correlated with increased cerebrospinal fluid (CSF) viral load. Subset analysis showed a specific increase in brain CD4+ memory T cells (Br-mCD4), brain-Ms (Br-Ms), and brain B cells (Br-B cells). Both Br-mCD4s and Br-Ms harbored replication-competent viral DNA, as demonstrated by virus isolation by coculture. However, only in animals exhibiting SIVE/neuroAIDS was virus isolated from Br-Ms. These findings support the use of CL757 to study the pathogenesis of AIDS viruses in the central nervous system and indicate a previously unanticipated role of CD4s cells as a potential reservoir in the brain.

IMPORTANCE While the use of combination antiretroviral therapy effectively suppresses systemic viral replication in the body, neurocognitive disorders as a result of HIV infection of the central nervous system (CNS) remain a clinical problem. Therefore, the use of nonhuman primate models is necessary to study mechanisms of neuropathogenesis. The neurotropic, molecular clone SIVsm804E-CL757 (CL757) results in neuroAIDS in 50% of infected rhesus macaques approximately 1 year postinfection. Using CL757-infected macaques, we investigate disease progression by examining subsets of cells within the CNS that were targeted by CL757 and could potentially serve as viral reservoirs. By isolating mononuclear cells from the brains of SIV-infected rhesus macaques with and without encephalitis, we show that immune cells invade the neuroparenchyma and increase in number in the CNS in animals with SIV-induced encephalitis (SIVE). Of these cells, both brain macrophages and brain memory CD4+ T cells harbor replication-competent SIV DNA; however, only brain CD4+ T cells harbored SIV DNA in animals without SIVE. These findings support use of CL757 as an important model to investigate disease progression in the CNS and as a model to study virus reservoirs in the CNS.




hy

Why the ABCs Matter More than Ever in Medical Education

Addressing social drivers of health in medical education—through community engagement experiences—is essential for health equity and the development of future physicians. While this was written before the COVID-19 pandemic, these practices will gain even more importance as we come together to better understand its health and community implications in North Carolina and the United States.




hy

Historical Geography and Health Equity: An Exploratory View of North Carolina Slavery and Sociohealth Factors

Current health inequities are rooted in more than simple systems failures and inefficiencies. Historical legacy has corrupted health outcomes, and resolution requires both acknowledgment and intention.




hy

Moving Upstream to Impact Health: Building a Physician Workforce that Understands Social Determinants

Decades of rallying cries from professional societies, medical education and training programs, and government stakeholders have distilled the conversation of social determinants of health (SDOH) from theoretical proposals into practical solutions [1-3]. No longer standing on the precipice of change, we are now in the trenches. The nation's health care system recognizes SDOH as important drivers of health and is taking steps to address them in the practice environment.

More widespread action and attention by the health care system drives the need to train the next generation of physicians in the concepts and actions related to SDOH. This includes SDOH as a core part of the medical curriculum, offering clinical and research experiences and service in the community [4-5]. Unfortunately, to date only a handful of programs have brought this vision to fruition. Across the country, most programs offer educational content that is largely didactic and provided in short or one-time sessions [6]. Though a start, such approaches are insufficient to prepare the next generation of physicians for their important work ahead.

In New Orleans, the NOLA Hotspotters are an interdisciplinary group of medical, public health, nursing, and pharmacy students inspired by the work out of Camden, New Jersey, to "hot spot" patients with high utilization, which is often related to social needs [7]. While the results of the Camden program have been widely discussed following publication of their work, we argue the benefit of such a program exists beyond reduced emergency department visits or health care spending [8]. The...




hy

Investing in Whole Person Health: Working Toward an Integration of Physical, Behavioral, and Social Health

North Carolina is developing a unique and innovative infrastructure to support integrated physical, behavioral, and social health care. Efforts by the North Carolina Department of Health and Human Services, the Foundation for Health Leadership & Innovation, Cone Health, Atrium Health, and the One Charlotte Health Alliance advance our understanding of how to best operationalize the design and payment of integrated services. Best practices such as the collaborative care and primary care behavioral health models reduce inefficiencies and disparities by bringing together teams of primary care and behavioral health care providers.




hy

Acute encephalopathy after head trauma in a patient with a RHOBTB2 mutation

Objective

De novo missense mutations in the RHOBTB2 gene have been described as causative for developmental and epileptic encephalopathy.

Methods

The clinical phenotype of this disorder includes early-onset epilepsy, severe intellectual disability, postnatal microcephaly, and movement disorder. Three RHOBTB2 patients have been described with acute encephalopathy and febrile epileptic status. All showed severe EEG abnormalities during this episode and abnormal MRI with hemisphere swelling or reduced diffusion in various brain regions.

Results

We describe the episode of acute encephalopathy after head trauma in a 5-year-old RHOBTB2 patient. At admission, Glasgow coma scale score was E4M4V1. EEG was severely abnormal showing a noncontinuous pattern with slow activity without epileptic activity indicating severe encephalopathy. A second EEG on day 8 was still severely slowed and showed focal delta activity frontotemporal in both hemispheres. Gradually, he recovered, and on day 11, he had regained his normal reactivity, behavior, and mood. Two months after discharge, EEG showed further decrease in slow activity and increase in normal electroencephalographic activity. After discharge, parents noted that he showed more hyperkinetic movements compared to before this period of encephalopathy. Follow-up MRI showed an increment of hippocampal atrophy. In addition, we summarize the clinical characteristics of a second RHOBTB2 patient with increase of focal periventricular atrophy and development of hemiparesis after epileptic status.

Conclusions

Acute encephalopathy in RHOBTB2 patients can also be triggered by head trauma.




hy

Neuraxial dysraphism in EPAS1-associated syndrome due to improper mesenchymal transition

Objective

To investigate the effect of somatic, postzygotic, gain-of-function mutation of Endothelial Per-Arnt-Sim (PAS) domain protein 1 (EPAS1) encoding hypoxia-inducible factor-2α (HIF-2α) on posterior fossa development and spinal dysraphism in EPAS1 gain-of-function syndrome, which consists of multiple paragangliomas, somatostatinoma, and polycythemia.

Methods

Patients referred to our institution for evaluation of new, recurrent, and/or metastatic paragangliomas/pheochromocytoma were confirmed for EPAS1 gain-of-function syndrome by identification of the EPAS1 gain-of-function mutation in resected tumors and/or circulating leukocytes. The posterior fossa, its contents, and the spine were evaluated retrospectively on available MRI and CT images of the head and neck performed for tumor staging and restaging. The transgenic mouse model underwent Microfil vascular perfusion and subsequent intact ex vivo 14T MRI and micro-CT as well as gross dissection, histology, and immunohistochemistry to assess the role of EPAS1 in identified malformations.

Results

All 8 patients with EPAS1 gain-of-function syndrome demonstrated incidental posterior fossa malformations—one Dandy-Walker variant and 7 Chiari malformations without syringomyelia. These findings were not associated with a small posterior fossa; rather, the posterior fossa volume exceeded that of its neural contents. Seven of 8 patients demonstrated spinal dysraphism; 4 of 8 demonstrated abnormal vertebral segmentation. The mouse model similarly demonstrated features of neuraxial dysraphism, including cervical myelomeningocele and spinal dysraphism, and cerebellar tonsil displacement through the foramen magnum. Histology and immunohistochemistry demonstrated incomplete mesenchymal transition in the mutant but not the control mouse.

Conclusions

This study characterized posterior fossa and spinal malformations seen in EPAS1 gain-of-function syndrome and suggests that gain-of-function mutation in HIF-2α results in improper mesenchymal transition.




hy

Cerebellar ataxia, neuropathy, hearing loss, and intellectual disability due to AIFM1 mutation

Objective

To describe the clinical and molecular genetic findings in a family segregating a novel mutation in the AIFM1 gene on the X chromosome.

Methods

We studied the clinical features and performed brain MRI scans, nerve conduction studies, audiometry, cognitive testing, and clinical exome sequencing (CES) in the proband, his mother, and maternal uncle. We used in silico tools, X chromosome inactivation assessment, and Western blot analysis to predict the consequences of an AIFM1 variant identified by CES and demonstrate its pathogenicity.

Results

The proband and his maternal uncle presented with childhood-onset nonprogressive cerebellar ataxia, hearing loss, intellectual disability (ID), peripheral neuropathy, and mood and behavioral disorder. The proband's mother had mild cerebellar ataxia, ID, and mood and behavior disorder, but no neuropathy or hearing loss. The 3 subjects shared a variant (c.1195G>A; p.Gly399Ser) in exon 12 of the AIFM1 gene, which is not reported in the exome/genome sequence databases, affecting a critical amino acid for protein function involved in NAD(H) binding and predicted to be pathogenic with very high probability by variant analysis programs. X chromosome inactivation was highly skewed in the proband's mother. The mutation did not cause quantitative changes in protein abundance.

Conclusions

Our report extends the molecular and phenotypic spectrum of AIFM1 mutations. Specific findings include limited progression of neurologic abnormalities after the first decade and the coexistence of mood and behavior disorder. This family also shows the confounding effect on the phenotype of nongenetic factors, such as alcohol and drug use and side effects of medication.




hy

Biallelic LINE insertion mutation in HACD1 causing congenital myopathy

Congenital myopathies are clinically and genetically heterogeneous, resulting from mutations in at least 30 different genes.1 The classical presentation is neonatal hypotonia and nonprogressive weakness with normal creatine phosphokinase, although there is a broad range in terms of age at onset and clinical presentation. Historically, congenital myopathies have been defined and diagnosed based on muscle biopsy. However, with advances in genomics, genetics have taken primacy in the diagnostic pathway.2




hy

Coupled hydraulic and mechanical model of surface uplift due to mine water rebound: implications for mine water heating and cooling schemes

In order to establish sustainable heat loading (heat removal and storage) in abandoned flooded mine workings it is important to understand the geomechanical impact of the cyclical heat loading caused by fluid injection and extraction. This is particularly important where significantly more thermal loading is planned than naturally occurs. A simple calculation shows that the sustainable geothermal heat flux from abandoned coal mines can provide less than a tenth of Scotland's annual domestic heating demand. Any heat removal greater than the natural heat flux will lead to heat mining unless heat storage options are also considered.

As a first step, a steady-state, fully saturated, 2D coupled hydromechanical model of a generalized section of pillar-and-stall workings has been created. Mine water rebound was modelled by increasing the hydrostatic pressure sequentially, in line with monitored mine water-level data from Midlothian, Scotland. The modelled uplift to water-level rise ratio of 1.4 mm m–1 is of the same order of magnitude (1 mm m–1) as that observed through interferometric synthetic aperture radar (InSAR) data in the coalfield due to mine water rebound. The modelled magnitude of shear stress at the pillar corners, as a result of horizontal and vertical displacement, is shown to increase linearly with water level. Mine heat systems are expected to cause smaller changes in pressure than those modelled but the results provide initial implications on the potential geomechanical impacts of mine water heat schemes which abstract or inject water and heat into pillar-and-stall coal mine workings.

Thematic collection: This article is part of the SJG Collection on Early-Career Research available at: https://www.lyellcollection.org/cc/SJG-early-career-research




hy

Rupture geometries in anisotropic amphibolite recorded by pseudotachylytes in the Gairloch Shear Zone, NW Scotland

Recent earthquakes involving complex multi-fault rupture have increased our appreciation of the variety of rupture geometries and fault interactions that occur within the short duration of coseismic slip. Geometrical complexities are intrinsically linked with spatially heterogeneous slip and stress drop distributions, and hence need incorporating into seismic hazard analysis. Studies of exhumed ancient fault zones facilitate investigation of rupture processes in the context of lithology and structure at seismogenic depths. In the Gairloch Shear Zone, NW Scotland, foliated amphibolites host pseudotachylytes that record rupture geometries of ancient low-magnitude (≤MW 3) seismicity. Pseudotachylyte faults are commonly foliation parallel, indicating exploitation of foliation planes as weak interfaces for seismic rupture. Discordance and complexity are introduced by fault segmentation, stepovers, branching and brecciated dilational volumes. Pseudotachylyte geometries indicate that slip nucleation initiated simultaneously across several parallel foliation planes with millimetre and centimetre separations, leading to progressive interaction and ultimately linkage of adjacent segments and branches within a single earthquake. Interacting with this structural control, a lithological influence of abundant low disequilibrium melting-point amphibole facilitated coseismic melting, with relatively high coseismic melt pressure encouraging transient dilational sites. These faults elucidate controls and processes that may upscale to large active fault zones hosting major earthquake activity.

Supplementary material: Supplementary Figures 1 and 2, unannotated versions of field photographs displayed in Figures 4a and 5 respectively, are available at https://doi.org/10.6084/m9.figshare.c.4573256

Thematic collection: This article is part of the SJG Collection on Early-Career Research available at: https://www.lyellcollection.org/cc/SJG-early-career-research




hy

WRKY13 Enhances Cadmium Tolerance by Promoting D-CYSTEINE DESULFHYDRASE and Hydrogen Sulfide Production

Hydrogen sulfide (H2S), a plant gasotransmitter, functions in the plant response to cadmium (Cd) stress, implying a role for cysteine desulfhydrase in producing H2S in this process. Whether d-CYSTEINE DESULFHYDRASE (DCD) acts in the plant Cd response remains to be identified, and if it does, how DCD is regulated in this process is also unknown. Here, we report that DCD-mediated H2S production enhances plant Cd tolerance in Arabidopsis (Arabidopsis thaliana). When subjected to Cd stress, a dcd mutant accumulated more Cd and reactive oxygen species and showed increased Cd sensitivity, whereas transgenic lines overexpressing DCD had decreased Cd and reactive oxygen species levels and were more tolerant to Cd stress compared with wild-type plants. Furthermore, the expression of DCD was stimulated by Cd stress, and this up-regulation was mediated by a Cd-induced transcription factor, WRKY13, which bound to the DCD promoter. Consistently, the higher Cd sensitivity of the wrky13-3 mutant was rescued by the overexpression of DCD. Together, our results demonstrate that Cd-induced WRKY13 activates DCD expression to increase the production of H2S, leading to higher Cd tolerance in plants.




hy

Phosphomimetic T335D Mutation of Hydroxypyruvate Reductase 1 Modifies Cofactor Specificity and Impacts Arabidopsis Growth in Air

Photorespiration is an essential process in oxygenic photosynthetic organisms triggered by the oxygenase activity of Rubisco. In peroxisomes, photorespiratory HYDROXYPYRUVATE REDUCTASE1 (HPR1) catalyzes the conversion of hydroxypyruvate to glycerate together with the oxidation of a pyridine nucleotide cofactor. HPR1 regulation remains poorly understood; however, HPR1 phosphorylation at T335 has been reported. By comparing the kinetic properties of phosphomimetic (T335D), nonphosphorylatable (T335A), and wild-type recombinant Arabidopsis (Arabidopsis thaliana) HPR1, it was found that HPR1-T335D exhibits reduced NADH-dependent hydroxypyruvate reductase activity while showing improved NADPH-dependent activity. Complementation of the Arabidopsis hpr1-1 mutant by either wild-type HPR1 or HPR1-T335A fully complemented the photorespiratory growth phenotype of hpr1-1 in ambient air, whereas HPR1-T335D-containing hpr1-1 plants remained smaller and had lower photosynthetic CO2 assimilation rates. Metabolite analyses indicated that these phenotypes were associated with subtle perturbations in the photorespiratory cycle of HPR1-T335D-complemented hpr1-1 rosettes compared to all other HPR1-containing lines. Therefore, T335 phosphorylation may play a role in the regulation of HPR1 activity in planta, although it was not required for growth under ambient air controlled conditions. Furthermore, improved NADP-dependent HPR1 activities in peroxisomes could not compensate for the reduced NADH-dependent HPR1 activity.




hy

ONE-HELIX PROTEIN1 and 2 Form Heterodimers to Bind Chlorophyll in Photosystem II Biogenesis

Members of the light-harvesting complex protein family participate in multiple processes connected with light sensing, light absorption, and pigment binding within the thylakoid membrane. Amino acid residues of the light-harvesting chlorophyll a/b-binding proteins involved in pigment binding have been precisely identified through x-ray crystallography experiments. In vitro pigment-binding studies have been performed with LIGHT-HARVESTING-LIKE3 proteins, and the pigment-binding ability of cyanobacterial high-light-inducible proteins has been studied in detail. However, analysis of pigment binding by plant high-light-inducible protein homologs, called ONE-HELIX PROTEINS (OHPs), is lacking. Here, we report on successful in vitro reconstitution of Arabidopsis (Arabidopsis thaliana) OHPs with chlorophylls and carotenoids and show that pigment binding depends on the formation of OHP1/OHP2 heterodimers. Pigment-binding capacity was completely lost in each of the OHPs when residues of the light-harvesting complex chlorophyll-binding motif required for chlorophyll binding were mutated. Moreover, the mutated OHP variants failed to rescue the respective knockout (T-DNA insertion) mutants, indicating that pigment-binding ability is essential for OHP function in vivo. The scaffold protein HIGH CHLOROPHYLL FLUORESCENCE244 (HCF244) is tethered to the thylakoid membrane by the OHP heterodimer. We show that HCF244 stability depends on OHP heterodimer formation and introduce the concept of a functional unit consisting of OHP1, OHP2, and HCF244, in which each protein requires the others. Because of their pigment-binding capacity, we suggest that OHPs function in the delivery of pigments to the D1 subunit of PSII.




hy

Dehydroascorbate Reductases and Glutathione Set a Threshold for High-Light-Induced Ascorbate Accumulation

Plants require a high concentration of ascorbate as a redox buffer for survival under stress conditions, such as high light. Dehydroascorbate reductases (DHARs) are enzymes that catalyze the reduction of DHA to ascorbate using reduced glutathione (GSH) as an electron donor, allowing rapid ascorbate recycling. However, a recent study using an Arabidopsis (Arabidopsis thaliana) triple mutant lacking all three DHAR genes (herein called dhar) did not find evidence for their role in ascorbate recycling under oxidative stress. To further study the function of DHARs, we generated dhar Arabidopsis plants as well as a quadruple mutant line combining dhar with an additional vtc2 mutation that causes ascorbate deficiency. Measurements of ascorbate in these mutants under low- or high-light conditions indicated that DHARs have a nonnegligible impact on full ascorbate accumulation under high light, but that they are dispensable when ascorbate concentrations are low to moderate. Because GSH itself can reduce DHA nonenzymatically, we used the pad2 mutant that contains ~30% of the wild-type GSH level. The pad2 mutant accumulated ascorbate at a wild-type level under high light; however, when the pad2 mutation was combined with dhar, there was near-complete inhibition of high-light–dependent ascorbate accumulation. The lack of ascorbate accumulation was consistent with a marked increase in the ascorbate degradation product threonate. These findings indicate that ascorbate recycling capacity is limited in dhar pad2 plants, and that both DHAR activity and GSH content set a threshold for high-light–induced ascorbate accumulation.




hy

Transcription Factors BLH2 and BLH4 Regulate Demethylesterification of Homogalacturonan in Seed Mucilage

The polysaccharide pectin is a major component of the plant cell wall. The pectic glycan homogalacturonan (HG) is a proportionally small but important component of a specialized seed cell wall called mucilage. HG is synthesized in a highly methylesterified form, and, following secretion, is de-methylesterified by pectin methylesterases (PMEs). The degree of methylesterification of HG determines the structural and functional properties of pectin, but how methylesterification is regulated remains largely unknown. Here, we identified two BEL1-Like homeodomain (BLH) transcription factors, BLH2 and BLH4, as positive regulators of HG de-methylesterification in Arabidopsis (Arabidopsis thaliana) seed coat mucilage. BLH2 and BLH4 were significantly expressed in mucilage secretory cells during seed mucilage production. BLH2 and BLH4 single mutants exhibited no obvious mucilage phenotype, but the blh2 blh4 double mutant displayed significantly reduced mucilage adherence to the seed. Reduced mucilage adherence in blh2 blh4 was caused by decreased PME activity in the seed coat, which increased the degree of methylesterification of HG in mucilage. The expression of several PME metabolism-related genes, including PME58, PECTIN METHYLESTERASE INHIBITOR6, SEEDSTICK, and MYB52 was significantly altered in blh2 blh4 seeds. BLH2 and BLH4 directly activated PME58 expression by binding to its TGACAGGT cis-element. Moreover, pme58 mutants exhibited reduced mucilage adherence similar to that of blh2 blh4, and the blh2 blh4 pme58 triple mutant exhibited no additional mucilage adherence defects. Furthermore, overexpression of PME58 in blh2 blh4 rescued the mucilage adherence defect. Together, these results demonstrate that BLH2 and BLH4 redundantly regulate de-methylesterification of HG in seed mucilage by directly activating PME58.




hy

Overcoming Algal Vitamin B12 Auxotrophy by Experimental Evolution




hy

What Are the Roles for Dehydroascorbate Reductases and Glutathione in Sustaining Ascorbate Accumulation?




hy

PLANT PHYSIOLOGY




hy

Severe Pulmonary Hypertension Management Across Europe (PHAROS): an ERS Clinical Research Collaboration

The past 20 years have seen major advances in the understanding and treatment of pulmonary arterial hypertension (PAH; group 1 of the pulmonary hypertension (PH) clinical classification) [1]. A strong basis of knowledge has been acquired in: 1) large randomised clinical trials for drug development; 2) national registries for epidemiology and outcome; and 3) smaller studies on the pathophysiological mechanisms of the disease. This knowledge has been reviewed at World Symposia on Pulmonary Hypertension (the most recent in 2018 [2]) and summarised in European Respiratory Society (ERS)/European Society of Cardiology (ESC) clinical guidelines (the most recent in 2015 [3, 4]). We are, however, much less knowledgeable on specific aspects such as 1) the implementation of guidelines and access to therapies in different European countries; 2) the management of PH crises and progressive (acute on chronic) heart failure; and 3) other groups of PH, such as PH due to lung diseases. Therapeutic strategies also need to be optimised, in particular regarding the combination of drugs, the use of anticoagulants, the place for new medications targeting different pathophysiological pathways, etc.




hy

Ataxic-hypotonic cerebral palsy in a cerebral palsy registry: Insights into a distinct subtype

Objective

To specifically report on ataxic-hypotonic cerebral palsy (CP) using registry data and to directly compare its features with other CP subtypes.

Methods

Data on prenatal, perinatal, and neonatal characteristics and gross motor function (Gross Motor Function Classification System [GMFCS]) and comorbidities in 35 children with ataxic-hypotonic CP were extracted from the Canadian Cerebral Palsy Registry and compared with 1,804 patients with other subtypes of CP.

Results

Perinatal adversity was detected significantly more frequently in other subtypes of CP (odds ratio [OR] 4.3, 95% confidence interval [CI] 1.5–11.7). The gestational age at birth was higher in ataxic-hypotonic CP (median 39.0 weeks vs 37.0 weeks, p = 0.027). Children with ataxic-hypotonic CP displayed more intrauterine growth restriction (OR 2.6, 95% CI 1.0–6.8) and congenital malformation (OR 2.4, 95% CI 1.2–4.8). MRI was more likely to be either normal (OR 3.8, 95% CI 1.4–10.5) or to show a cerebral malformation (OR 4.2, 95% CI 1.5–11.9) in ataxic-hypotonic CP. There was no significant difference in terms of GMFCS or the presence of comorbidities, except for more frequent communication impairment in ataxic-hypotonic CP (OR 4.2, 95% CI 1.5–11.6).

Conclusions

Our results suggest a predominantly genetic or prenatal etiology for ataxic-hypotonic CP and imply that a diagnosis of ataxic-hypotonic CP does not impart a worse prognosis with respect to comorbidities or functional impairment. This study contributes toward a better understanding of ataxic-hypotonic CP as a distinct nosologic entity within the spectrum of CP with its own pathogenesis, risk factors, clinical profile, and prognosis compared with other CP subtypes.




hy

Systemic Sclerosis Sine Scleroderma With Pulmonary Arterial Hypertension in a 3-Year-Old Girl

Systemic sclerosis sine scleroderma (ssSSc) is a rare variant of systemic sclerosis, with only one pediatric case reported in the medical literature to date. Pulmonary arterial hypertension as the presenting feature of ssSSc is extremely rare, even in adults, and so far has never been reported in children. We report, for the first time, a case of pediatric ssSSc in a 3-year-old girl, who presented with interstitial lung disease and pulmonary hypertension. The patient was prescribed early aggressive pulmonary vasodilators combined with anti-inflammatory medications. The clinical response was good, and her current condition at 12 years of age is remarkable, considering the high mortality rates reported in adults. We underscore the importance of early aggressive treatment in future cases of similar presentation.




hy

Dominance Effects and Functional Enrichments Improve Prediction of Agronomic Traits in Hybrid Maize [Genomic Prediction]

Single-cross hybrids have been critical to the improvement of maize (Zea mays L.), but the characterization of their genetic architectures remains challenging. Previous studies of hybrid maize have shown the contribution of within-locus complementation effects (dominance) and their differential importance across functional classes of loci. However, they have generally considered panels of limited genetic diversity, and have shown little benefit from genomic prediction based on dominance or functional enrichments. This study investigates the relevance of dominance and functional classes of variants in genomic models for agronomic traits in diverse populations of hybrid maize. We based our analyses on a diverse panel of inbred lines crossed with two testers representative of the major heterotic groups in the U.S. (1106 hybrids), as well as a collection of 24 biparental populations crossed with a single tester (1640 hybrids). We investigated three agronomic traits: days to silking (DTS), plant height (PH), and grain yield (GY). Our results point to the presence of dominance for all traits, but also among-locus complementation (epistasis) for DTS and genotype-by-environment interactions for GY. Consistently, dominance improved genomic prediction for PH only. In addition, we assessed enrichment of genetic effects in classes defined by genic regions (gene annotation), structural features (recombination rate and chromatin openness), and evolutionary features (minor allele frequency and evolutionary constraint). We found support for enrichment in genic regions and subsequent improvement of genomic prediction for all traits. Our results suggest that dominance and gene annotations improve genomic prediction across diverse populations in hybrid maize.




hy

Toward an Evolutionarily Appropriate Null Model: Jointly Inferring Demography and Purifying Selection [Population and Evolutionary Genetics]

The question of the relative evolutionary roles of adaptive and nonadaptive processes has been a central debate in population genetics for nearly a century. While advances have been made in the theoretical development of the underlying models, and statistical methods for estimating their parameters from large-scale genomic data, a framework for an appropriate null model remains elusive. A model incorporating evolutionary processes known to be in constant operation, genetic drift (as modulated by the demographic history of the population) and purifying selection, is lacking. Without such a null model, the role of adaptive processes in shaping within- and between-population variation may not be accurately assessed. Here, we investigate how population size changes and the strength of purifying selection affect patterns of variation at "neutral" sites near functional genomic components. We propose a novel statistical framework for jointly inferring the contribution of the relevant selective and demographic parameters. By means of extensive performance analyses, we quantify the utility of the approach, identify the most important statistics for parameter estimation, and compare the results with existing methods. Finally, we reanalyze genome-wide population-level data from a Zambian population of Drosophila melanogaster, and find that it has experienced a much slower rate of population growth than was inferred when the effects of purifying selection were neglected. Our approach represents an appropriate null model, against which the effects of positive selection can be assessed.




hy

Serotonin (5-HT) Shapes the Macrophage Gene Profile through the 5-HT2B-Dependent Activation of the Aryl Hydrocarbon Receptor [INNATE IMMUNITY AND INFLAMMATION]

Key Points

  • 5-HT2B agonists stimulate AhR transcriptional activation in human macrophages.

  • Serotonin-induced expression of AhR target genes is 5-HT2B dependent in macrophages.




    hy

    Molecular Drivers of Lymphocyte Organization in Vertebrate Mucosal Surfaces: Revisiting the TNF Superfamily Hypothesis [IMMUNOGENETICS]

    Key Points

  • Lymphotoxin axis is not essential for formation of O-MALT in ectotherms and birds.

  • Vertebrate O-MALT structures are enriched in neuroactive ligand/receptor genes.

  • Mammalian PPs and LNs are enriched in genes involved in olfactory transduction.




    hy

    Staphylococcus aureus Fibronectin Binding Protein A Mediates Biofilm Development and Infection [Bacterial Infections]

    Implanted medical device-associated infections pose significant health risks, as they are often the result of bacterial biofilm formation. Staphylococcus aureus is a leading cause of biofilm-associated infections which persist due to mechanisms of device surface adhesion, biofilm accumulation, and reprogramming of host innate immune responses. We found that the S. aureus fibronectin binding protein A (FnBPA) is required for normal biofilm development in mammalian serum and that the SaeRS two-component system is required for functional FnBPA activity in serum. Furthermore, serum-developed biofilms deficient in FnBPA were more susceptible to macrophage invasion, and in a model of biofilm-associated implant infection, we found that FnBPA is crucial for the establishment of infection. Together, these findings show that S. aureus FnBPA plays an important role in physical biofilm development and represents a potential therapeutic target for the prevention and treatment of device-associated infections.




    hy

    The Legionella pneumophila Metaeffector Lpg2505 (MesI) Regulates SidI-Mediated Translation Inhibition and Novel Glycosyl Hydrolase Activity [Molecular Pathogenesis]

    Legionella pneumophila, the etiological agent of Legionnaires’ disease, employs an arsenal of hundreds of Dot/Icm-translocated effector proteins to facilitate replication within eukaryotic phagocytes. Several effectors, called metaeffectors, function to regulate the activity of other Dot/Icm-translocated effectors during infection. The metaeffector Lpg2505 is essential for L. pneumophila intracellular replication only when its cognate effector, SidI, is present. SidI is a cytotoxic effector that interacts with the host translation factor eEF1A and potently inhibits eukaryotic protein translation by an unknown mechanism. Here, we evaluated the impact of Lpg2505 on SidI-mediated phenotypes and investigated the mechanism of SidI function. We determined that Lpg2505 binds with nanomolar affinity to SidI and suppresses SidI-mediated inhibition of protein translation. SidI binding to eEF1A and Lpg2505 is not mutually exclusive, and the proteins bind distinct regions of SidI. We also discovered that SidI possesses GDP-dependent glycosyl hydrolase activity and that this activity is regulated by Lpg2505. We have therefore renamed Lpg2505 MesI (metaeffector of SidI). This work reveals novel enzymatic activity for SidI and provides insight into how intracellular replication of L. pneumophila is regulated by a metaeffector.




    hy

    De Novo Purine Biosynthesis Is Required for Intracellular Growth of Staphylococcus aureus and for the Hypervirulence Phenotype of a purR Mutant [Cellular Microbiology: Pathogen-Host Cell Molecular Interactions]

    Staphylococcus aureus is a noted human and animal pathogen. Despite decades of research on this important bacterium, there are still many unanswered questions regarding the pathogenic mechanisms it uses to infect the mammalian host. This can be attributed to it possessing a plethora of virulence factors and complex virulence factor and metabolic regulation. PurR, the purine biosynthesis regulator, was recently also shown to regulate virulence factors in S. aureus, and mutations in purR result in derepression of fibronectin binding proteins (FnBPs) and extracellular toxins, required for a so-called hypervirulent phenotype. Here, we show that hypervirulent strains containing purR mutations can be attenuated with the addition of purine biosynthesis mutations, implicating the necessity for de novo purine biosynthesis in this phenotype and indicating that S. aureus in the mammalian host experiences purine limitation. Using cell culture, we showed that while purR mutants are not altered in epithelial cell binding, compared to that of wild-type (WT) S. aureus, purR mutants have enhanced invasion of these nonprofessional phagocytes, consistent with the requirement of FnBPs for invasion of these cells. This correlates with purR mutants having increased transcription of fnb genes, resulting in higher levels of surface-exposed FnBPs to promote invasion. These data provide important contributions to our understanding of how the pathogenesis of S. aureus is affected by sensing of purine levels during infection of the mammalian host.




    hy

    Porphyromonas gingivalis Cell Wall Components Induce Programmed Death Ligand 1 (PD-L1) Expression on Human Oral Carcinoma Cells by a Receptor-Interacting Protein Kinase 2 (RIP2)-Dependent Mechanism [Cellular Microbiology: Pathogen-Host Cell Molecular Inte

    Programmed death-ligand 1 (PD-L1/B7-H1) serves as a cosignaling molecule in cell-mediated immune responses and contributes to chronicity of inflammation and the escape of tumor cells from immunosurveillance. Here, we investigated the molecular mechanisms leading to PD-L1 upregulation in human oral carcinoma cells and in primary human gingival keratinocytes in response to infection with Porphyromonas gingivalis (P. gingivalis), a keystone pathogen for the development of periodontitis. The bacterial cell wall component peptidoglycan uses bacterial outer membrane vesicles to be taken up by cells. Internalized peptidoglycan triggers cytosolic receptors to induce PD-L1 expression in a myeloid differentiation primary response 88 (Myd88)-independent and receptor-interacting serine/threonine-protein kinase 2 (RIP2)-dependent fashion. Interference with the kinase activity of RIP2 or mitogen-activated protein (MAP) kinases interferes with inducible PD-L1 expression.




    hy

    Identification and Characterization of Staphylococcus delphini Internalization Pathway in Nonprofessional Phagocytic Cells [Cellular Microbiology: Pathogen-Host Cell Molecular Interactions]

    The intracellular lifestyle of bacteria is widely acknowledged to be an important mechanism in chronic and recurring infection. Among the Staphylococcus genus, only Staphylococcus aureus and Staphylococcus pseudintermedius have been clearly identified as intracellular in nonprofessional phagocytic cells (NPPCs), for which the mechanism is mainly fibronectin-binding dependent. Here, we used bioinformatics tools to search for possible new fibronectin-binding proteins (FnBP-like) in other Staphylococcus species. We found a protein in Staphylococcus delphini called Staphylococcus delphini surface protein Y (SdsY). This protein shares 68% identity with the Staphylococcus pseudintermedius surface protein D (SpsD), 36% identity with S. aureus FnBPA, and 39% identity with S. aureus FnBPB. The SdsY protein possesses the typical structure of FnBP-like proteins, including an N-terminal signal sequence, an A domain, a characteristic repeated pattern, and an LPXTG cell wall anchor motif. The level of adhesion to immobilized fibronectin was significantly higher in all S. delphini strains tested than in the fibronectin-binding-deficient S. aureus DU5883 strain. By using a model of human osteoblast infection, the level of internalization of all strains tested was significantly higher than with the invasive-incompetent S. aureus DU5883. These findings were confirmed by phenotype restoration after transformation of DU5883 by a plasmid expression vector encoding the SdsY repeats. Additionally, using fibronectin-depleted serum and murine osteoblast cell lines deficient for the β1 integrin, the involvement of fibronectin and β1 integrin was demonstrated in S. delphini internalization. The present study demonstrates that additional staphylococcal species are able to invade NPPCs and proposes a method to identify FnBP-like proteins.




    hy

    Single-cell O2 exchange imaging shows that cytoplasmic diffusion is a dominant barrier to efficient gas transport in red blood cells [Physiology]

    Disorders of oxygen transport are commonly attributed to inadequate carrying capacity (anemia) but may also relate to inefficient gas exchange by red blood cells (RBCs), a process that is poorly characterized yet assumed to be rapid. Without direct measurements of gas exchange at the single-cell level, the barriers to O2...