hi

Synthesis, crystal structure and Hirshfeld surface analysis of [1-(4-bromo­phen­yl)-1H-1,2,3-triazol-4-yl]methyl 2-(4-nitro­phen­oxy)acetate

The title compound, C17H13BrN4O5, was synthesized by a Cu2Br2-catalysed Meldal–Sharpless reaction between 4-nitro­phen­oxy­acetic acid propargyl ether and para-bromo­phenyl­azide, and characterized by X-ray structure determination and 1H NMR spectroscopy. The mol­ecules, with a near-perpendicular orientation of the bromo­phenyl-triazole and nitro­phen­oxy­acetate fragments, are connected into a three-dimensional network by inter­molecular C—H⋯O and C—H⋯N hydrogen bonds (confirmed by Hirshfeld surface analysis), π–π and Br–π inter­actions.




hi

Synthesis, crystal structure and Hirshfeld surface analysis of 1-[(1-octyl-1H-1,2,3-triazol-4-yl)methyl]-3-phenyl-1,2-di­hydro­quinoxalin-2(1H)-one

In the title mol­ecule, C25H29N5O, the di­hydro­quinoxaline unit is not quite planar (r.m.s. deviation = 0.030 Å) as there is a dihedral angle of 2.69 (3)° between the mean planes of the constituent rings and the mol­ecule adopts a hairpin conformation. In the crystal, the polar portions of the mol­ecules are associated through C—H⋯O and C—H⋯N hydrogen bonds and C—H⋯π(ring) and C=O⋯π(ring) inter­actions, forming thick layers parallel to the bc plane and with the n-octyl groups on the outside surfaces.




hi

Puckering effects of 4-hy­droxy-l-proline isomers on the conformation of ornithine-free Gramicidin S

The cyclic peptide cyclo(Val-Leu-Leu-d-Phe-Pro)2 (peptide 1) was specifically designed for structural chemistry investigations, drawing inspiration from Gramicidin S (GS). Previous studies have shown that Pro residues within 1 adopt a down-puckering conformation of the pyrrolidine ring. By incorporating fluoride-Pro with 4-trans/cis-isomers into 1, an up-puckering conformation was successfully induced. In the current investigation, introducing hy­droxy­prolines with 4-trans/cis-isomer configurations (tHyp/cHyp) into 1 gave cyclo(Val-Leu-Leu-d-Phe-tHyp)2 methanol disolvate monohydrate, C62H94N10O12·2CH4O·H2O (4), and cyclo(Val-Leu-Leu-d-Phe-cHyp)2 monohydrate, C62H94N10O12·H2O (5), respectively. However, the puckering of 4 and 5 remained in the down conformation, regardless of the geometric position of the hydroxyl group. Although the backbone structure of 4 with trans-substitution was asymmetric, the asymmetric backbone of 5 with cis-substitution was unexpected. It is speculated that the anti­cipated influence of stress from the geometric positioning, which was expected to affect the puckering, may have been mitigated by inter­actions between the hydroxyl groups of hy­droxy­proline, the solvent mol­ecules, and peptides.




hi

Crystal structure and Hirshfeld surface analysis of di­chlorido­[2-(3-cyclo­pentyl-1,2,4-triazol-5-yl-κN4)pyridine-κN]palladium(II) di­methyl­formamide monosolvate

This study presents the synthesis, characterization and Hirshfeld surface analysis of the title mononuclear complex, [PdCl2(C12H14N4)]·C3H7NO. The compound crystalizes in the P21/c space group of the monoclinic system. The asymmetric unit contains one neutral complex Pd(HLc-Pe)Cl2 [HLc-Pe is 2-(3-cyclo­pentyl-1,2,4-triazol-5-yl)pyridine] and one mol­ecule of DMF as a solvate. The Pd atom has a square-planar coordination. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O and C—H⋯N hydrogen bonds, forming layers parallel to the bc plane. A Hirshfeld surface analysis showed that the H⋯H contacts dominate the crystal packing with a contribution of 41.4%. The contribution of the N⋯H/H⋯N and H⋯O/O⋯H inter­actions is somewhat smaller, amounting to 12.4% and 5%, respectively.




hi

Synthesis, crystal structure and Hirshfeld surface analysis of [Cu(H2L)2(μ-Cl)CuCl3]·H2O [H2L = 2-hy­droxy-N'-(propan-2-yl­idene)benzohydrazide]

The present study focuses on the synthesis and structural characterization of a novel dinuclear CuII complex, [tri­chlorido­copper(II)]-μ-chlorido-{bis­[2-hy­droxy-N'-(propan-2-yl­idene)benzohydrazide]copper(II)} monohydrate, [Cu2Cl4(C10H12N2O2)2]·H2O or [Cu(H2L)2(μ-Cl)CuCl3]·H2O [H2L = 2-hy­droxy-N'-(propan-2-yl­idene)benzohydrazide]. The complex crystallizes in the monoclinic space group P21/n with one mol­ecule of water, which forms inter­actions with the ligands. The first copper ion is penta-coordinated to two benzohydrazine-derived ligands via two nitro­gen and two oxygen atoms, and one bridging chloride, which is also coordinated by the second copper ion alongside three terminal chlorines in a distorted tetra­hedral geometry. The arrangement around the first copper ion exhibits a distorted geometry inter­mediate between trigonal bipyramidal and square pyramidal. In the crystal, chains are formed via inter­molecular inter­actions along the a-axis direction, with subsequent layers constructed through hydrogen-bonding inter­actions parallel to the ac plane, and through slipped π–π stacking inter­actions parallel to the ab plane, resulting in a three-dimensional network. The inter­molecular inter­actions in the crystal structure were qu­anti­fied and analysed using Hirshfeld surface analysis. Residual electron density from disordered methanol mol­ecules in the void space could not be reasonably modelled, thus a solvent mask was applied.




hi

Crystal structure and Hirshfeld surface analysis of 1-[6-bromo-2-(3-bromo­phen­yl)-1,2,3,4-tetra­hydro­quinolin-4-yl]pyrrolidin-2-one

This study presents the synthesis, characterization and Hirshfeld surface analysis of 1-[6-bromo-2-(3-bromo­phen­yl)-1,2,3,4-tetra­hydro­quinolin-4-yl]pyrrolidin-2-one, C19H18Br2N2O. In the title compound, the pyrrolidine ring adopts a distorted envelope configuration. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O, C—H⋯O and C—H⋯Br hydrogen bonds, forming a three-dimensional network. In addition, pairs of mol­ecules along the c axis are connected by C—H⋯π inter­actions. According to a Hirshfeld surface study, H⋯H (36.9%), Br⋯H/H⋯Br (28.2%) and C⋯H/H⋯C (24.3%) inter­actions are the most significant contributors to the crystal packing.




hi

Synthesis, crystal structure and Hirshfeld surface analysis of a new copper(II) complex based on diethyl 2,2'-(4H-1,2,4-triazole-3,5-di­yl)di­acetate

The title compound, bis­[μ-2,2'-(4H-1,2,4-triazole-3,5-di­yl)di­acetato]­bis­[di­aqua­copper(II)] dihydrate, [Cu2(C6H5N3O4)2(H2O)4]·2H2O, is a dinuclear octa­hedral CuII triazole-based complex. The central copper atoms are hexa-coordinated by two nitro­gen atoms in the equatorial positions, two equatorial oxygen atoms of two carboxyl­ate substituents in position 3 and 5 of the 1,2,4-triazole ring, and two axial oxygen atoms of two water mol­ecules. Two additional solvent water mol­ecules are linked to the title mol­ecule by O—H⋯N and O⋯H—O hydrogen bonds. The crystal structure is built up from the parallel packing of discrete supra­molecular chains running along the a-axis direction. Hirshfeld surface analysis suggests that the most important contributions to the surface contacts are from H⋯O/O⋯H (53.5%), H⋯H (28.1%), O⋯O (6.3%) and H⋯C/C⋯H (6.2%) inter­actions. The crystal studied was twinned by a twofold rotation around [100].




hi

Crystal structure, Hirshfeld surface analysis, DFT and the mol­ecular docking studies of 3-(2-chloro­acet­yl)-2,4,6,8-tetra­phenyl-3,7-di­azabicyclo­[3.3.1]nonan-9-one

In the title compound, C33H29ClN2O2, the two piperidine rings of the di­aza­bicyclo moiety adopt distorted-chair conformations. Inter­molecular C—H⋯π inter­actions are mainly responsible for the crystal packing. The inter­molecular inter­actions were qu­anti­fied and analysed using Hirshfeld surface analysis, revealing that H⋯H inter­actions contribute most to the crystal packing (52.3%). The mol­ecular structure was further optimized by density functional theory (DFT) at the B3LYP/6–31 G(d,p) level and is compared with the experimentally determined mol­ecular structure in the solid state.




hi

Crystal structure of a tris(2-amino­eth­yl)methane capped carbamoyl­methyl­phosphine oxide compound

The mol­ecular structure of the tripodal carbamoyl­methyl­phosphine oxide compound diethyl {[(5-[2-(di­eth­oxy­phosphor­yl)acetamido]-3-{2-[2-(di­eth­oxy­phos­phor­yl)acetamido]­eth­yl}pent­yl)carbamo­yl]meth­yl}phospho­nate, C25H52N3O12P3, features six intra­molecular hydrogen-bonding inter­actions. The phospho­nate groups have key bond lengths ranging from 1.4696 (12) to 1.4729 (12) Å (P=O), 1.5681 (11) to 1.5811 (12) Å (P—O) and 1.7881 (16) to 1.7936 (16) Å (P—C). Each amide group adopts a nearly perfect trans geometry, and the geometry around each phophorus atom resembles a slightly distorted tetra­hedron.




hi

Crystal structure, Hirshfeld surface analysis, DFT optimized mol­ecular structure and the mol­ecular docking studies of 1-[2-(cyano­sulfan­yl)acet­yl]-3-methyl-2,6-bis­(4-methyl­phen­yl)piperidin-4-one

The two mol­ecules in the asymmetric unit of the title compound, C23H24N2O2S, have a structural overlap with an r.m.s. deviation of 0.82 Å. The piperidine rings adopt a distorted boat conformation. Intra- and inter­molecular C—H⋯O hydrogen bonds are responsible for the cohesion of the crystal packing. The inter­molecular inter­actions were qu­anti­fied and analysed using Hirshfeld surface analysis. The mol­ecular structure optimized by density functional theory (DFT) at the B3LYP/6–311++G(d,p)level is compared with the experimentally determined mol­ecular structure in the solid state.




hi

Synthesis, crystal structure, and Hirshfeld surface analysis of 1,3-di­hydro-2H-benzimidazol-2-iminium 3-carb­oxy-4-hy­droxy­benzene­sulfonate

The asymmetric unit of the title salt, C7H8N3+·C7H5O6S−, comprises two 1,3-di­hydro-2H-benzimidazol-2-iminium cations and two 2-hy­droxy-5-sulfobenzoate anions (Z' = 2). In the crystal, the mol­ecules inter­act through N—H⋯O, O—H⋯O hydrogen bonds and C—O⋯π contacts. The hydrogen-bonding inter­actions lead to the formation of layers parallel to (overline{1}01). Hirshfeld surface analysis revealed that H⋯H contacts contribute to most of the crystal packing with 38.9%, followed by H⋯O contacts with 36.2%.




hi

Synthesis, crystal structure and Hirshfeld surface analysis of 4'-cyano-[1,1'-biphen­yl]-4-yl 3-(benz­yloxy)benzoate

In the title compound, C27H19O3N, the dihedral angle between the aromatic rings of the biphenyl unit is 38.14 (2)° and the C—O—C—C torsion angle in the benz­yloxy benzene fragment is 179.1 (2)°. In the crystal, the mol­ecules are linked by weak C—H⋯O inter­actions forming S(9) chains propagating along [010]. The most important contributions to the Hirshfeld surface arise from H⋯H (32.4%) and C⋯H/H⋯C (37.0%) contacts.




hi

Crystal structure, Hirshfeld surface analysis, and calculations of inter­molecular inter­action energies and energy frameworks of 1-[(1-hexyl-1H-1,2,3-triazol-4-yl)meth­yl]-3-(1-methyl­ethen­yl)-benzimidazol-2-one

The benzimidazole moiety in the title mol­ecule, C19H25N5O, is almost planar and oriented nearly perpendicular to the triazole ring. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules into a network structure. There are no π–π inter­actions present but two weak C—H⋯π(ring) inter­actions are observed. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (62.0%), H⋯C/C⋯H (16.1%), H⋯N/N⋯H (13.7%) and H⋯O/O⋯H (7.5%) inter­actions. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated via the dispersion energy contributions in the title compound.




hi

Crystal structure and Hirshfeld surface analysis of (E)-N-(2-styrylphen­yl)benzene­sulfonamide

The crystal structure of the title compound C20H17NO2S features hydrogen-bonding and C—H⋯π inter­actions. Hirshfeld surface analysis revealed that H⋯H, C⋯H/H⋯C and O⋯H/H⋯O inter­actions make a major contribution to the crystal packing. Docking studies were carried out to determine the binding affinity and inter­action profile of the title compound with EGFR kinase, a member of the ErbB family of receptor tyrosine kinases, which is crucial for processes such as cell proliferation and differentiation. The title compound shows a strong binding affinity with EGFR kinase, with the most favourable conformation having a binding energy of −8.27 kcal mol−1 and a predicted IC50 of 870.34 nM, indicating its potential as a promising candidate for targeted lung cancer therapy.




hi

Crystal structures of the (η2:η2-cyclo­octa-1,5-diene)(η6-toluene)­iridium(I) cation and μ-chlorido-iridium(III) complexes of 2-(phosphinito)- and 2-(phosphinometh­yl)anthra­quinone ligands

When reacted in dry, degassed toluene, [Ir(COD)Cl]2 (COD = cyclo­octa-1,5-diene) and 2 equivalents of 2-(di-tert-butyl­phosphinito)anthra­quinone (tBuPOAQH) were found to form a unique tri-iridium compound consisting of one monoanionic dinuclear tri-μ-chlorido complex bearing one bidentate tBuPOAQ ligand per iridium, which was charge-balanced by an outer sphere [Ir(toluene)(COD)]+ ion, the structure of which has not previously been reported. This product, which is a toluene solvate, namely, (η2:η2-cyclo­octa-1,5-diene)(η6-toluene)­iridium(I) tri-μ-chlorido-bis­({3-[(di-tert-butyl­phosphan­yl)­oxy]-9,10-dioxoanthracen-2-yl}hydridoiridium(III)) toluene monosolvate, [Ir(C7H8)(C8H12)][Ir2H2(C22H24O3P)2Cl3]·C7H8 or [Ir(toluene)(COD)][Ir(κ-P,C-tBuPOAQ)(H)]2(μ-Cl)3]·toluene, formed as small orange platelets at room temperature, crystallizing in the triclinic space group Poverline{1}. The cation and anion are linked via weak C—H⋯O inter­actions. The stronger inter­molecular attractions are likely the offset parallel π–π inter­actions, which occur between the toluene ligands of pairs of inverted cations and between pairs of inverted anthra­quinone moieties, the latter of which are capped by toluene solvate mol­ecules, making for π-stacks of four mol­ecules each. The related ligand, 2-(di-tert-butyl­phosphinometh­yl)-anthra­quinone (tBuPCAQH), did not form crystals suitable for X-ray diffraction under analogous reaction conditions. However, when the reaction was conducted in chloro­form, yellow needles readily formed following addition of 1 atm of carbon monoxide. Diffraction studies revealed a neutral, dinuclear, di-μ-chlorido complex, di-μ-chlorido-bis­(carbon­yl{3-[(di-tert-butyl­phosphan­yl)­oxy]-9,10-dioxoanthracen-2-yl}hydridoiridium(I)), [Ir2H2(C23H26O2P)2Cl2(CO)2] or [Ir(κ-P,C-tBuPCAQ)(H)(CO)(μ-Cl)]2, Ir2C48H54Cl2O6P2, again crystallizing in space group Poverline{1}. Offset parallel π–π inter­actions between anthra­quinone groups of adjacent mol­ecules link the mol­ecules in one dimension.




hi

Synthesis, crystal structure and Hirshfeld surface analysis of (2-amino-1-methyl­benzimidazole-κN3)aqua­bis­(4-oxopent-2-en-2-olato-κ2O,O')nickel(II) ethanol monosolvate

The mol­ecule of the title compound, [Ni(C5H7O2)2(C8H9N3)(H2O)]·C2H5OH, has triclinic (Poverline{1}) symmetry. This compound is of inter­est for its anti­microbial properties. The asymmetric unit comprises two independent complex mol­ecules, which are linked by N—H⋯O and O—H⋯O hydrogen bonds along [111]. Hirshfeld surface analysis indicates that 71.7% of inter­mol­ecular inter­actions come from H⋯H contacts, 17.7% from C⋯H/H⋯C contacts and 7.6% from O⋯H/H⋯O contacts, with the remaining contribution coming from N⋯H/H⋯N, C⋯N/N⋯C, C⋯C and O⋯O contacts.




hi

Synthesis and crystal structure of poly[ethanol(μ-4-methyl­pyridine N-oxide)di-μ-thio­cyanato-cobalt(II)]

Reaction of 4-methyl­pyridine N-oxide and Co(NCS)2 in ethanol as solvent accidentally leads to the formation of single crystals of Co(NCS)2(4-methyl­pyridine N-oxide)(ethanol) or [Co(NCS)2(C6H7NO)(C2H6O)]n. The asymmetric unit of the title compound consists of one CoII cation, two crystallographically independent thio­cyanate anions, one 4-methyl­pyridine N-oxide coligand and one ethanol mol­ecule on general positions. The cobalt cations are sixfold coordinated by one terminal and two bridging thio­cyanate anions, two bridging 4-methyl­pyridine N-oxide coligands and one ethanol mol­ecule, with a slightly distorted octa­hedral geometry. The cobalt cations are linked by single μ-1,3(N,S)-bridging thio­cyanate anions into corrugated chains, that are further connected into layers by pairs of μ-1,1(O,O)-bridging 4-methyl­pyridine N-oxide coligands. The layers are parallel to the bc plane and are separated by the methyl groups of the 4-methyl­pyridine N-oxide coligands. Within the layers, intra­layer hydrogen bonding is observed.




hi

Synthesis, non-spherical structure refinement and Hirshfeld surface analysis of racemic 2,2'-diisobut­oxy-1,1'-bi­naphthalene

In the racemic title compound, C28H30O2, the naphthyl ring systems subtend a dihedral angle of 68.59 (1)° and the mol­ecular conformation is consolidated by a pair of intra­molecular C—H⋯π contacts. The crystal packing features a weak C—H⋯π contact and van der Waals forces. A Hirshfeld surface analysis of the crystal structure reveals that the most significant contributions are from H⋯H (73.2%) and C⋯H/H⋯C (21.2%) contacts.




hi

Crystal structure and Hirshfeld surface analysis of tri­chlorido­(1,10-phenanthroline-κ2N,N')phenyltin(IV)

The title compound, [Sn(C6H5)Cl3(C12H8N2)], which was obtained by the reaction between 1,10-phenanthroline and phenyl­tin trichloride in methanol, exhibits intra­molecular hydrogen-bonding inter­actions involving the chlorine and hydrogen atoms. Crystal cohesion is ensured by inter­molecular C—H⋯Cl hydrogen bonds, as well as Y—X⋯π and π-stacking inter­actions involving three different aromatic rings with centroid–centroid distances of 3.6605 (13), 3.9327 (14) and 3.6938 (12) Å]. Hirshfeld surface analysis and the associated two-dimensional fingerprint plots reveal significant contributions from H⋯H (30.7%), Cl⋯H/H⋯Cl (32.4%), and C⋯H/H⋯C (24.0%) contacts to the crystal packing while the C⋯C (6.2%), C⋯Cl/Cl⋯C (4.1%), and N⋯H/H⋯N (1.7%) inter­actions make smaller contributions.




hi

Crystal structure and Hirshfeld surface analysis of {2-[bis­(pyridin-2-ylmeth­yl)amino]­ethane-1-thiol­ato}­chlorido­cadmium(II)

The title compound, [Cd(C14H16N3S)Cl] or [CdLCl] (1), where LH = 2-[bis­(pyridin-2-ylmeth­yl)amino]­ethane-1-thiol, was prepared and structurally characterized. The Cd2+ complex crystallizes in P21/c with a distorted trigonal–bipyramidal metal coordination geometry. Supra­molecular inter­actions in 1 include parallel offset face-to-face inter­actions between inversion-related pyridyl rings and potential hydrogen bonds with chlorine or sulfur as the acceptor. Additional cooperative pyrid­yl–pyridyl inter­actions with roughly 45° tilt angles and centroid–centroid distances of less than 5.5 Å likely also contribute to the overall solid-state stability. Hirshfeld surface analysis indicates that H⋯H (51.2%), Cl⋯H/H⋯Cl (13.9%), C⋯H/H⋯C (12.3%) and S⋯H/H⋯S (11.8%) inter­actions are dominant in the solid state.




hi

Synthesis and crystal structure of poly[[μ-chlorido-μ-(2,3-di­methyl­pyrazine)-copper(I)] ethanol hemisolvate], which shows a new isomeric CuCl(2,3-di­methyl­pyrazine) network

Reaction of copper(I)chloride with 2,3-di­methyl­pyrazine in ethanol leads to the formation of the title compound, poly[[μ-chlorido-μ-(2,3-di­methyl­pyrazine)-copper(I)] ethanol hemisolvate], {[CuCl(C6H8N2)]·0.5C2H5OH}n or CuCl(2,3-di­methyl­pyrazine) ethanol hemisolvate. Its asymmetric unit consists of two crystallographically independent copper cations, two chloride anions and two 2,3-di­methyl­pyrazine ligands as well as one ethanol solvate mol­ecule in general positions. The ethanol mol­ecule is disordered and was refined using a split model. The methyl H atoms of the 2,3-di­methyl­pyrazine ligands are also disordered and were refined in two orientations rotated by 60° relative to each other. In the crystal structure, each copper cation is tetra­hedrally coordinated by two N atoms of two bridging 2,3-di­methyl­pyrazine ligands and two μ-1,1-bridg­ing chloride anions. Each of the two copper cations are linked by pairs of bridging chloride anions into dinuclear units that are further linked into layers via bridging 2,3-di­methyl­pyrazine coligands. These layers are stacked in such a way that channels are formed in which the disordered solvent mol­ecules are located. The topology of this network is completely different from that observed in the two polymorphic modifications of CuCl(2,3-di­methyl­pyrazine) reported in the literature [Jess & Näther (2006). Inorg. Chem. 45, 7446–7454]. Powder X-ray diffraction measurements reveal that the title compound is unstable and transforms immediately into an unknown crystalline phase.




hi

Synthesis, crystal structure and Hirshfeld surface analysis of sulfamethoxazolium methyl­sulfate monohydrate

The mol­ecular salt sulfamethoxazolium {or 4-[(5-methyl-1,2-oxazol-3-yl)sulf­amo­yl]anilinium methyl sulfate monohydrate}, C10H12N3O3S+·CH3O4S−·H2O, was prepared by the reaction of sulfamethoxazole and H2SO4 in methanol and crystallized from methanol–ether–water. Protonation takes place at the nitro­gen atom of the primary amino group. In the crystal, N—H⋯O hydrogen bonds (water and methyl­sulfate anion) and inter­molecular N—H⋯N inter­actions involving the sulfonamide and isoxazole nitro­gen atoms, link the components into a tri-dimensional network, additional cohesion being provided by face-to-face π–π inter­actions between the phenyl rings of adjacent mol­ecules. A Hirshfeld surface analysis was used to verify the contributions of the different inter­molecular inter­actions, showing that the three most important contributions for the crystal packing are from H⋯O (54.1%), H⋯H (29.2%) and H⋯N (5.0%) inter­actions.




hi

Crystal structure and Hirshfeld surface analyses, crystal voids, inter­molecular inter­action energies and energy frameworks of 3-benzyl-1-(3-bromoprop­yl)-5,5-di­phenyl­imidazolidine-2,4-dione

The title mol­ecule, C25H23BrN2O2, adopts a cup shaped conformation with the distinctly ruffled imidazolidine ring as the base. In the crystal, weak C—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions form helical chains of mol­ecules extending along the b-axis direction that are linked by additional weak C—H⋯π(ring) inter­actions across inversion centres. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (51.0%), C⋯H/H⋯C (21.3%), Br⋯H/H⋯Br (12.8%) and O⋯H/H⋯O (12.4%) inter­actions. The volume of the crystal voids and the percentage of free space were calculated to be 251.24 Å3 and 11.71%, respectively, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated by the dispersion energy.




hi

Synthesis, crystal structure and properties of μ-tetra­thio­anti­monato-bis­[(cyclam)zinc(II)] perchlorate 0.8-hydrate

The reaction of Zn(ClO4)2·6H2O with Na3SbS4·9H2O in a water/aceto­nitrile mixture leads to the formation of the title compound, (μ-tetra­thio­anti­monato-κ2S:S')bis­[(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N)zinc(II)] perchlorate 0.8-hydrate, [Zn2(SbS4)(C10H24N4)2]ClO4·0.8H2O or [(Zn-cyclam)2(SbS4)]+[ClO4]−·0.8H2O. The asymmetric unit consists of two crystallographically independent [SbS4]3– anions, two independent perchlorate anions and two independent water mol­ecules as well as four crystallographically independent Zn(cyclam)2+ cations that are located in general positions. Both perchlorate anions and one cyclam ligand are disordered and were refined with a split mode using restraints. The water mol­ecules are partially occupied. Two Zn(cyclam)2+ cations are linked via the [SbS4]3– anions into [Zn2(cyclam)2SbS4]+ cations that are charged-balanced by the [ClO4]− anions. The water mol­ecules of crystallization are hydrogen bonded to the [SbS4]3– anions. The cations, anions and water mol­ecules are linked by N—H⋯O, N—H⋯S and O—H⋯S hydrogen bonds into a three-dimensional network. Powder X-ray diffraction proves that a pure sample had been obtained that was additionally investigated for its spectroscopic properties.




hi

Crystal structure and Hirshfeld surface analysis of (nitrato-κ2O,O')(1,4,7,10-tetra­aza­cyclo­dodecane-κ4N)nickel(II) nitrate

The crystal structure of the title compound, [Ni(C8H20N4)(NO3)]NO3, at room temperature, has monoclinic (P21/n) symmetry. The structure displays inter­molecular hydrogen bonding. The nickel displays a distorted bipyramidal geometry with the symmetric bidentate bonded nitrate occupying an equatorial site. The 1,4,7,10-tetra­aza­cyclo­dodecane (cyclen) backbone has the [4,8] configuration, with three nitro­gen-bound H atoms directed above the plane of the nitro­gen atoms towards the offset nickel atom with the fourth nitro­gen-bound hydrogen directed below from the plane of the nitro­gen atoms. The nitrate anion O atoms are seen to hydrogen bond to the H atoms bound to the N atoms of the ligand.




hi

Synthesis, structures and Hirshfeld surface analyses of 2-hy­droxy-N'-methyl­acetohydrazide and 2-hy­droxy-N-methyl­acetohydrazide

The structures of the title compounds 2-hy­droxy-N'-methyl­acetohydrazide, 1, and 2-hy­droxy-N-methyl­acetohydrazide, 2, both C3H8N2O2, as regioisomers differ in the position of the methyl group relative to the N atoms in 2-hy­droxy-acetohydrazide. In the structure of 1, the 2-hy­droxy-acetohydrazide core [OH—C—C(=O)—NH—NH] is almost planar and the methyl group is rotated relative to this plane. As opposed to 1, in the structure of 2 all non-hydrogen atoms lie in the same plane. The hydroxyl and carbonyl groups in structures 1 and 2 are in trans and cis positions, respectively. The methyl amino group and carbonyl group are in the cis position relative to the C—N bond in structure 1, while the amino group and carbonyl group are in the trans position relative to the C—N bond in stucture 2. In the crystal, mol­ecules of 1 are linked by N—H⋯O and O—H⋯N inter­molecular hydrogen bonds, forming layers parallel to the ab crystallographic plane. A Hirshfeld surface analysis showed that the H⋯H contacts dominate the crystal packing with a contribution of 55.3%. The contribution of the H⋯O/O⋯H inter­action is somewhat smaller, amounting to 30.8%. In the crystal, as a result of the inter­molecular O—H⋯O hydrogen bonds, mol­ecules of 2 form dimers, which are linked by N—H⋯O hydrogen bonds and a three-dimensional supra­molecular network The major contributors to the Hirshfeld surface are H⋯H (58.5%) and H⋯O/O⋯H contacts (31.7%).




hi

The crystal structures determination and Hirshfeld surface analysis of N-(4-bromo-3-meth­oxy­phen­yl)- and N-{[3-bromo-1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}- derivatives of N-{[3-bromo-1-(phenylsulfon­yl)-1H-indol-

Two new phenyl­sulfonyl­indole derivatives, namely, N-{[3-bromo-1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}-N-(4-bromo-3-meth­oxy­phen­yl)benzene­sulfonamide, C28H22Br2N2O5S2, (I), and N,N-bis­{[3-bromo-1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}benzene­sulfonamide, C36H27Br2N3O6S3, (II), reveal the impact of intra­molecular π–π inter­actions of the indole moieties as a factor not only governing the conformation of N,N-bis­(1H-indol-2-yl)meth­yl)amines, but also significantly influencing the crystal patterns. For I, the crystal packing is dominated by C—H⋯π and π–π bonding, with a particular significance of mutual indole–indole inter­actions. In the case of II, the mol­ecules adopt short intra­molecular π–π inter­actions between two nearly parallel indole ring systems [with the centroids of their pyrrole rings separated by 3.267 (2) Å] accompanied by a set of forced Br⋯O contacts. This provides suppression of similar inter­actions between the mol­ecules, while the importance of weak C—H⋯O hydrogen bonding to the packing naturally increases. Short contacts of the latter type [C⋯O = 3.389 (6) Å] assemble pairs of mol­ecules into centrosymmetric dimers with a cyclic R22(13) ring motif. These findings are consistent with the results of a Hirshfeld surface analysis and together they suggest a tool for modulating the supra­molecular behavior of phenyl­sulfonyl­ated indoles.




hi

Synthesis and crystal structure of sodium (ethane-1,2-di­yl)bis­[(3-meth­oxy­prop­yl)phosphinodi­thiol­ate] octa­hydrate

The title compound, catena-poly[[tri­aqua­sodium]-di-μ-aqua-[tri­aqua­sodium]-μ-(ethane-1,2-di­yl)bis­[(3-meth­oxy­prop­yl)phosphinodi­thiol­ato]], [Na2(C10H22O2P2S4)(H2O)8]n, crystallizes in the triclinic space group P1. The dianionic [CH3O(CH2)3P(=S)(S—)CH2CH2P(=S)(S—)(CH2)3OCH3]2− ligand fragments are joined by a dicationic [Na2(H2O)8]2+ cluster that includes the oxygen of the meth­oxy­propyl unit of the ligand to form infinite chains.




hi

Crystal structure, Hirshfeld surface analysis, and DFT and mol­ecular docking studies of 6-cyanona­phthalen-2-yl 4-(benz­yloxy)benzoate

In the title compound, C25H17NO3, the torsion angle associated with the phenyl benzoate group is −173.7 (2)° and that for the benz­yloxy group is −174.8 (2)° establishing an anti-type conformation. The dihedral angles between the ten-membered cyanona­phthalene ring and the aromatic ring of the phenyl benzoate and the benz­yloxy fragments are 40.70 (10) and 87.51 (11)°, respectively, whereas the dihedral angle between the aromatic phenyl benzoate and the benz­yloxy fragments is 72.30 (13)°. In the crystal, the mol­ecules are linked by weak C—H⋯O inter­actions forming S(4) chains propagating parallel to [010]. The packing is consolidated by three C—H⋯π inter­actions and two π–π stacking inter­actions between the aromatic rings of naphthalene and phenyl benzoate with centroid-to-centroid distances of 3.9698 (15) and 3.8568 (15) Å, respectively. Inter­molecular inter­actions were qu­anti­fied using Hirshfeld surface analysis. The mol­ecular structure was further optimized by density functional theory (DFT) at the B3LYP/6–311+ G(d,p) level, revealing that the energy gap between HOMO and LUMO is 3.17 eV. Mol­ecular docking studies were carried out for the title compound as a ligand and SARS-Covid-2(PDB ID:7QF0) protein as a receptor giving a binding affinity of −9.5 kcal mol−1.




hi

Structural multiplicity in a solvated hydrate of the anti­retroviral protease inhibitor Lopinavir

Lopinavir is a potent protease inhibitor that is used as a first-line pharmaceutical drug for the treatment of HIV. The multi-component solvated Lopinavir crystal, systematic name (2S)-N-[(2S,4S,5S)-5-[2-(2,6-di­methyl­phen­oxy)acetamido]-4-hy­droxy-1,6-di­phenyl­hexan-2-yl]-3-methyl-2-(2-oxo-1,3-diazinan-1-yl)butanamide–ethane-1,2-diol–water (8/3/7) 8C37H48N4O5·3C2H6O2·7H2O, was prepared using evaporative methods. The crystalline material obtained from this experimental synthesis was characterized and elucidated by single-crystal X-ray diffraction (SC-XRD). The crystal structure is unusual in that the unit cell contains 18 mol­ecules. The stoichiometric ratio of this crystal is eight Lopinavir mol­ecules [8(C37H48N4O5)], three ethane-1,2-diol mol­ecules [3(C2H6O2)] and seven water mol­ecules [7(H2O)]. The crystal packing features both bi- and trifurcated hydrogen bonds between atoms.




hi

Synthesis, crystal structure and Hirshfeld surface analysis of 2-{4-[(2-chloro­phen­yl)meth­yl]-3-methyl-6-oxopyridazin-1-yl}-N-phenyl­acetamide

In the title mol­ecule, C20H18ClN3O2, the 2-chloro­phenyl group is disordered to a small extent [occupancies 0.875 (2)/0.125 (2)]. The phenyl­acetamide moiety is nearly planar due to a weak, intra­molecular C—H⋯O hydrogen bond. In the crystal, N—H⋯O hydrogen bonds and π-stacking inter­actions between pyridazine and phenyl rings form helical chains of mol­ecules in the b-axis direction, which are linked by C—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions. A Hirshfeld surface analysis was performed, which showed that H⋯H, C⋯H/H⋯C and O⋯H/H⋯O inter­actions to dominate the inter­molecular contacts in the crystal.




hi

Crystal structure and Hirshfeld surface analysis of the salt 2-iodo­ethyl­ammonium iodide – a possible side product upon synthesis of hybrid perovskites

The title organic–inorganic hybrid salt, C2H7IN+·I−, is isotypic with its bromine analog, C2H7BrN+·Br− [Semenikhin et al. (2024). Acta Cryst. E80, 738–741]. Its asymmetric unit consists of one 2-iodo­ethyl­ammonium cation and one iodide anion. The NH3+ group of the organic cation forms weak hydrogen bonds with four neighboring iodide anions, leading to the formation of supra­molecular layers propagating parallel to the bc plane. Hirshfeld surface analysis reveals that the most important contribution to the crystal packing is from N—H⋯I inter­actions (63.8%). The crystal under investigation was twinned by a 180° rotation around [001].




hi

Crystal structure and Hirshfeld surface analysis of bis­(benzoyl­acetonato)(ethanol)dioxidouranium(VI)

A new uranium metal–organic complex salt, [U(C10H9O2)2O2(C2H6O)], with benzoyl acetone, namely, bis­(benzoyl­acetonato)(ethanol)dioxidouranium(VI), was synthesized. The compound has monoclinic P21/n symmetry. The geometry of the seven-coordinate U atom is penta­gonal bipyramidal, with the uranyl oxygen atoms in apical positions. In the complex, the ligands bind to the metal through oxygen atoms. Additional weak O—H⋯O contacts between the cations and anions consolidate the three-dimensional arrangement of the structure. On the Hirshfeld surface, the largest contributions come from the short contacts such as van der Waals forces, including H⋯H, O⋯H and C⋯H. Inter­actions including C⋯C and O⋯C contacts were also observed; however, their contribution to the overall cohesion of the crystal structure is minor. A packing analysis was performed to check the strength of the crystal packing.




hi

Time-resolved high-energy X-ray diffraction studies of ultrathin Ni ferrite films on MgO(001)

Time-resolved high-energy X-ray diffraction was used during growth of ultrathin NixFe3−xO4 films with varying Ni content (0 ≤ x ≤ 1.5) deposited on MgO(001) substrates by reactive molecular beam epitaxy, providing an insight into the growth dynamics of these films. In order to obtain structural information, reciprocal-space maps were recorded and the temporal evolution of the Bragg peaks specific to the octahedral and tetrahedral lattice sites of the inverse spinel structure of NixFe3−xO4 was observed during growth of the films. A time delay, corresponding to a coverage of 1.2–1.8 nm, between the appearance of the Bragg reflections originating from octahedral sites and reflections originating exclusively from tetrahedral sites indicates that the ferrite films grow in two stages. In the initial growth phase, a rock salt interface layer is formed. Afterwards, a structural transition occurs and the films grow in an inverse spinel structure. The thickness of the initial rock salt phase was found to increase with Ni content and to be responsible for atypical strain in the thin films. Films with Ni contents x > 1 do not show a structural transition. These films remain in a (deficient) rock salt structure consisting of a mixed Ni–Fe oxide and do not form a spinel structure at all. They show an increased number of NiO clusters as detected by X-ray photoelectron spectroscopy of the valence band, accompanied by a significant roughening of the films.




hi

John W. White (1937–2023)




hi

POMFinder: identifying polyoxometallate cluster structures from pair distribution function data using explainable machine learning

Characterization of a material structure with pair distribution function (PDF) analysis typically involves refining a structure model against an experimental data set, but finding or constructing a suitable atomic model for PDF modelling can be an extremely labour-intensive task, requiring carefully browsing through large numbers of possible models. Presented here is POMFinder, a machine learning (ML) classifier that rapidly screens a database of structures, here polyoxometallate (POM) clusters, to identify candidate structures for PDF data modelling. The approach is shown to identify suitable POMs from experimental data, including in situ data collected with fast acquisition times. This automated approach has significant potential for identifying suitable models for structure refinement to extract quantitative structural parameters in materials chemistry research. POMFinder is open source and user friendly, making it accessible to those without prior ML knowledge. It is also demonstrated that POMFinder offers a promising modelling framework for combined modelling of multiple scattering techniques.




hi

The Pixel Anomaly Detection Tool: a user-friendly GUI for classifying detector frames using machine-learning approaches

Data collection at X-ray free electron lasers has particular experimental challenges, such as continuous sample delivery or the use of novel ultrafast high-dynamic-range gain-switching X-ray detectors. This can result in a multitude of data artefacts, which can be detrimental to accurately determining structure-factor amplitudes for serial crystallography or single-particle imaging experiments. Here, a new data-classification tool is reported that offers a variety of machine-learning algorithms to sort data trained either on manual data sorting by the user or by profile fitting the intensity distribution on the detector based on the experiment. This is integrated into an easy-to-use graphical user interface, specifically designed to support the detectors, file formats and software available at most X-ray free electron laser facilities. The highly modular design makes the tool easily expandable to comply with other X-ray sources and detectors, and the supervised learning approach enables even the novice user to sort data containing unwanted artefacts or perform routine data-analysis tasks such as hit finding during an experiment, without needing to write code.




hi

The multi-slit very small angle neutron scattering instrument at the China Spallation Neutron Source

A multi-slit very small angle neutron scattering (MS-VSANS) instrument has been finally accepted at the China Spallation Neutron Source (CSNS). It is the first spallation neutron source based VSANS instrument. MS-VSANS has a good signal-to-noise ratio and can cover a wide scattering vector magnitude range from 0.00028 to 1.4 Å−1. In its primary flight path, a combined curved multichannel beam bender and sections of rotary exchange drums are installed to minimize the background downstream of the instrument. An exchangeable multi-slit beam focusing system is integrated into the primary flight path, enabling access to a minimum scattering vector magnitude of 0.00028 Å−1. MS-VSANS has three modes, namely conventional SANS, polarizing SANS and VSANS modes. In the SANS mode, three motorized high-efficiency 3He tube detectors inside the detector tank cover scattering angles from 0.12 to 35° simultaneously. In the polarizing SANS mode, a double-V cavity provides highly polarized neutrons and a high-efficiency 3He polarization analyser allows full polarization analysis. In the VSANS mode, an innovative high-resolution gas electron multiplier detector covers scattering angles from 0.016 to 0.447°. The absolute scattering intensities of a selection of standard samples are obtained using the direct-beam technique; the effectiveness of this method is verified by testing the standard samples and comparing the results with those from a benchmark instrument. The MS-VSANS instrument is designed to be flexible and versatile and all the design goals have been achieved.




hi

Unlocking the surface chemistry of ionic minerals: a high-throughput pipeline for modeling realistic interfaces

A systematic procedure is introduced for modeling charge-neutral non-polar surfaces of ionic minerals containing polyatomic anions. By integrating distance- and charge-based clustering to identify chemical species within the mineral bulk, our pipeline, PolyCleaver, renders a variety of theoretically viable surface terminations. As a demonstrative example, this approach was applied to forsterite (Mg2SiO4), unveiling a rich interface landscape based on interactions with formaldehyde, a relevant multifaceted molecule, and more particularly in prebiotic chemistry. This high-throughput method, going beyond techniques traditionally applied in the modeling of minerals, offers new insights into the potential catalytic properties of diverse surfaces, enabling a broader exploration of synthetic pathways in complex mineral systems.




hi

Robust image descriptor for machine learning based data reduction in serial crystallography

Serial crystallography experiments at synchrotron and X-ray free-electron laser (XFEL) sources are producing crystallographic data sets of ever-increasing volume. While these experiments have large data sets and high-frame-rate detectors (around 3520 frames per second), only a small percentage of the data are useful for downstream analysis. Thus, an efficient and real-time data classification pipeline is essential to differentiate reliably between useful and non-useful images, typically known as `hit' and `miss', respectively, and keep only hit images on disk for further analysis such as peak finding and indexing. While feature-point extraction is a key component of modern approaches to image classification, existing approaches require computationally expensive patch preprocessing to handle perspective distortion. This paper proposes a pipeline to categorize the data, consisting of a real-time feature extraction algorithm called modified and parallelized FAST (MP-FAST), an image descriptor and a machine learning classifier. For parallelizing the primary operations of the proposed pipeline, central processing units, graphics processing units and field-programmable gate arrays are implemented and their performances compared. Finally, MP-FAST-based image classification is evaluated using a multi-layer perceptron on various data sets, including both synthetic and experimental data. This approach demonstrates superior performance compared with other feature extractors and classifiers.




hi

FLEXR GUI: a graphical user interface for multi-conformer modeling of proteins

Proteins are well known `shapeshifters' which change conformation to function. In crystallography, multiple conformational states are often present within the crystal and the resulting electron-density map. Yet, explicitly incorporating alternative states into models to disentangle multi-conformer ensembles is challenging. We previously reported the tool FLEXR, which, within a few minutes, automatically separates conformational signal from noise and builds the corresponding, often missing, structural features into a multi-conformer model. To make the method widely accessible for routine multi-conformer building as part of the computational toolkit for macromolecular crystallography, we present a graphical user interface (GUI) for FLEXR, designed as a plugin for Coot 1. The GUI implementation seamlessly connects FLEXR models with the existing suite of validation and modeling tools available in Coot. We envision that FLEXR will aid crystallographers by increasing access to a multi-conformer modeling method that will ultimately lead to a better representation of protein conformational heterogeneity in the Protein Data Bank. In turn, deeper insights into the protein conformational landscape may inform biology or provide new opportunities for ligand design. The code is open source and freely available on GitHub at https://github.com/TheFischerLab/FLEXR-GUI.




hi

Laue microdiffraction on polycrystalline samples above 1500 K achieved with the QMAX-µLaue furnace

X-ray Laue microdiffraction aims to characterize microstructural and mechanical fields in polycrystalline specimens at the sub-micrometre scale with a strain resolution of ∼10−4. Here, a new and unique Laue microdiffraction setup and alignment procedure is presented, allowing measurements at temperatures as high as 1500 K, with the objective to extend the technique for the study of crystalline phase transitions and associated strain-field evolution that occur at high temperatures. A method is provided to measure the real temperature encountered by the specimen, which can be critical for precise phase-transition studies, as well as a strategy to calibrate the setup geometry to account for the sample and furnace dilation using a standard α-alumina single crystal. A first application to phase transitions in a polycrystalline specimen of pure zirconia is provided as an illustrative example.




hi

Ray-tracing analytical absorption correction for X-ray crystallography based on tomographic reconstructions

Processing of single-crystal X-ray diffraction data from area detectors can be separated into two steps. First, raw intensities are obtained by integration of the diffraction images, and then data correction and reduction are performed to determine structure-factor amplitudes and their uncertainties. The second step considers the diffraction geometry, sample illumination, decay, absorption and other effects. While absorption is only a minor effect in standard macromolecular crystallography (MX), it can become the largest source of uncertainty for experiments performed at long wavelengths. Current software packages for MX typically employ empirical models to correct for the effects of absorption, with the corrections determined through the procedure of minimizing the differences in intensities between symmetry-equivalent reflections; these models are well suited to capturing smoothly varying experimental effects. However, for very long wavelengths, empirical methods become an unreliable approach to model strong absorption effects with high fidelity. This problem is particularly acute when data multiplicity is low. This paper presents an analytical absorption correction strategy (implemented in new software AnACor) based on a volumetric model of the sample derived from X-ray tomography. Individual path lengths through the different sample materials for all reflections are determined by a ray-tracing method. Several approaches for absorption corrections (spherical harmonics correction, analytical absorption correction and a combination of the two) are compared for two samples, the membrane protein OmpK36 GD, measured at a wavelength of λ = 3.54 Å, and chlorite dismutase, measured at λ = 4.13 Å. Data set statistics, the peak heights in the anomalous difference Fourier maps and the success of experimental phasing are used to compare the results from the different absorption correction approaches. The strategies using the new analytical absorption correction are shown to be superior to the standard spherical harmonics corrections. While the improvements are modest in the 3.54 Å data, the analytical absorption correction outperforms spherical harmonics in the longer-wavelength data (λ = 4.13 Å), which is also reflected in the reduced amount of data being required for successful experimental phasing.




hi

Novel high-efficiency 2D position-sensitive ZnS:Ag/6LiF scintillator detector for neutron diffraction

Scintillator-based ZnS:Ag/6LiF neutron detectors have been under development at ISIS for more than three decades. Continuous research and development aim to improve detector capabilities, achieve better performance and meet the increasingly demanding requirements set by neutron instruments. As part of this program, a high-efficiency 2D position-sensitive scintillator detector with wavelength-shifting fibres has been developed for neutron-diffraction applications. The detector consists of a double scintillator-fibre layer to improve detection efficiency. Each layer is made up of two orthogonal fibre planes placed between two ZnS:Ag/6LiF scintillator screens. Thin reflective foils are attached to the front and back scintillators of each layer to minimize light cross-talk between layers. The detector has an active area of 192 × 192 mm with a square pixel size of 3 × 3 mm. As part of the development process of the double-layer detector, a single-layer detector was built, together with a prototype detector in which the two layers of the detector could be read out separately. Efficiency calculations and measurements of all three detectors are discussed. The novel double-layer detector has been installed and tested on the SXD diffractometer at ISIS. The detector performance is compared with the current scintillator detectors employed on SXD by studying reference crystal samples. More than a factor of 3 improvement in efficiency is achieved with the double-layer wavelength-shifting-fibre detector. Software routines for further optimizations in spatial resolution and uniformity of response have been implemented and tested for 2D detectors. The methods and results are discussed in this manuscript.




hi

Bragg Spot Finder (BSF): a new machine-learning-aided approach to deal with spot finding for rapidly filtering diffraction pattern images

Macromolecular crystallography contributes significantly to understanding diseases and, more importantly, how to treat them by providing atomic resolution 3D structures of proteins. This is achieved by collecting X-ray diffraction images of protein crystals from important biological pathways. Spotfinders are used to detect the presence of crystals with usable data, and the spots from such crystals are the primary data used to solve the relevant structures. Having fast and accurate spot finding is essential, but recent advances in synchrotron beamlines used to generate X-ray diffraction images have brought us to the limits of what the best existing spotfinders can do. This bottleneck must be removed so spotfinder software can keep pace with the X-ray beamline hardware improvements and be able to see the weak or diffuse spots required to solve the most challenging problems encountered when working with diffraction images. In this paper, we first present Bragg Spot Detection (BSD), a large benchmark Bragg spot image dataset that contains 304 images with more than 66 000 spots. We then discuss the open source extensible U-Net-based spotfinder Bragg Spot Finder (BSF), with image pre-processing, a U-Net segmentation backbone, and post-processing that includes artifact removal and watershed segmentation. Finally, we perform experiments on the BSD benchmark and obtain results that are (in terms of accuracy) comparable to or better than those obtained with two popular spotfinder software packages (Dozor and DIALS), demonstrating that this is an appropriate framework to support future extensions and improvements.




hi

Synthesis and in-depth structure determination of a novel metastable high-pressure CrTe3 phase

This study reports the synthesis and crystal structure determination of a novel CrTe3 phase using various experimental and theoretical methods. The average stoichiometry and local phase separation of this quenched high-pressure phase were characterized by ex situ synchrotron powder X-ray diffraction and total scattering. Several structural models were obtained using simulated annealing, but all suffered from an imperfect Rietveld refinement, especially at higher diffraction angles. Finally, a novel stoichiometrically correct crystal structure model was proposed on the basis of electron diffraction data and refined against powder diffraction data using the Rietveld method. Scanning electron microscopy–energy-dispersive X-ray spectrometry (EDX) measurements verified the targeted 1:3 (Cr:Te) average stoichiometry for the starting compound and for the quenched high-pressure phase within experimental errors. Scanning transmission electron microscopy (STEM)–EDX was used to examine minute variations of the Cr-to-Te ratio at the nanoscale. Precession electron diffraction (PED) experiments were applied for the nanoscale structure analysis of the quenched high-pressure phase. The proposed monoclinic model from PED experiments provided an improved fit to the X-ray patterns, especially after introducing atomic anisotropic displacement parameters and partial occupancy of Cr atoms. Atomic resolution STEM and simulations were conducted to identify variations in the Cr-atom site-occupancy factor. No significant variations were observed experimentally for several zone axes. The magnetic properties of the novel CrTe3 phase were investigated through temperature- and field-dependent magnetization measurements. In order to understand these properties, auxiliary theoretical investigations have been performed by first-principles electronic structure calculations and Monte Carlo simulations. The obtained results allow the observed magnetization behavior to be interpreted as the consequence of competition between the applied magnetic field and the Cr–Cr exchange interactions, leading to a decrease of the magnetization towards T = 0 K typical for antiferromagnetic systems, as well as a field-induced enhanced magnetization around the critical temperature due to the high magnetic susceptibility in this region.




hi

Patching-based deep-learning model for the inpainting of Bragg coherent diffraction patterns affected by detector gaps

A deep-learning algorithm is proposed for the inpainting of Bragg coherent diffraction imaging (BCDI) patterns affected by detector gaps. These regions of missing intensity can compromise the accuracy of reconstruction algorithms, inducing artefacts in the final result. It is thus desirable to restore the intensity in these regions in order to ensure more reliable reconstructions. The key aspect of the method lies in the choice of training the neural network with cropped sections of diffraction data and subsequently patching the predictions generated by the model along the gap, thus completing the full diffraction peak. This approach enables access to a greater amount of experimental data for training and offers the ability to average overlapping sections during patching. As a result, it produces robust and dependable predictions for experimental data arrays of any size. It is shown that the method is able to remove gap-induced artefacts on the reconstructed objects for both simulated and experimental data, which becomes essential in the case of high-resolution BCDI experiments.




hi

Mix and measure II: joint high-energy laboratory powder diffraction and microtomography for cement hydration studies

Portland cements (PCs) and cement blends are multiphase materials of different fineness, and quantitatively analysing their hydration pathways is very challenging. The dissolution (hydration) of the initial crystalline and amorphous phases must be determined, as well as the formation of labile (such as ettringite), reactive (such as portlandite) and amorphous (such as calcium silicate hydrate gel) components. The microstructural changes with hydration time must also be mapped out. To address this robustly and accurately, an innovative approach is being developed based on in situ measurements of pastes without any sample conditioning. Data are sequentially acquired by Mo Kα1 laboratory X-ray powder diffraction (LXRPD) and microtomography (µCT), where the same volume is scanned with time to reduce variability. Wide capillaries (2 mm in diameter) are key to avoid artefacts, e.g. self-desiccation, and to have excellent particle averaging. This methodology is tested in three cement paste samples: (i) a commercial PC 52.5 R, (ii) a blend of 80 wt% of this PC and 20 wt% quartz, to simulate an addition of supplementary cementitious materials, and (iii) a blend of 80 wt% PC and 20 wt% limestone, to simulate a limestone Portland cement. LXRPD data are acquired at 3 h and 1, 3, 7 and 28 days, and µCT data are collected at 12 h and 1, 3, 7 and 28 days. Later age data can also be easily acquired. In this methodology, the amounts of the crystalline phases are directly obtained from Rietveld analysis and the amorphous phase contents are obtained from mass-balance calculations. From the µCT study, and within the attained spatial resolution, three components (porosity, hydrated products and unhydrated cement particles) are determined. The analyses quantitatively demonstrate the filler effect of quartz and limestone in the hydration of alite and the calcium aluminate phases. Further hydration details are discussed.




hi

Quality assessment of the wide-angle detection option planned at the high-intensity/extended Q-range SANS diffractometer KWS-2 combining experiments and McStas simulations

For a reliable characterization of materials and systems featuring multiple structural levels, a broad length scale from a few ångström to hundreds of nanometres must be analyzed and an extended Q range must be covered in X-ray and neutron scattering experiments. For certain samples or effects, it is advantageous to perform such characterization with a single instrument. Neutrons offer the unique advantage of contrast variation and matching by D-labeling, which is of great value in the characterization of natural or synthetic polymers. Some time-of-flight small-angle neutron scattering (TOF-SANS) instruments at neutron spallation sources can cover an extended Q range by using a broad wavelength band and a multitude of detectors. The detectors are arranged to cover a wide range of scattering angles with a resolution that allows both large-scale morphology and crystalline structure to be resolved simultaneously. However, for such analyses, the SANS instruments at steady-state sources operating in conventional monochromatic pinhole mode rely on additional wide-angle neutron scattering (WANS) detectors. The resolution must be tuned via a system of choppers and a TOF data acquisition option to reliably measure the atomic to mesoscale structures. The KWS-2 SANS diffractometer at Jülich Centre for Neutron Science allows the exploration of a wide Q range using conventional pinhole and lens focusing modes and an adjustable resolution Δλ/λ between 2 and 20%. This is achieved through the use of a versatile mechanical velocity selector combined with a variable slit opening and rotation frequency chopper. The installation of WANS detectors planned on the instrument required a detailed analysis of the quality of the data measured over a wide angular range with variable resolution. This article presents an assessment of the WANS performance by comparison with a McStas [Willendrup, Farhi & Lefmann (2004). Physica B, 350, E735–E737] simulation of ideal experimental conditions at the instrument.




hi

Rapid detection of rare events from in situ X-ray diffraction data using machine learning

High-energy X-ray diffraction methods can non-destructively map the 3D microstructure and associated attributes of metallic polycrystalline engineering materials in their bulk form. These methods are often combined with external stimuli such as thermo-mechanical loading to take snapshots of the evolving microstructure and attributes over time. However, the extreme data volumes and the high costs of traditional data acquisition and reduction approaches pose a barrier to quickly extracting actionable insights and improving the temporal resolution of these snapshots. This article presents a fully automated technique capable of rapidly detecting the onset of plasticity in high-energy X-ray microscopy data. The technique is computationally faster by at least 50 times than the traditional approaches and works for data sets that are up to nine times sparser than a full data set. This new technique leverages self-supervised image representation learning and clustering to transform massive data sets into compact, semantic-rich representations of visually salient characteristics (e.g. peak shapes). These characteristics can rapidly indicate anomalous events, such as changes in diffraction peak shapes. It is anticipated that this technique will provide just-in-time actionable information to drive smarter experiments that effectively deploy multi-modal X-ray diffraction methods spanning many decades of length scales.