v

LIGHT EMITTING DIODE AND DISPLAY DEVICE INCLUDING THE SAME

A light emitting diode includes a first electrode, a second electrode facing the first electrode, and a mixture layer between the first electrode and the second electrode. The mixture layer includes a quantum dot, a hole transporting material, and an electron transporting material.




v

LIGHT-EMITTING DEVICE, DISPLAY APPARATUS AND LIGHTING APPARATUS

A light-emitting device includes a pair of first electrodes arranged separated from and opposing each other on a first surface of a substrate; a light-emitting layer arranged on at least one of the first electrodes; a second electrode arranged on the light-emitting layer; and a bridge layer connecting the first electrodes. The bridge layer is formed of a material having a resistance that falls within a range of 100 kΩ to 100 MΩ.




v

LIGHT-EMITTING DEVICE AND POWER-GENERATING DEVICE

A light-emitting device having a light-extraction structure includes: a first electrode; a second electrode; a light-emitting layer disposed between the first electrode and the second electrode; and an inorganic-material-based layer disposed between the first electrode and the light-emitting layer or between the second electrode and the light-emitting layer. The inorganic-material-based layer has thickness of 100 nm or more and has conductivity of 10−6 Ω−1cm−1 or more and 100 Ω−1cm−1 or less.




v

LIGHT EMITTING DEVICE AND METHOD FOR MANUFACTURING THE SAME

A light emitting device and a method for manufacturing the same are disclosed. Herein, the light emitting device comprises: a substrate having a light emitting region and a sealing region surrounding the light emitting region; an OLED unit disposed over the light emitting region; a protection layer disposed over the OLED unit; a support unit disposed over the sealing region, wherein materials of the protection layer and the support unit are the same, and the support unit connects to the protection layer; and a cover disposed over the protection layer and the support unit; wherein a first height is between a surface of the support unit adjacent to the cover and a surface of the substrate, a second height is between a surface of the protection layer adjacent to the cover and the surface of the substrate, and the first height is larger than the second height.




v

ORGANIC LIGHT-EMITTING DIODE (OLED) DISPLAY PANEL, ELECTRONIC DEVICE AND MANUFACTURING METHOD

The present disclosure provides an OLED display panel, an electronic device, and a manufacturing method. The OLED display panel comprises a substrate, a first electrode, a light-emitting function layer, and a second electrode including Ag or a metal alloy containing Ag. When the second electrode is made of the metal alloy containing Ag, a content of Ag in the second electrode is more than a sum of contents of all other elements in the second electrode.




v

LIGHT EMITTING DEVICE AND METHOD OF MANUFACTURING THE SAME

A light emitting device having a structure in which oxygen and moisture are prevented from reaching light emitting elements, and a method of manufacturing the same, are provided. Further, the light emitting elements are sealed by using a small number of process steps, without enclosing a drying agent. The present invention has a top surface emission structure. A substrate on which the light emitting elements are formed is bonded to a transparent sealing substrate. The structure is one in which a transparent second sealing material covers the entire surface of a pixel region when bonding the two substrates, and a first sealing material (having a higher viscosity than the second sealing material), which contains a gap material (filler, fine particles, or the like) for protecting a gap between the two substrates, surrounds the pixel region. The two substrates are sealed by the first sealing material and the second sealing material. Further, reaction between electrodes of the light emitting elements (cathodes or anodes) and the sealing materials can be prevented by covering the electrodes with a transparent protective layer, for example, CaF2, MgF2, or BaF2.




v

DISPLAY DEVICE AND METHOD OF MANUFACTURING A DISPLAY DEVICE

A display device, which includes a display region constituted by a plurality of pixels, includes a first substrate having a hygroscopic agent formed in a peripheral region outside the display region and a sealing film covering the hygroscopic agent, a second substrate disposed facing the first substrate, and an adhesive layer, at least a portion of which is disposed closer to the side of the display region than the hygroscopic agent, and which bonds the first substrate to the second substrate.




v

LIGHT EMITTING DIODE, DISPLAY SUBSTRATE AND DISPLAY DEVICE HAVING THE SAME, AND FABRICATING METHOD THEREOF

The present application discloses a light emitting diode comprising a plurality of sub-pixels comprising a first electrode layer, wherein the first electrode layer is a reflective electrode layer; a second electrode layer; a light emitting layer between the first electrode layer and the second electrode layer; a first microcavity tuning layer sandwiched by the first electrode layer and the light emitting layer within the plurality of sub-pixels; and a second microcavity tuning layer sandwiched by the first microcavity tuning layer and the light emitting layer within at least one of the plurality of sub-pixels, and the first microcavity tuning layer is sandwiched by the first electrode layer and the second microcavity tuning layer within the at least one of the plurality of sub-pixels. The first microcavity tuning layer is made of a material including a transparent conductive material in a first state and the second microcavity tuning layer is made of a material including a transparent conductive material in a second state, the first state and the second state are different states selected from a crystalline state and an amorphous state.




v

ORGANIC LIGHT-EMITTING DEVICE

An organic light-emitting device is provided. The organic light-emitting device includes a substrate having a first surface and a second surface opposite to the first surface; an organic light-emitting element disposed on the first surface; and a low refractive index layer disposed on the second surface, wherein the low refractive index layer includes a mixture including polyvinylidene fluoride and inorganic nano-platelet, a hyperbranched polysiloxane, or a combination thereof.




v

DISPLAY DEVICE AND MANUFACTURING METHOD OF THE SAME

Provided is a display device and a manufacturing method of the same. The display device includes: a base substrate having a top surface and a side surface, a display region over the top surface, a terminal over the top surface and between the display region and the side surface, the terminal being electrically connected to the display region, and an anisotropic conductive film over the terminal. An edge portion of the anisotropic conductive film is spaced from the side surface, and its distance is equal to or larger than 10 μm and equal to or smaller than 1 mm.




v

Improved Accumulator Circuit for Towed Implements

An apparatus and a system directed to an improved hydraulic circuit for use on implements powered by separate motorized vehicle such as a tractor. The apparatus and system include an implement, such as a bale processing or stacking device, configured with wheels to be a towed vehicle, with the towed vehicle configured to be conveyed by a tow vehicle. Additionally, a hydraulic pump on the tow vehicle is coupled to one or more accumulators on the towed device to provide hydraulic power at varying rates as needed by one or more mechanical operations of the implement vehicle. A hydraulic circuit including check and block valves in concert with a pressure switch on the implement device obtains hydraulic power from the tow vehicle from a hydraulic pump located on the tow vehicle via one or more hydraulic transfer lines from the tow vehicle to the implement.




v

VEHICLE CONTROL DEVICE

A vehicular brake device that implements ESC/TRC control suppresses hydraulic pressure variations produced during open/close control of a brake actuator holding valve or depressurizing valve. While a brake operating member is not operated and a wheel cylinder pressure supplying control is executed to supply target wheel cylinder pressure to respective wheel cylinders, the target servo pressure is set to a first predetermined target servo pressure smaller than a maximum output pressure of the servo pressure generating device. When wheel cylinder pressure supplying control starts, the target servo pressure is set as the target wheel cylinder maximum value when a firstly occurred rising inclination of the target wheel cylinder maximum value is equal to or more than a minimum increment of an output of the servo pressure generating device per unit time and at the same time when the target wheel cylinder pressure is below the first determined target servo pressure.




v

DUAL VOLUTE TURBOCHARGER TO OPTIMIZE PULSE ENERGY SEPARATION FOR FUEL ECONOMY AND EGR UTILIZATION VIA ASYMMETRIC DUAL VOLUTES

A product for use in a turbocharger system. A turbine housing may define a center core that is circular in shape with a circumference. The turbine housing may define a first volute that extends for a length around only a part of the circumference of the center core, and a second volute that may be positioned radially outside the first volute and that may extend entirely around the circumference of the center core. The first volute and the second volute may define first and second exhaust gas passages through the turbine housing that may be asymmetric. All points of the second volute may be radially outside the first volute from the center core over the entire length of the first volute.




v

Gas Separation Process Using Membranes with Permeate Sweep to Remove CO2 from Combustion Exhaust

A gas separation process for treating exhaust gases from combustion processes. The invention involves routing a first portion of the exhaust stream to a carbon dioxide capture step, while simultaneously flowing a second portion of the exhaust gas stream across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas back to the combustor.




v

METHOD OF IMPROVING EXHAUST EMISSION OF A COMBUSTION ENGINE, AND COMBUSTION ENGINE

In a method of reducing pollutants of a combustion engine, exhaust gas, generated by a cylinder of the combustion engine, is fed to an exhaust gas aftertreatment system as a function of a predefined condition solely via a first exhaust channel which communicates with a first one of first and second exhaust valves of the cylinder. The first exhaust channel is hereby coated, at least in part, by a thermally insulating layer selected such that a heat input is transmitted to the exhaust gas aftertreatment system which heat input is greater than a heat input in a second exhaust channel communicating with a second one of the first and second exhaust valves. The predefined condition is defined as a function of a coolant temperature of the combustion engine.




v

STORAGE TANK FOR AQUEOUS UREA SOLUTION IN A MOTOR VEHICLE

The invention relates to a storage tank (1) in a motor vehicle for receiving an aqueous urea solution for the SCR of nitrogen oxide in the exhaust gas. The storage tank (1) comprises a tank body which forms a storage volume (2) for the urea solution. The storage tank (1) furthermore comprises a filling pipe for filling the storage volume (2) and means for venting the storage volume (2) during the refuelling, wherein the filling pipe (3) has a filling head (9) at a remote end, and the filling head (9) forms an orifice stub (10). The orifice stub (10) defines an orifice (11) for receiving a fuel pump nozzle. Said orifice stub furthermore has an external thread for receiving a complementary union thread of a refuelling cylinder for refuelling by the gas displacement method. The orifice stub forms at least one secondary air opening when the refuelling cylinder is attached, and therefore, when a refuelling cylinder is attached, a sealing seat is bridged by the refuelling cylinder and refuelling by the gas displacement method is possible even if counterflow venting through the filling tube (3) does not take place.




v

CATALYTIC CONVERTER AND EXHAUST-GAS AFTERTREATMENT ARRANGEMENT

A catalytic converter for an internal combustion engine includes a tubular member which defines a volume within which a catalytic converter substrate is located, the volume communicates with an inlet portion for receiving exhaust gas emissions and with a first outlet portion for discharging emissions after catalytic conversion. The catalytic converter may also include a pipe member within the tubular member, which connects the inlet portion with the volume and guides emissions from the inlet portion in a first direction. The pipe member opens into a deflector member which deflects emissions into the volume in a second direction, and the catalytic converter includes a second outlet portion connected to the deflector member and a valve to control gas flow through the second outlet portion to guide emissions away from the pipe member and out of the catalytic converter prior to reaching the catalytic converter substrate when the valve is open.




v

MODULAR HEAT EXCHANGER AND CONVERSION SYSTEM

Various embodiments of a waste heat recovery and conversion system are disclosed. The system may include a modular heat exchanger whose energy source is provided by waste heat energy transporting fluids transferring their energy to a working fluid. The working fluid may be in a liquid state contained in a reservoir hydraulically connected to a high-pressure heat transfer chamber. The high-pressure heat transfer chamber may be configured to receive thermal energy utilized to convert the working fluid into a superheated vapor. The system may also include a waste heat conversion system hydraulically connected to the heat transfer chamber to receive the superheated vaporized working fluid from the heat transfer chamber. The waste heat conversion system may be configured to expand the superheated working fluid through an expander for the conversion of waste heat energy into useful energy. For applications involving internal combustion engines, the system may be configured such that the conversion of waste heat energy into useful energy may drive an air compressor to enhance combustion engine performance and decrease pollutant emissions.




v

VEHICLE EXHAUST DEVICE

The vehicle exhaust device has an exhaust passage from an exhaust port of an engine body to an exhaust muffler provided behind the engine body, and the exhaust passage is formed by a plurality of exhaust passage forming units. The exhaust device includes an exhaust gas sensor attached to one of the exhaust passage forming units, such as a collecting pipe, halfway on the exhaust passage. At least a portion of the exhaust gas sensor is covered from a front side thereof with one of the exhaust passage forming units, such as an individual exhaust pipe, upstream of an attached position of the exhaust gas sensor.




v

SYSTEM AND METHOD OF SOAKBACK MITIGATION THROUGH PASSIVE COOLING

A gas turbine engine cooling system includes a gas turbine engine. The gas turbine engine includes a core engine, a cold sink, a core undercowl space, and a core cowl at least partially surrounding the core engine and defining a radially outer wall of the core undercowl space. The gas turbine engine cooling system includes an undercowl component positioned in the core undercowl space. The gas turbine engine cooling system also includes a heat pipe including a first end, a second end, and a conduit extending therebetween. The first end is thermally coupled to the undercowl component, and the second end is thermally coupled to the cold sink. The heat pipe facilitates transfer of a quantity of heat from the undercowl component to the cold sink.




v

ASSISTANCE DEVICE FOR AN AIRCRAFT TURBINE ENGINE WITH A FREE TURBINE

An assistance device for an aircraft free-turbine turbine engine, the device including first electrical power supply for powering a winding of a starter rotary machine, referred to as a “first” winding, in order to provide first assistance in accelerating the gas generator of the engine. The device further includes a monitor for monitoring the first assistance, and a second power supply for electrically powering a second winding of the rotary machine to provide second assistance in accelerating the gas generator if the monitor observes that the first assistance is insufficient.




v

METHOD FOR THE OPERATION OF A GAS TURBINE BY ACTIVE HYDRAULIC GAP ADJUSTMENT

A method for operating a stationary gas turbine at partial load, having at least one compressor, at least one expansion turbine and a combustion chamber provided with at least one burner, which gas turbine further includes a hydraulic gap adjuster, wherein the method has the following steps: operating the gas turbine at partial load; operating the a hydraulic gap adjuster; during the operation of the hydraulic gap adjuster, increasing the fuel supply to the burner while increasing the temperature of the combustion gases which are guided to the expansion turbine.




v

VEHICLE

A vehicle includes a turbocharger, an exhaust-side variable valve, a vacuum servo device, an exhaust-side negative pressure hose, an exhaust-side check valve, a negative pressure supply valve, and circuitry. The exhaust-side negative pressure hose connects the vacuum servo device and a negative pressure extracting portion disposed in the exhaust passage. The exhaust-side check valve is disposed in the exhaust-side negative pressure hose to permit a gas flow only from the vacuum servo device to the exhaust passage. The negative pressure supply valve is provided in the exhaust-side negative pressure hose to open and close the exhaust-side negative pressure hose. The circuitry configured to control the exhaust-side variable valve to delay the valve timing with respect to an exhaust top dead center so as to generate negative pressure in the exhaust passage and to open the negative pressure supply valve while the negative pressure is generated in the exhaust passage.




v

GAS TURBINE ENGINE VANE SPLITTER

A gas turbine engine duct turns radially inwardly in the downstream direction. The duct includes a plurality of radially extending stator vanes. A generally circumferentially extending splitter vane is provided between two circumferentially neighbouring stator vanes. The splitter vane improves the flow near to the radially inner wall of the duct. This can allow greater design freedom in the duct geometry.




v

MODULAR PLATFORM FOR OFFSHORE CONSTRUCTIONS WITH A STABILIZED STRUCTURE AND THE RECOVERY OF WATER WAVE ENERGY

The modular platform for offshore constructions, composed of more than two separate buoyancy elements partially immersed in water, which move along with the water wave movement and which, in the part above the water level, are connected to the structural elements forming a rigid horizontal spatial structure, characterized in that the buoyancy element (1) is given the shape of a cuboid or cylinder having at least one vertical hollow (2) to accommodate the structural element, i.e. piston (3), which forms the axis along which the buoyancy element (1) moves, and which is connected to the horizontal structural element (4) fitted to take external loads.




v

AIRFOIL HAVING INTERNAL ELONGATED RIB

An airfoil includes an airfoil body including a first side wall and a second side wall that is spaced apart from the first side wall. A longitudinally elongated rib connects the first side wall and the second side wall and divides a cavity into a forward section and an aft section. The longitudinally elongated rib includes at least one opening fluidly connecting the forward section and the aft section of the cavity. The opening is located in a lateral central portion of the longitudinally elongated rib with regard to the longitudinal axis such that first and second sections of the longitudinally elongated rib bound respective lateral sides of the at least one opening. The opening defines a maximum dimension along a direction perpendicular to the longitudinal axis. The maximum dimension is greater than a minimum dimension of each of the first and second sections in the same direction.




v

HYDRAULIC DRIVE SYSTEM FOR OPERATION TABLE

A hydraulic drive system includes an oil supply device, an oil return device and a hydraulic cylinder circuit component. The circuit component includes a hydraulic cylinder, a first and a second two-position two-way electromagnetic directional valves. The cylinder includes a first chamber and a second chamber that has a piston rod. A first port of the first valve connects with the first chamber and a first port of the second valve connects with the second chamber. When the oil supply device connects to a second port of the first valve and a second port of the second valve connects to the oil return device, the piston rod is extended outwards. When the oil supply device connects to the second port of the second valve and the second port of the first valve connects to the oil return device, the piston rod is retracted.




v

METHOD OF CONTROLLING VELOCITY OF A HYDRAULIC ACTUATOR IN OVER-CENTER LINKAGE SYSTEMS

An electro-hydraulic actuation system includes a regeneration valve in fluid communication with a first fluid chamber and a second fluid chamber of a hydraulic actuator, and a dump valve is in fluid communication with the second fluid chamber and a fluid reservoir. A pump provides a flow of fluid to the first and second fluid chambers, a displacement of the pump controlling a velocity of the actuator during motion in the retraction and extension directions. An electric motor drives the pump, and a controller controls a state of the regeneration valve and the dump valve. At least one feedback device senses a system condition and provides a respective feedback signal indicative of the sensed system condition to the controller, the controller responsive to the feedback signal to determine an occurrence of an over-center load condition and control a state of the regeneration valve and the dump valve in response to the occurrence to maintain the velocity of the actuator.




v

COMBUSTOR PANELS HAVING ANGLED RAIL

A combustor of a gas turbine engine including a combustor shell having an interior surface defining a combustion chamber, a first panel mounted to the interior surface at a first position, the first panel having a first surface and a first rail extending from the first surface toward the combustor shell, the first rail configured at a first angle relative to the first surface, and a second panel mounted to the interior surface at a second position axially adjacent to the first panel, the second panel having a second surface and a second rail extending from the second surface toward the combustor shell, the second rail configured at a second angle relative to the second surface. The first and second rails are proximal to each other and define a circumferential gap there between and at least one of the first or second angles is an acute angle.




v

Fuel Nozzle Assembly Having a Premix Fuel Stabilizer

A fuel nozzle assembly includes a premix chamber, an air flow divider extending radially and axially within the premix chamber between an inner wall and an outer wall and a plurality of guide vanes disposed within the premix chamber. One or more of the guide vanes includes a fuel port in fluid communication with the flow divider. The fuel nozzle assembly further includes a premix plate that extends radially between the inner and outer walls and circumferentially between first and second side walls downstream from the fuel ports. The premix plate includes an upstream side axially spaced from a downstream side and a plurality of passages that provide for fluid flow from the premix chamber through the premix plate.




v

ADHESIVE SYSTEM AND USE OF THE SAME

An adhesive system which includes a layer of a first adhesive overlaid and joined to a layer of a second adhesive. The layer of first adhesive and the layer of second adhesive are preferably joined by being fixed to opposite surfaces of a planar carrier element. The carrier element is preferably a high heat resistant plastics film. In one form of the invention the plastics film is PET.




v

BUILDING MEMBRANE WITH POROUS PRESSURE SENSITIVE ADHESIVE

A breatheable multilayer spun bonded polypropylene membrane having a coated pressure sensitive adhesive capable of allowing air and moisture vapor to pass through it. The adhesive is formed of a copolymer comprising a backbone of n-butyl acrylate, 2-ethylhexyl acrylate, and vinyl acetate which is mixed with a surfactant and emulsified to produce bubbles which form pores when the copolymer is set with about 80% to about 90% of the pore sizes ranging from about 200 microns to about 300 microns and a pore density in the cured pressure sensitive adhesive ranging from about 4200 per inch2 to about 4600 per inch2, said pores being uniformly distributed to form a flow path through adhesive.




v

FLUID ACTIVATABLE ADHESIVES FOR GLUE-FREE, LINER-FREE, LABELS FOR GLASS AND PLASTIC SUBSTRATES AND METHODS OF USE THEREOF

A fluid activatable adhesive for a liner-free label and methods of using are described. Preferably, the adhesive composition includes a polymer, such as an emulsion polymer formed from monomers selected from the group consisting of butyl acrylate, 2-ethylhexyl acrylate, methyl acrylate, 2-acrylamido-2-methylpropane sulfonic acid (AMPS), a salt of AMPS, such as its sodium salt, styrene, and combinations thereof. The adhesive composition adheres to the liner-free label to the surface of a substrate that is at room temperature, at room temperature and wet, cold, or cold and wet. In preferred embodiments, the substrate is glass or plastic, such as polyethylene terephthalate.




v

Acrylate-Terminated Urethane Polybutadienes From Low-Monomer 1:1 Monoadducts From Reactive Olefinic Compounds and Diisocyanates and Hydroxy-Terminated Polybutadienes for Liquid Optically Clear Adhesives (LOCAs)

The present invention relates to an optical clear resin and a method for producing a liquid optical clear photo-curable adhesive.




v

ACCELERATE CURE OF MOISTURE CURABLE POLYURETHANE ADHESIVE COMPOSITIONS USEFUL FOR BONDING GLASS

The adhesive system of the invention is especially useful in bonding replacement windows into vehicles. They allow for sufficient working time while still realizing a fast drive away time. The adhesive system is comprised of a moisture curable adhesive and a cure accelerator that may be applied using a simple single caulk gun and may be applied at ambient temperatures such as −10° C. and about 45° C. The cure accelerator is comprised of a polyol having a backbone that has at least one amine in the backbone. The moisture curable adhesive typically is comprised of an isocyanate terminated prepolymer.




v

USE OF A BITUMINOUS COMPOSITION AS AN ADHESIVE BINDER

A bituminous composition is used as an adhesive binder. The bituminous composition has at least one acidic additive of general formula (I): R—(COOH)z in which R is a linear or branched, saturated or unsaturated hydrocarbon-based chain having from 4 to 68 carbon atoms, preferably from 4 to 54 carbon atoms, more preferentially from 4 to 36 carbon atoms and z is an integer ranging from 1 to 4, preferably from 2 to 4.




v

Methods and Apparatuses for Selective Chemical Etching

Methods, apparatuses and systems are disclosed for chemically etching parts by generating an enclosed chemical etching chamber in contact with a part surface and directing a flow of chemical etchant solution in contact with a part region to be etched.




v

Winding Device And Label Printing Apparatus

A winding device includes: a separation unit that separates sheets layered and simultaneously transported; a winding unit that winds one of the sheets separated by the separation unit; and a pressure contact unit that presses the one of the sheets wound by the winding unit from outside of the wound sheet toward the winding unit.




v

SHOWERHEAD HAVING A DETACHABLE GAS DISTRIBUTION PLATE

Embodiments of showerheads having a detachable gas distribution plate are provided herein. In some embodiments, a showerhead for use in a substrate processing chamber includes a body having a first side and an opposing second side; a gas distribution plate disposed proximate the second side of the body; and a clamp disposed about a peripheral edge of the gas distribution plate to removably couple the gas distribution plate to the body, wherein the body is electrically coupled to the gas distribution plate through the clamp.




v

UPPER ELECTRODE FOR PLASMA PROCESSING APPARATUS AND PLASMA PROCESSING APPARATUS HAVING THE SAME

An upper electrode for a plasma processing apparatus includes a body portion having a plurality of through-holes, a showerhead disposed below the body portion and having a plurality of jet holes connected to the plurality of through-holes, and a buffer layer interposed between the body portion and the showerhead.




v

ADHESIVE FOR SOLAR-CELL BACK SHEET, POLYOL COMPOSITION FOR SOLAR-CELL BACK SHEET ADHESIVE, SOLAR-CELL BACK SHEET, AND SOLAR CELL MODULE

There are provided an adhesive for a solar-cell back sheet having an excellent curing rate and being capable of exhibiting excellent adhesive performance by short-term aging, and also a polyol composition used for the adhesive, a solar-cell back sheet using the adhesive, and a solar-cell module using the sheet. The adhesive for a solar-cell back sheet contains, as essential components, at least one hydroxyl group-containing resin (A) selected from a polyester polyurethane polyol (A1), a polyester polyol (A2), a hydroxyl group-containing (meth)acrylic resin (A3), and a hydroxyl group-containing fluorocarbon resin (A4), a polyisocyanate (B), and a cyclic amide compound (C).




v

METHOD OF FORMING A PATTERN USING ION BEAMS OF BILATERAL SYMMETRY, A METHOD OF FORMING A MAGNETIC MEMORY DEVICE USING THE SAME, AND AN ION BEAM APPARATUS GENERATING ION BEAMS OF BILATERAL SYMMETRY

A pattern-forming method includes providing a first ion beam at a first incidence angle and a second ion beam at a second incidence angle to a surface of an etch target layer formed on a substrate. Patterns are formed by patterning the etch target layer using the first and second ion beams. The first ion beam and the second ion beam are substantially symmetrical to each other with respect to a normal line that is perpendicular to a top surface of the substrate. Each of the first and second incidence angles is greater than 0 degrees and smaller than an angle obtained by subtracting a predetermined angle from 90 degrees.




v

CONDUCTIVE SURFACING MATERIAL FOR COMPOSITE STRUCTURES

An electrically conductive surfacing material capable of providing sufficient conductivity for lightning strike protection (LSP) and/or electromagnetic interference (EMI) shielding is disclosed. The conductive surfacing material is a multi-layered structure having a very thin conductive layer (e.g. solid metal foil) and a resin film formed on at least one surface of the conductive layer. The resin film is formed from a curable resin composition containing an epoxy novolac resin, a tri-functional or tetra-functional epoxy resin, ceramic microspheres, a latent amine-based curing agent, particulate inorganic fillers; and a toughening component. Optionally, the resin film further includes conductive additives to increase electrical conductivity of the surfacing material. The resin film exhibits high Tg as well as high resistance to paint stripper solutions. Furthermore, the conductive surfacing material is suitable for co-curing with fiber-reinforced resin composite substrates.




v

METHOD OF VERIFYING REMOVAL OF A PEEL PLY MATERIAL FROM A COMPOSITE STRUCTURE AND DOPED PEEL PLY ASSEMBLY

A method of verifying removal of peel ply material from a composite structure is provided. The method includes doping a layer of peel ply fabric with an identifier. The method also includes curing the composite structure with the layer of peel ply fabric disposed on a surface of the composite structure. The method further includes removing the layer of peel ply fabric from the surface. The method yet further includes scanning the surface of the composite structure for the identifier.




v

ARTICULATING VACUUM PLATE SYSTEM AND RELATED METHOD

An apparatus and related method of utilizing articulating vacuum plates to manipulate a film or polymeric sheet and form a three dimensional article is provided. The apparatus can be in the form of an articulating vacuum plate system which includes one or more plates or mold parts that are configured to support a sheet, constructed for example, from a polymeric film, in a two dimensional configuration or a three dimensional configuration in a first mode. The apparatus is constructed so that the plates and/or mold parts can articulate or move so as to reconfigure the sheet from a generally planar configuration into a second three dimensional configuration in a second mode for further forming, optionally while the plates and/or mold parts apply vacuum to the sheet while the plates and/or mold parts articulate, so that the plates and/or mold parts bend or otherwise manipulate the configuration and shape of the sheet.




v

METHOD AND DEVICE FOR HEAT SEALING MULTIPLE PLIES OF A LAMINATE

A method and a device for heat sealing multiple plies of a laminate from which gable top packaging can be produced, wherein the laminate has a carrier layer made of electrically non-conductive material and a sealing layer made of thermoplastic material on at least one surface of the laminate. To heat seal multiple plies of a laminate in a high-frequency alternating electric field, the alternating electric field is generated by a first lead of an HF voltage supply in a first sub-region of the sealing region and is generated by a second lead of the HF voltage supply, differing from the first lead, in at least a second sub-region of the sealing region, so that a different heat distribution is obtained over the sub-regions of the sealing region.




v

METHOD FOR TRANSFERRING MATERIAL WITH ADHESIVE ONTO ARTICLES WITH A DIFFERENCE IN DEGREE OF CURING BETWEEN THE MATERIAL AND ADHESIVE

Apparatuses and methods for applying a transfer material onto the surface of an article are disclosed, including apparatuses and methods of transfer printing on and/or decorating three-dimensional articles, as well as the articles printed and/or decorated thereby. In some cases, the apparatuses and methods involve providing a deposition device, such as a printing device; providing a transfer component; depositing a material onto a portion of the transfer component with the deposition device; modifying the portion of the transfer component with the transfer material thereon to conform the transfer component to at least a portion of the surface of the three-dimensional article; and transferring the transfer material onto the surface of the article.




v

DEVICE AND METHOD FOR PRODUCING COMPOSITE SHEETS USING MULTIPLE LAMINATION

A device for producing a strip-shaped composite sheet may comprise at least two outer metal cover sheets and at least one plastic layer disposed between the two outer metal cover sheets. The device may further comprise at least one first laminating device for laminating the metal cover sheets with the at least one plastic layer arranged between the metal cover sheets, with the first laminating device comprising at least two laminating rolls forming a laminating gap. One object of the present disclosure is to provide methods and devices for producing composite sheets, with which the economy, in particular the production speed, of the production method can be significantly increased and at the same time the risk of delamination of the composite sheets during the further processing can be reduced.”




v

METHOD AND MACHINE FOR BONDING A FLEXIBLE COATING TO A SUPPORT USING ELECTROMAGNETIC WAVES AND LINING PRODUCED IN THIS WAY

A machine (1) and a method for thermobonding using an emission of electromagnetic waves (13), for example microwaves, to activate one or a plurality of adhesive layers located between a support and one or a plurality of layers of flexible covering, through a bed of particles (4) fluidized by a humidified gas. A multi-layer upholstery item including at least one non-permeable layer and produced in a single operation is also described.




v

METHODS AND APPARATUS FOR LAMINATION OF RIGID SUBSTRATES BY SEQUENTIAL APPLICATION OF VACUUM AND MECHANICAL FORCE

Method and apparatus for lamination of substrates, e.g. rigid plastic layers, to manufacture laminated products. The methods include the sequential application of vacuum and mechanical force through a two-stroke process performed by a lamination apparatus having one or more force-producing stroke cylinders. Actuation of a cylinder to produce a first stroke creates a sealed chamber within the apparatus, enclosing a stack of substrates to be laminated. The sealed chamber may be evacuated of air by application of a vacuum. Subsequent actuation of a cylinder to produce a second stroke applies mechanical force to the sealed chamber, which compresses the substrates into a laminated product substantially free of air bubbles or voids.