rap

From X-ray crystallographic structure to intrinsic thermodynamics of protein–ligand binding using carbonic anhydrase isozymes as a model system

Carbonic anhydrase (CA) was among the first proteins whose X-ray crystal structure was solved to atomic resolution. CA proteins have essentially the same fold and similar active centers that differ in only several amino acids. Primary sulfonamides are well defined, strong and specific binders of CA. However, minor variations in chemical structure can significantly alter their binding properties. Over 1000 sulfonamides have been designed, synthesized and evaluated to understand the correlations between the structure and thermodynamics of their binding to the human CA isozyme family. Compound binding was determined by several binding assays: fluorescence-based thermal shift assay, stopped-flow enzyme activity inhibition assay, isothermal titration calorimetry and competition assay for enzyme expressed on cancer cell surfaces. All assays have advantages and limitations but are necessary for deeper characterization of these protein–ligand interactions. Here, the concept and importance of intrinsic binding thermodynamics is emphasized and the role of structure–thermodynamics correlations for the novel inhibitors of CA IX is discussed – an isozyme that is overexpressed in solid hypoxic tumors, and thus these inhibitors may serve as anticancer drugs. The abundant structural and thermodynamic data are assembled into the Protein–Ligand Binding Database to understand general protein–ligand recognition principles that could be used in drug discovery.




rap

Bridging the microscopic divide: a comprehensive overview of micro-crystallization and in vivo crystallography

A series of events underscoring the significant advancements in micro-crystallization and in vivo crystallography were held during the 26th IUCr Congress in Melbourne, positioning microcrystallography as a pivotal field within structural biology. Through collaborative discussions and the sharing of innovative methodologies, these sessions outlined frontier approaches in macromolecular crystallography. This review provides an overview of this rapidly moving field in light of the rich dialogues and forward-thinking proposals explored during the congress workshop and microsymposium. These advances in microcrystallography shed light on the potential to reshape current research paradigms and enhance our comprehension of biological mechanisms at the molecular scale.




rap

Crystallographic phase identifier of a convolutional self-attention neural network (CPICANN) on powder diffraction patterns

Spectroscopic data, particularly diffraction data, are essential for materials characterization due to their comprehensive crystallographic information. The current crystallographic phase identification, however, is very time consuming. To address this challenge, we have developed a real-time crystallographic phase identifier based on a convolutional self-attention neural network (CPICANN). Trained on 692 190 simulated powder X-ray diffraction (XRD) patterns from 23 073 distinct inorganic crystallographic information files, CPICANN demonstrates superior phase-identification power. Single-phase identification on simulated XRD patterns yields 98.5 and 87.5% accuracies with and without elemental information, respectively, outperforming JADE software (68.2 and 38.7%, respectively). Bi-phase identification on simulated XRD patterns achieves 84.2 and 51.5% accuracies, respectively. In experimental settings, CPICANN achieves an 80% identification accuracy, surpassing JADE software (61%). Integration of CPICANN into XRD refinement software will significantly advance the cutting-edge technology in XRD materials characterization.




rap

Capturing the blue-light activated state of the Phot-LOV1 domain from Chlamydomonas reinhardtii using time-resolved serial synchrotron crystallography

Light–oxygen–voltage (LOV) domains are small photosensory flavoprotein modules that allow the conversion of external stimuli (sunlight) into intra­cellular signals responsible for various cell behaviors (e.g. phototropism and chloro­plast relocation). This ability relies on the light-induced formation of a covalent thio­ether adduct between a flavin chromophore and a reactive cysteine from the protein environment, which triggers a cascade of structural changes that result in the activation of a serine/threonine (Ser/Thr) kinase. Recent developments in time-resolved crystallography may allow the activation cascade of the LOV domain to be observed in real time, which has been elusive. In this study, we report a robust protocol for the production and stable delivery of microcrystals of the LOV domain of phototropin Phot-1 from Chlamydomonas reinhardtii (CrPhotLOV1) with a high-viscosity injector for time-resolved serial synchrotron crystallography (TR-SSX). The detailed process covers all aspects, from sample optimization to data collection, which may serve as a guide for soluble protein preparation for TR-SSX. In addition, we show that the crystals obtained preserve the photoreactivity using infrared spectroscopy. Furthermore, the results of the TR-SSX experiment provide high-resolution insights into structural alterations of CrPhotLOV1 from Δt = 2.5 ms up to Δt = 95 ms post-photoactivation, including resolving the geometry of the thio­ether adduct and the C-terminal region implicated in the signal transduction process.




rap

In situ serial crystallography facilitates 96-well plate structural analysis at low symmetry

The advent of serial crystallography has rejuvenated and popularized room-temperature X-ray crystal structure determination. Structures determined at physiological temperature reveal protein flexibility and dynamics. In addition, challenging samples (e.g. large complexes, membrane proteins and viruses) form fragile crystals that are often difficult to harvest for cryo-crystallography. Moreover, a typical serial crystallography experiment requires a large number of microcrystals, mainly achievable through batch crystallization. Many medically relevant samples are expressed in mammalian cell lines, producing a meager quantity of protein that is incompatible with batch crystallization. This can limit the scope of serial crystallography approaches. Direct in situ data collection from a 96-well crystallization plate enables not only the identification of the best diffracting crystallization condition but also the possibility for structure determination under ambient conditions. Here, we describe an in situ serial crystallography (iSX) approach, facilitating direct measurement from crystallization plates mounted on a rapidly exchangeable universal plate holder deployed at a microfocus beamline, ID23-2, at the European Synchrotron Radiation Facility. We applied our iSX approach on a challenging project, autotaxin, a therapeutic target expressed in a stable human cell line, to determine the structure in the lowest-symmetry P1 space group at 3.0 Å resolution. Our in situ data collection strategy provided a complete dataset for structure determination while screening various crystallization conditions. Our data analysis reveals that the iSX approach is highly efficient at a microfocus beamline, improving throughput and demonstrating how crystallization plates can be routinely used as an alternative method of presenting samples for serial crystallography experiments at synchrotrons.




rap

Exploring serial crystallography for drug discovery

Structure-based drug design is highly dependent on the availability of structures of the protein of interest in complex with lead compounds. Ideally, this information can be used to guide the chemical optimization of a compound into a pharmaceutical drug candidate. A limitation of the main structural method used today – conventional X-ray crystallography – is that it only provides structural information about the protein complex in its frozen state. Serial crystallography is a relatively new approach that offers the possibility to study protein structures at room temperature (RT). Here, we explore the use of serial crystallography to determine the structures of the pharmaceutical target, soluble epoxide hydro­lase. We introduce a new method to screen for optimal microcrystallization conditions suitable for use in serial crystallography and present a number of RT ligand-bound structures of our target protein. From a comparison between the RT structural data and previously published cryo-temperature structures, we describe an example of a temperature-dependent difference in the ligand-binding mode and observe that flexible loops are better resolved at RT. Finally, we discuss the current limitations and potential future advances of serial crystallography for use within pharmaceutical drug discovery.




rap

Texture tomography, a versatile framework to study crystalline texture in 3D

Crystallographic texture is a key organization feature of many technical and biological materials. In these materials, especially hierarchically structured ones, the preferential alignment of the nano constituents heavily influences the macroscopic behavior of the material. To study local crystallographic texture with both high spatial and angular resolution, we developed Texture Tomography (TexTOM). This approach allows the user to model the diffraction data of polycrystalline materials using the full reciprocal space of the crystal ensemble and describe the texture in each voxel via an orientation distribution function, hence it provides 3D reconstructions of the local texture by measuring the probabilities of all crystal orientations. The TexTOM approach addresses limitations associated with existing models: it correlates the intensities from several Bragg reflections, thus reducing ambiguities resulting from symmetry. Further, it yields quantitative probability distributions of local real space crystal orientations without further assumptions about the sample structure. Finally, its efficient mathematical formulation enables reconstructions faster than the time scale of the experiment. This manuscript presents the mathematical model, the inversion strategy and its current experimental implementation. We show characterizations of simulated data as well as experimental data obtained from a synthetic, inorganic model sample: the silica–witherite biomorph. TexTOM provides a versatile framework to reconstruct 3D quantitative texture information for polycrystalline samples; it opens the door for unprecedented insights into the nanostructural makeup of natural and technical materials.




rap

Crystal structure of a bacterial photoactivated adenylate cyclase determined by serial femtosecond and serial synchrotron crystallography

OaPAC is a recently discovered blue-light-using flavin adenosine dinucleotide (BLUF) photoactivated adenylate cyclase from the cyanobacterium Oscillatoria acuminata that uses adenosine triphosphate and translates the light signal into the production of cyclic adenosine monophosphate. Here, we report crystal structures of the enzyme in the absence of its natural substrate determined from room-temperature serial crystallography data collected at both an X-ray free-electron laser and a synchrotron, and we compare these structures with cryo-macromolecular crystallography structures obtained at a synchrotron by us and others. These results reveal slight differences in the structure of the enzyme due to data collection at different temperatures and X-ray sources. We further investigate the effect of the Y6W mutation in the BLUF domain, a mutation which results in a rearrangement of the hydrogen-bond network around the flavin and a notable rotation of the side chain of the critical Gln48 residue. These studies pave the way for picosecond–millisecond time-resolved serial crystallography experiments at X-ray free-electron lasers and synchrotrons in order to determine the early structural intermediates and correlate them with the well studied pico­second–millisecond spectroscopic intermediates.




rap

Current developments and trends in quantum crystallography

Quantum crystallography is an emerging research field of science that has its origin in the early days of quantum physics and modern crystallography when it was almost immediately envisaged that X-ray radiation could be somehow exploited to determine the electron distribution of atoms and molecules. Today it can be seen as a composite research area at the intersection of crystallography, quantum chemistry, solid-state physics, applied mathematics and computer science, with the goal of investigating quantum problems, phenomena and features of the crystalline state. In this article, the state-of-the-art of quantum crystallography will be described by presenting developments and applications of novel techniques that have been introduced in the last 15 years. The focus will be on advances in the framework of multipole model strategies, wavefunction-/density matrix-based approaches and quantum chemical topological techniques. Finally, possible future improvements and expansions in the field will be discussed, also considering new emerging experimental and computational technologies.




rap

Determining magnetic structures in GSAS-II using the Bilbao Crystallographic Server tool k-SUBGROUPSMAG

The embedded call to a special version of the web-based Bilbao Crystallographic Server tool k-SUBGROUPSMAG from within GSAS-II to form a list of all possible commensurate magnetic subgroups of a parent magnetic grey group is described. It facilitates the selection and refinement of the best commensurate magnetic structure model by having all the analysis tools including Rietveld refinement in one place as part of GSAS-II. It also provides the chosen magnetic space group as one of the 1421 possible standard Belov–Neronova–Smirnova forms or equivalent non-standard versions.





rap

Synthesis and crystallographic characterization of 6-hydroxy-1,2-dihydropyridin-2-one

The title compound, C5H5NO2, is a hy­droxy­lated pyridine ring that has been studied for its involvement in microbial degradation of nicotinic acid. Here we describe its synthesis as a formic acid salt, rather than the standard hydro­chloride salt that is commercially available, and its spectroscopic and crystallographic characterization.




rap

When a dream comes true: birth of the African Crystallographic Association (AfCA)

This paper summarizes brief perspectives on the historic process of establishing an African Crystallographic Association (AfCA) and includes representative references. It covers activities within four arbitrarily selected, approximate time slots, i.e., 1890s–1999, 2000–2013, 2014–2019 and 2020–2023. A genuine attempt is made to include appropriate role players, organizations and accompanying events within these periods. It concludes with the official admission of AfCA as the fifth Regional Associate of the IUCr at the 26th Congress and General Assembly of the IUCr in Melbourne, Australia in 2023.




rap

‘Young crystallographers’ rejuvenate crystallography in Germany

Since its founding in 2013, the Young Crystallographers (YC) have become one of the most active working groups not only within their parent organization, the German Crystallographic Society (DGK), but also among other young crystallographers' groups in Europe and the world. The aim of the YC is and always has been to support early-career researchers in the diverse fields of crystallography and the rejuvenation of the field on a national scale. Over the past decade, we have curated events, platforms, and educational content tailored to foster collaboration and knowledge transfer among young crystallographers. In this article, we introduce our group and show how this active and diverse community has shaped the rejuvenation of crystallography in Germany, strengthened by the support of our national society.




rap

Fast nanoscale imaging of strain in a multi-segment heterostructured nanowire with 2D Bragg ptychography

Developing semiconductor devices requires a fast and reliable source of strain information with high spatial resolution and strain sensitivity. This work investigates the strain in an axially heterostructured 180 nm-diameter GaInP nanowire with InP segments of varying lengths down to 9 nm, simultaneously probing both materials. Scanning X-ray diffraction (XRD) is compared with Bragg projection ptychography (BPP), a fast single-projection method. BPP offers a sufficient spatial resolution to reveal fine details within the largest segments, unlike scanning XRD. The spatial resolution affects the quantitative accuracy of the strain maps, where BPP shows much-improved agreement with an elastic 3D finite element model compared with scanning XRD. The sensitivity of BPP to small deviations from the Bragg condition is systematically investigated. The experimental confirmation of the model suggests that the large lattice mismatch of 1.52% is accommodated without defects.




rap

Robust image descriptor for machine learning based data reduction in serial crystallography

Serial crystallography experiments at synchrotron and X-ray free-electron laser (XFEL) sources are producing crystallographic data sets of ever-increasing volume. While these experiments have large data sets and high-frame-rate detectors (around 3520 frames per second), only a small percentage of the data are useful for downstream analysis. Thus, an efficient and real-time data classification pipeline is essential to differentiate reliably between useful and non-useful images, typically known as `hit' and `miss', respectively, and keep only hit images on disk for further analysis such as peak finding and indexing. While feature-point extraction is a key component of modern approaches to image classification, existing approaches require computationally expensive patch preprocessing to handle perspective distortion. This paper proposes a pipeline to categorize the data, consisting of a real-time feature extraction algorithm called modified and parallelized FAST (MP-FAST), an image descriptor and a machine learning classifier. For parallelizing the primary operations of the proposed pipeline, central processing units, graphics processing units and field-programmable gate arrays are implemented and their performances compared. Finally, MP-FAST-based image classification is evaluated using a multi-layer perceptron on various data sets, including both synthetic and experimental data. This approach demonstrates superior performance compared with other feature extractors and classifiers.




rap

FLEXR GUI: a graphical user interface for multi-conformer modeling of proteins

Proteins are well known `shapeshifters' which change conformation to function. In crystallography, multiple conformational states are often present within the crystal and the resulting electron-density map. Yet, explicitly incorporating alternative states into models to disentangle multi-conformer ensembles is challenging. We previously reported the tool FLEXR, which, within a few minutes, automatically separates conformational signal from noise and builds the corresponding, often missing, structural features into a multi-conformer model. To make the method widely accessible for routine multi-conformer building as part of the computational toolkit for macromolecular crystallography, we present a graphical user interface (GUI) for FLEXR, designed as a plugin for Coot 1. The GUI implementation seamlessly connects FLEXR models with the existing suite of validation and modeling tools available in Coot. We envision that FLEXR will aid crystallographers by increasing access to a multi-conformer modeling method that will ultimately lead to a better representation of protein conformational heterogeneity in the Protein Data Bank. In turn, deeper insights into the protein conformational landscape may inform biology or provide new opportunities for ligand design. The code is open source and freely available on GitHub at https://github.com/TheFischerLab/FLEXR-GUI.




rap

Ray-tracing analytical absorption correction for X-ray crystallography based on tomographic reconstructions

Processing of single-crystal X-ray diffraction data from area detectors can be separated into two steps. First, raw intensities are obtained by integration of the diffraction images, and then data correction and reduction are performed to determine structure-factor amplitudes and their uncertainties. The second step considers the diffraction geometry, sample illumination, decay, absorption and other effects. While absorption is only a minor effect in standard macromolecular crystallography (MX), it can become the largest source of uncertainty for experiments performed at long wavelengths. Current software packages for MX typically employ empirical models to correct for the effects of absorption, with the corrections determined through the procedure of minimizing the differences in intensities between symmetry-equivalent reflections; these models are well suited to capturing smoothly varying experimental effects. However, for very long wavelengths, empirical methods become an unreliable approach to model strong absorption effects with high fidelity. This problem is particularly acute when data multiplicity is low. This paper presents an analytical absorption correction strategy (implemented in new software AnACor) based on a volumetric model of the sample derived from X-ray tomography. Individual path lengths through the different sample materials for all reflections are determined by a ray-tracing method. Several approaches for absorption corrections (spherical harmonics correction, analytical absorption correction and a combination of the two) are compared for two samples, the membrane protein OmpK36 GD, measured at a wavelength of λ = 3.54 Å, and chlorite dismutase, measured at λ = 4.13 Å. Data set statistics, the peak heights in the anomalous difference Fourier maps and the success of experimental phasing are used to compare the results from the different absorption correction approaches. The strategies using the new analytical absorption correction are shown to be superior to the standard spherical harmonics corrections. While the improvements are modest in the 3.54 Å data, the analytical absorption correction outperforms spherical harmonics in the longer-wavelength data (λ = 4.13 Å), which is also reflected in the reduced amount of data being required for successful experimental phasing.




rap

Upgrade of crystallography beamline BL19U1 at the Shanghai Synchrotron Radiation Facility

BL19U1, an energy-tunable protein complex crystallography beamline at the Shanghai Synchrotron Radiation Facility, has emerged as one of the most productive MX beamlines since opening to the public in July 2015. As of October 2023, it has contributed to over 2000 protein structures deposited in the Protein Data Bank (PDB), resulting in the publication of more than 1000 scientific papers. In response to increasing interest in structure-based drug design utilizing X-ray crystallography for fragment library screening, enhancements have been implemented in both hardware and data collection systems on the beamline to optimize efficiency. Hardware upgrades include the transition from MD2 to MD2S for the diffractometer, alongside the installation of a humidity controller featuring a rapid nozzle exchanger. This allows users to opt for either low-temperature or room-temperature data collection modes. The control system has been upgraded from Blu-Ice to MXCuBE3, which supports website-mode data collection, providing enhanced compatibility and easy expansion with new features. An automated data processing pipeline has also been developed to offer users real-time feedback on data quality.




rap

Bragg Spot Finder (BSF): a new machine-learning-aided approach to deal with spot finding for rapidly filtering diffraction pattern images

Macromolecular crystallography contributes significantly to understanding diseases and, more importantly, how to treat them by providing atomic resolution 3D structures of proteins. This is achieved by collecting X-ray diffraction images of protein crystals from important biological pathways. Spotfinders are used to detect the presence of crystals with usable data, and the spots from such crystals are the primary data used to solve the relevant structures. Having fast and accurate spot finding is essential, but recent advances in synchrotron beamlines used to generate X-ray diffraction images have brought us to the limits of what the best existing spotfinders can do. This bottleneck must be removed so spotfinder software can keep pace with the X-ray beamline hardware improvements and be able to see the weak or diffuse spots required to solve the most challenging problems encountered when working with diffraction images. In this paper, we first present Bragg Spot Detection (BSD), a large benchmark Bragg spot image dataset that contains 304 images with more than 66 000 spots. We then discuss the open source extensible U-Net-based spotfinder Bragg Spot Finder (BSF), with image pre-processing, a U-Net segmentation backbone, and post-processing that includes artifact removal and watershed segmentation. Finally, we perform experiments on the BSD benchmark and obtain results that are (in terms of accuracy) comparable to or better than those obtained with two popular spotfinder software packages (Dozor and DIALS), demonstrating that this is an appropriate framework to support future extensions and improvements.




rap

TORO Indexer: a PyTorch-based indexing algorithm for kilohertz serial crystallography

Serial crystallography (SX) involves combining observations from a very large number of diffraction patterns coming from crystals in random orientations. To compile a complete data set, these patterns must be indexed (i.e. their orientation determined), integrated and merged. Introduced here is TORO (Torch-powered robust optimization) Indexer, a robust and adaptable indexing algorithm developed using the PyTorch framework. TORO is capable of operating on graphics processing units (GPUs), central processing units (CPUs) and other hardware accelerators supported by PyTorch, ensuring compatibility with a wide variety of computational setups. In tests, TORO outpaces existing solutions, indexing thousands of frames per second when running on GPUs, which positions it as an attractive candidate to produce real-time indexing and user feedback. The algorithm streamlines some of the ideas introduced by previous indexers like DIALS real-space grid search [Gildea, Waterman, Parkhurst, Axford, Sutton, Stuart, Sauter, Evans & Winter (2014). Acta Cryst. D70, 2652–2666] and XGandalf [Gevorkov, Yefanov, Barty, White, Mariani, Brehm, Tolstikova, Grigat & Chapman (2019). Acta Cryst. A75, 694–704] and refines them using faster and principled robust optimization techniques which result in a concise code base consisting of less than 500 lines. On the basis of evaluations across four proteins, TORO consistently matches, and in certain instances outperforms, established algorithms such as XGandalf and MOSFLM [Powell (1999). Acta Cryst. D55, 1690–1695], occasionally amplifying the quality of the consolidated data while achieving superior indexing speed. The inherent modularity of TORO and the versatility of PyTorch code bases facilitate its deployment into a wide array of architectures, software platforms and bespoke applications, highlighting its prospective significance in SX.




rap

MatchMaps: non-isomorphous difference maps for X-ray crystallography

Conformational change mediates the biological functions of macromolecules. Crystallographic measurements can map these changes with extraordinary sensitivity as a function of mutations, ligands and time. A popular method for detecting structural differences between crystallographic data sets is the isomorphous difference map. These maps combine the phases of a chosen reference state with the observed changes in structure factor amplitudes to yield a map of changes in electron density. Such maps are much more sensitive to conformational change than structure refinement is, and are unbiased in the sense that observed differences do not depend on refinement of the perturbed state. However, even modest changes in unit-cell properties can render isomorphous difference maps useless. This is unnecessary. Described here is a generalized procedure for calculating observed difference maps that retains the high sensitivity to conformational change and avoids structure refinement of the perturbed state. This procedure is implemented in an open-source Python package, MatchMaps, that can be run in any software environment supporting PHENIX [Liebschner et al. (2019). Acta Cryst. D75, 861–877] and CCP4 [Agirre et al. (2023). Acta Cryst. D79, 449–461]. Worked examples show that MatchMaps `rescues' observed difference electron-density maps for poorly isomorphous crystals, corrects artifacts in nominally isomorphous difference maps, and extends to detecting differences across copies within the asymmetric unit or across altogether different crystal forms.




rap

Application of laboratory micro X-ray fluorescence devices for X-ray topography

It is demonstrated that high-resolution energy-dispersive X-ray fluorescence mapping devices based on a micro-focused beam are not restricted to high-speed analyses of element distributions or to the detection of different grains, twins and subgrains in crystalline materials but can also be used for the detection of dislocations in high-quality single crystals. Si single crystals with low dislocation densities were selected as model materials to visualize the position of dis­locations by the spatially resolved measurement of Bragg-peak intensity fluctuations. These originate from the most distorted planes caused by the stress fields of dislocations. The results obtained by this approach are compared with laboratory-based Lang X-ray topographs. The presented methodology yields comparable results and it is of particular interest in the field of crystal growth, where fast chemical and microstructural characterization feedback loops are indispensable for short and efficient development times. The beam divergence was reduced via an aperture management system to facilitate the visualization of dislocations for virtually as-grown, non-polished and non-planar samples with a very pronounced surface profile.




rap

Neural networks for rapid phase quantification of cultural heritage X-ray powder diffraction data

Recent developments in synchrotron radiation facilities have increased the amount of data generated during acquisitions considerably, requiring fast and efficient data processing techniques. Here, the application of dense neural networks (DNNs) to data treatment of X-ray diffraction computed tomography (XRD-CT) experiments is presented. Processing involves mapping the phases in a tomographic slice by predicting the phase fraction in each individual pixel. DNNs were trained on sets of calculated XRD patterns generated using a Python algorithm developed in-house. An initial Rietveld refinement of the tomographic slice sum pattern provides additional information (peak widths and integrated intensities for each phase) to improve the generation of simulated patterns and make them closer to real data. A grid search was used to optimize the network architecture and demonstrated that a single fully connected dense layer was sufficient to accurately determine phase proportions. This DNN was used on the XRD-CT acquisition of a mock-up and a historical sample of highly heterogeneous multi-layered decoration of a late medieval statue, called `applied brocade'. The phase maps predicted by the DNN were in good agreement with other methods, such as non-negative matrix factorization and serial Rietveld refinements performed with TOPAS, and outperformed them in terms of speed and efficiency. The method was evaluated by regenerating experimental patterns from predictions and using the R-weighted profile as the agreement factor. This assessment allowed us to confirm the accuracy of the results.




rap

Mix and measure II: joint high-energy laboratory powder diffraction and microtomography for cement hydration studies

Portland cements (PCs) and cement blends are multiphase materials of different fineness, and quantitatively analysing their hydration pathways is very challenging. The dissolution (hydration) of the initial crystalline and amorphous phases must be determined, as well as the formation of labile (such as ettringite), reactive (such as portlandite) and amorphous (such as calcium silicate hydrate gel) components. The microstructural changes with hydration time must also be mapped out. To address this robustly and accurately, an innovative approach is being developed based on in situ measurements of pastes without any sample conditioning. Data are sequentially acquired by Mo Kα1 laboratory X-ray powder diffraction (LXRPD) and microtomography (µCT), where the same volume is scanned with time to reduce variability. Wide capillaries (2 mm in diameter) are key to avoid artefacts, e.g. self-desiccation, and to have excellent particle averaging. This methodology is tested in three cement paste samples: (i) a commercial PC 52.5 R, (ii) a blend of 80 wt% of this PC and 20 wt% quartz, to simulate an addition of supplementary cementitious materials, and (iii) a blend of 80 wt% PC and 20 wt% limestone, to simulate a limestone Portland cement. LXRPD data are acquired at 3 h and 1, 3, 7 and 28 days, and µCT data are collected at 12 h and 1, 3, 7 and 28 days. Later age data can also be easily acquired. In this methodology, the amounts of the crystalline phases are directly obtained from Rietveld analysis and the amorphous phase contents are obtained from mass-balance calculations. From the µCT study, and within the attained spatial resolution, three components (porosity, hydrated products and unhydrated cement particles) are determined. The analyses quantitatively demonstrate the filler effect of quartz and limestone in the hydration of alite and the calcium aluminate phases. Further hydration details are discussed.




rap

X-ray tensor tomography for small-grained polycrystals with strong texture

Small-angle X-ray tensor tomography and the related wide-angle X-ray tensor tomography are X-ray imaging techniques that tomographically reconstruct the anisotropic scattering density of extended samples. In previous studies, these methods have been used to image samples where the scattering density depends slowly on the direction of scattering, typically modeling the directionality, i.e. the texture, with a spherical harmonics expansion up until order ℓ = 8 or lower. This study investigates the performance of several established algorithms from small-angle X-ray tensor tomography on samples with a faster variation as a function of scattering direction and compares their expected and achieved performance. The various algorithms are tested using wide-angle scattering data from an as-drawn steel wire with known texture to establish the viability of the tensor tomography approach for such samples and to compare the performance of existing algorithms.




rap

Subgradient-projection-based stable phase-retrieval algorithm for X-ray ptychography

X-ray ptychography is a lensless imaging technique that visualizes the nano­structure of a thick specimen which cannot be observed with an electron microscope. It reconstructs a complex-valued refractive index of the specimen from observed diffraction patterns. This reconstruction problem is called phase retrieval (PR). For further improvement in the imaging capability, including expansion of the depth of field, various PR algorithms have been proposed. Since a high-quality PR method is built upon a base PR algorithm such as ePIE, developing a well performing base PR algorithm is important. This paper proposes an improved iterative algorithm named CRISP. It exploits subgradient projection which allows adaptive step size and can be expected to avoid yielding a poor image. The proposed algorithm was compared with ePIE, which is a simple and fast-convergence algorithm, and its modified algorithm, rPIE. The experiments confirmed that the proposed method improved the reconstruction performance for both simulation and real data.




rap

Rapid detection of rare events from in situ X-ray diffraction data using machine learning

High-energy X-ray diffraction methods can non-destructively map the 3D microstructure and associated attributes of metallic polycrystalline engineering materials in their bulk form. These methods are often combined with external stimuli such as thermo-mechanical loading to take snapshots of the evolving microstructure and attributes over time. However, the extreme data volumes and the high costs of traditional data acquisition and reduction approaches pose a barrier to quickly extracting actionable insights and improving the temporal resolution of these snapshots. This article presents a fully automated technique capable of rapidly detecting the onset of plasticity in high-energy X-ray microscopy data. The technique is computationally faster by at least 50 times than the traditional approaches and works for data sets that are up to nine times sparser than a full data set. This new technique leverages self-supervised image representation learning and clustering to transform massive data sets into compact, semantic-rich representations of visually salient characteristics (e.g. peak shapes). These characteristics can rapidly indicate anomalous events, such as changes in diffraction peak shapes. It is anticipated that this technique will provide just-in-time actionable information to drive smarter experiments that effectively deploy multi-modal X-ray diffraction methods spanning many decades of length scales.




rap

Ptychographic phase retrieval via a deep-learning-assisted iterative algorithm

Ptychography is a powerful computational imaging technique with microscopic imaging capability and adaptability to various specimens. To obtain an imaging result, it requires a phase-retrieval algorithm whose performance directly determines the imaging quality. Recently, deep neural network (DNN)-based phase retrieval has been proposed to improve the imaging quality from the ordinary model-based iterative algorithms. However, the DNN-based methods have some limitations because of the sensitivity to changes in experimental conditions and the difficulty of collecting enough measured specimen images for training the DNN. To overcome these limitations, a ptychographic phase-retrieval algorithm that combines model-based and DNN-based approaches is proposed. This method exploits a DNN-based denoiser to assist an iterative algorithm like ePIE in finding better reconstruction images. This combination of DNN and iterative algorithms allows the measurement model to be explicitly incorporated into the DNN-based approach, improving its robustness to changes in experimental conditions. Furthermore, to circumvent the difficulty of collecting the training data, it is proposed that the DNN-based denoiser be trained without using actual measured specimen images but using a formula-driven supervised approach that systemically generates synthetic images. In experiments using simulation based on a hard X-ray ptychographic measurement system, the imaging capability of the proposed method was evaluated by comparing it with ePIE and rPIE. These results demonstrated that the proposed method was able to reconstruct higher-spatial-resolution images with half the number of iterations required by ePIE and rPIE, even for data with low illumination intensity. Also, the proposed method was shown to be robust to its hyperparameters. In addition, the proposed method was applied to ptychographic datasets of a Simens star chart and ink toner particles measured at SPring-8 BL24XU, which confirmed that it can successfully reconstruct images from measurement scans with a lower overlap ratio of the illumination regions than is required by ePIE and rPIE.




rap

Energy-dispersive Laue diffraction analysis of the influence of statherin and histatin on the crystallographic texture during human dental enamel demineralization

Energy-dispersive Laue diffraction (EDLD) is a powerful method to obtain position-resolved texture information in inhomogeneous biological samples without the need for sample rotation. This study employs EDLD texture scanning to investigate the impact of two salivary peptides, statherin (STN) and histatin-1 (HTN) 21 N-terminal peptides (STN21 and HTN21), on the crystallographic structure of dental enamel. These proteins are known to play crucial roles in dental caries progression. Three healthy incisors were randomly assigned to three groups: artificially demineralized, demineralized after HTN21 peptide pre-treatment and demineralized after STN21 peptide pre-treatment. To understand the micro-scale structure of the enamel, each specimen was scanned from the enamel surface to a depth of 250 µm using microbeam EDLD. Via the use of a white beam and a pixelated detector, where each pixel functions as a spectrometer, pole figures were obtained in a single exposure at each measurement point. The results revealed distinct orientations of hydroxyapatite crystallites and notable texture variation in the peptide-treated demineralized samples compared with the demineralized control. Specifically, the peptide-treated demineralized samples exhibited up to three orientation populations, in contrast to the demineralized control which displayed only a single orientation population. The texture index of the demineralized control (2.00 ± 0.21) was found to be lower than that of either the STN21 (2.32 ± 0.20) or the HTN21 (2.90 ± 0.46) treated samples. Hence, texture scanning with EDLD gives new insights into dental enamel crystallite orientation and links the present understanding of enamel demineralization to the underlying crystalline texture. For the first time, the feasibility of EDLD texture measurements for quantitative texture evaluation in demineralized dental enamel samples is demonstrated.




rap

In situ counter-diffusion crystallization and long-term crystal preservation in microfluidic fixed targets for serial crystallography

Compared with batch and vapor diffusion methods, counter diffusion can generate larger and higher-quality protein crystals yielding improved diffraction data and higher-resolution structures. Typically, counter-diffusion experiments are conducted in elongated chambers, such as glass capillaries, and the crystals are either directly measured in the capillary or extracted and mounted at the X-ray beamline. Despite the advantages of counter-diffusion protein crystallization, there are few fixed-target devices that utilize counter diffusion for crystallization. In this article, different designs of user-friendly counter-diffusion chambers are presented which can be used to grow large protein crystals in a 2D polymer microfluidic fixed-target chip. Methods for rapid chip fabrication using commercially available thin-film materials such as Mylar, propyl­ene and Kapton are also detailed. Rules of thumb are provided to tune the nucleation and crystal growth to meet users' needs while minimizing sample consumption. These designs provide a reliable approach to forming large crystals and maintaining their hydration for weeks and even months. This allows ample time to grow, select and preserve the best crystal batches before X-ray beam time. Importantly, the fixed-target microfluidic chip has a low background scatter and can be directly used at beamlines without any crystal handling, enabling crystal quality to be preserved. The approach is demonstrated with serial diffraction of photoactive yellow protein, yielding 1.32 Å resolution at room temperature. Fabrication of this standard microfluidic chip with commercially available thin films greatly simplifies fabrication and provides enhanced stability under vacuum. These advances will further broaden microfluidic fixed-target utilization by crystallographers.




rap

Free tools for crystallographic symmetry handling and visualization

Online courses and innovative teaching methods have triggered a trend in education, where the integration of multimedia, online resources and interactive tools is reshaping the view of both virtual and traditional classrooms. The use of interactive tools extends beyond the boundaries of the physical classroom, offering students the flexibility to access materials at their own speed and convenience and enhancing their learning experience. In the field of crystallography, there are a wide variety of free online resources such as web pages, interactive applets, databases and programs that can be implemented in fundamental crystallography courses for different academic levels and curricula. This paper discusses a variety of resources that can be helpful for crystallographic symmetry handling and visualization, discussing four specific resources in detail: the Bilbao Crystallographic Server, the Cambridge Structural Database, VESTA and Jmol. The utility of these resources is explained and shown by several illustrative examples.




rap

Towards dynamically configured databases for CIFs: the new modulated structures open database at the Bilbao Crystallographic Server

This article presents a web-based framework to build a database without in-depth programming knowledge given a set of CIF dictionaries and a collection of CIFs. The framework consists of two main elements: the public site that displays the information contained in the CIFs in an ordered manner, and the restricted administrative site which defines how that information is stored, processed and, eventually, displayed. Thus, the web application allows users to easily explore, filter and access the data, download the original CIFs, and visualize the structures via JSmol. The modulated structures open database B-IncStrDB, the official International Union of Crystallography repository for this type of material and available through the Bilbao Crystallographic Server, has been re-implemented following the proposed framework.




rap

SUBGROUPS: a computer tool at the Bilbao Crystallographic Server for the study of pseudo-symmetric or distorted structures

SUBGROUPS is a free online program at the Bilbao Crystallographic Server (https://www.cryst.ehu.es/). It permits the exploration of all possible symmetries resulting from the distortion of a higher-symmetry parent structure, provided that the relation between the lattices of the distorted and parent structures is known. The program calculates all the subgroups of the parent space group which comply with this relation. The required minimal input is the space-group information of the parent structure and the relation of the unit cell of the distorted or pseudo-symmetric structure with that of the parent structure. Alternatively, the wavevector(s) observed in the diffraction data characterizing the distortion can be introduced. Additional conditions can be added, including filters related to space-group representations. The program provides very detailed information on all the subgroups, including group–subgroup hierarchy graphs. If a Crystallographic Information Framework (CIF) file of the parent high-symmetry structure is uploaded, the program generates CIF files of the parent structure described under each of the chosen lower symmetries. These CIF files may then be used as starting points for the refinement of the distorted structure under these possible symmetries. They can also be used for density functional theory calculations or for any other type of analysis. The power and efficiency of the program are illustrated with a few examples.




rap

VMXm – A sub-micron focus macromolecular crystallography beamline at Diamond Light Source

VMXm joins the suite of operational macromolecular crystallography beamlines at Diamond Light Source. It has been designed to optimize rotation data collections from protein crystals less than 10 µm and down to below 1 µm in size. The beamline has a fully focused beam of 0.3 × 2.3 µm (vertical × horizontal) with a tuneable energy range (6–28 keV) and high flux (1.6 × 1012 photons s−1 at 12.5 keV). The crystals are housed within a vacuum chamber to minimize background scatter from air. Crystals are plunge-cooled on cryo-electron microscopy grids, allowing much of the liquid surrounding the crystals to be removed. These factors improve the signal-to-noise during data collection and the lifetime of the microcrystals can be prolonged by exploiting photoelectron escape. A novel in vacuo sample environment has been designed which also houses a scanning electron microscope to aid with sample visualization. This combination of features at VMXm allows measurements at the physical limits of X-ray crystallography on biomacromolecules to be explored and exploited.




rap

Correlative X-ray micro-nanotomography with scanning electron microscopy at the Advanced Light Source

Geological samples are inherently multi-scale. Understanding their bulk physical and chemical properties requires characterization down to the nano-scale. A powerful technique to study the three-dimensional microstructure is X-ray tomography, but it lacks information about the chemistry of samples. To develop a methodology for measuring the multi-scale 3D microstructure of geological samples, correlative X-ray micro- and nanotomography were performed on two rocks followed by scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS) analysis. The study was performed in five steps: (i) micro X-ray tomography was performed on rock sample cores, (ii) samples for nanotomography were prepared using laser milling, (iii) nanotomography was performed on the milled sub-samples, (iv) samples were mounted and polished for SEM analysis and (v) SEM imaging and compositional mapping was performed on micro and nanotomography samples for complimentary information. Correlative study performed on samples of serpentine and basalt revealed multiscale 3D structures involving both solid mineral phases and pore networks. Significant differences in the volume fraction of pores and mineral phases were also observed dependent on the imaging spatial resolution employed. This highlights the necessity for the application of such a multiscale approach for the characterization of complex aggregates such as rocks. Information acquired from the chemical mapping of different phases was also helpful in segmentation of phases that did not exhibit significant contrast in X-ray imaging. Adoption of the protocol used in this study can be broadly applied to 3D imaging studies being performed at the Advanced Light Source and other user facilities.




rap

Mitigation of DMM-induced stripe patterns in synchrotron X-ray radiography through dynamic tilting

In synchrotron X-ray radiography, achieving high image resolution and an optimal signal-to-noise ratio (SNR) is crucial for the subsequent accurate image analysis. Traditional methods often struggle to balance these two parameters, especially in situ applications where rapid data acquisition is essential to capture specific dynamic processes. For quantitative image data analysis, using monochromatic X-rays is essential. A double multilayer monochromator (DMM) is successfully used for this aim at the BAMline, BESSY II (Helmholtz Zentrum Berlin, Germany). However, such DMMs are prone to producing an unstable horizontal stripe pattern. Such an unstable pattern renders proper signal normalization difficult and thereby causes a reduction of the SNR. We introduce a novel approach to enhance SNR while preserving resolution: dynamic tilting of the DMM. By adjusting the orientation of the DMM during the acquisition of radiographic projections, we optimize the X-ray imaging quality, thereby enhancing the SNR. The corresponding shift of the projection during this movement is corrected in post-processing. The latter correction allows a good resolution to be preserved. This dynamic tilting technique enables the homogenization of the beam profile and thereby effectively reduces noise while maintaining high resolution. We demonstrate that data captured using this proposed technique can be seamlessly integrated into the existing radiographic data workflow, as it does not need hardware modifications to classical X-ray imaging beamline setups. This facilitates further image analysis and processing using established methods.




rap

High-transmission spectrometer for rapid resonant inelastic soft X-ray scattering (rRIXS) maps

The design and first results of a high-transmission soft X-ray spectrometer operated at the X-SPEC double-undulator beamline of the KIT Light Source are presented. As a unique feature, particular emphasis was placed on optimizing the spectrometer transmission by maximizing the solid angle and the efficiencies of spectrometer gratings and detector. A CMOS detector, optimized for soft X-rays, allows for quantum efficiencies of 90% or above over the full energy range of the spectrometer, while simultaneously offering short readout times. Combining an optimized control system at the X-SPEC beamline with continuous energy scans (as opposed to step scans), the high transmission of the spectrometer, and the fast readout of the CMOS camera, enable the collection of entire rapid resonant inelastic soft X-ray scattering maps in less than 1 min. Series of spectra at a fixed energy can be taken with a frequency of up to 5 Hz. Furthermore, the use of higher-order reflections allows a very wide energy range (45 to 2000 eV) to be covered with only two blazed gratings, while keeping the efficiency high and the resolving power E/ΔE above 1500 and 3000 with low- and high-energy gratings, respectively.




rap

TerraPay partners with Suyool to boost financial accessibility in Lebanon

TerraPay, a global money movement company,...




rap

Periodic graphs with coincident edges: folding-ladder and related graphs

We explore a special class of periodic graphs, ladder graphs, whose edges can coincide when embedded vertices are moved. Many of these exhibit additional non-crystallographic graph symmetries.




rap

The Cinderella story of Trap Girl's trans front woman

Drew Arriola Sands, left, sings in the South Gate band Trap Girl at La Conxa, 2017.; Credit: Amina Cruz

Chris Greenspon | Off-Ramp®

Growing up, Drew Arriola-Sands' music was "too weird for the weird kids." Her first band couldn't even get a backyard gig, but since Sands transitioned in 2013, her current band, Trap Girl, have been at the center of an exploding queer hardcore scene in Los Angeles. 

NOTE: Trans Pride L.A. is taking place this weekend, Saturday June 17, at the Los Angeles LGBT Center. To hear a preview of the event with organizer Gina Bigham, listen to the extra audio on this post.

Sands is 28 now, but she's always been drawn to glamorous women with big hair. Her mirror is adorned with pictures of Ronnie Spector, Dolly Parton, and Jayne Mansfield. Wig idols, she calls them. Sands has a large collection of wigs, and even makes her own, but it all started 20 years ago.

"When I was a little kid, my mom always had short black hair," Sands remembers. "And then one day, getting ready for school, she walked out of the bathroom with a long, thick, black braid with a ribbon on it, and it freaked me out, because I never saw her with long hair. So I was like, 'That’s weird! What is it?'" She was eight years old. For weeks to come, Sands would lock herself in the bathroom and stare at the extension braid in it's clear, Avon box until her mother threw it away without warning. The seed had been planted, though.

Her love of singing came at an early age too. As a child, Sands would stand up on a chair while watching baseball with her father to sing the national anthem. Her mother would scold her for being loud and tell her that she could sing at a baseball game when she was older. At 11, her father put her in little league.

We look at a picture of young Drew in a baseball jersey. Sands was a chubby little kid, biting down a smile, and burying her hand in her mitt. "I was a 'catcher' even then," laughs Sands.

"I was told I was gay before I even knew I was gay, because people saw I was feminine, did things a little different, spoke a little different, a little more sensitive," says Sands. Bullying was a consistent part of her childhood, with no one incident standing out because there was always "80 more horrible ones," she says. But she found ways to cope through her hobbies.

Her father said if she wasn't going to play a sport, she had to play an instrument. The first instrument she started with in earnest was the guitar, before picking up bass and more. "Nirvana was still the biggest band in the world. Everyone at my junior high who played guitar learned how to play 'Rape Me' or 'Smells like Teen Spirit' as their first song" says Sands. The first song sands learned on guitar was Nirvana's "About a Girl," and the first album she bought was Hole's "Live Through This."

"One of my first jobs, actually, was making burnt cd’s for a guy who sold them at the alley, and he made me copy Trina cd’s, ten at a time. She had songs on there like 'Nasty Bitch,' things like that, and I just loved it! But it was like a guilty pleasure, 'cause I was still a rock kid."  - Drew Arriola-Sands

By her early twenties, she started her first real band, The Glitter Path; Sands describes it as something like Daniel Johnston, the schizophrenic outsider musician, mixed with Patsy Cline - extremely emotional, "lying across the road, ready to die type of music." It didn't fit in in the "very straight, very cis, surf rock-indie" backyard scene, says Sands. She can't remember the band playing more than two or three shows, anywhere, but she says she doesn't hold any grudges.

The Glitter Path's "Wear a Wig"

We look at another photo of Sands from her Glitter Path days. She points out the increasing number of women’s accessories she was wearing at the time. She was starting to feel a change coming.

"I was in a relationship in 2013 with an artist, but I was male presenting, and I had these feelings of identity and gender, and I expressed them to him, and he accepted them," Sands says,  "but didn’t know how to deal with me and I didn’t know how to deal with myself." Sands boyfriend broke up with her, and she reevaluated her emotional state. "My mental health was not going to get better if I did not come out [as a trans person]," she decided.

She had a much easier time dating after transitioning, and one chance hook-up set Sands down a new musical road.

"So this guy I was hooking up with at the time would play the Damned in the room while we were hooking up. I had a guitar in the room, and he didn’t know I played music and said, 'Do you play guitar?' I said, 'Yeah.' He said, 'Well, you should start a band, like the Damned, and play guitar. It’d be good, looking the way you do, and wear ball gowns.'” - Drew Arriola-Sands

Sands started Trap Girl, not as guitarist, but as lead singer, in 2014.

The early shows were backyard gigs in South Central. Songs like “Dead Men Don’t Rape” went over well, but Sands wasn’t out as a trans performer yet. Maybe people could read between the lines though, with a name like Trap Girl. Sands offers a few definitions for Trap Girls/Trap Queens (though she has never settled on just one).

  • A woman who helps out a "trap lord," or drug dealer
  • A very convincing transvestite
  • A girl trapped in a man's body

Throughout 2015, Trap Girl built their following Downtown and on the Eastside, with Sands finally out as a trans artist.

Trap Girl live at Xicana PUNK Night

"I started this band alone," explains Sands. "I didn’t know any queer people, I didn’t know any trans people, I didn’t know who was gonna help this band. Who was gonna give us a shot? So, I was ready to defend this band, even though there was no one defend it from."

Rather, Trap Girl were embraced and found sisterhood in bands like Sister Mantos and Yaawn. In 2016, Sands took it a step further and organized the first annual Transgress Fest (at the Santa Ana LGBT Center), for trans performers. "We had people as young as twelve to people as old as sixty in the audience," she says. "We had a huge turnout. I never expected that."

Transgress Fest is coming back in November. In the meantime, Trap Girl are getting ready to release their second EP, "The Black Market." The title track grapples with the question of whether or not a trans person needs surgery.

"Being a woman doesn’t mean you have to look like a woman. I didn’t know any trans people at all before I transitioned, so automatically, my idea was to think that I needed to present as feminine to be accepted as a trans person, but little did I know, that that’s the last thing you need to be a trans person. Not all people can pass, and that’s ok." - Drew Arriola-Sands

Sands says the takeaway from "The Black Market" is not to risk your life with black market cosmetic procedures. "These girls are killing themselves to achieve their looks," says Sands. "They’re getting it offline [sic], off Craigslist. You know, they go to someone’s basement and get their ass injected with cement, and then they go home and get a blood clot in their lungs, and they die." "The Black Market" EP is due for release this summer.

Trap Girl is singer Drew Arriola-Sands, bassist Ibette Ortiz, drummer Jorge Reveles, and guitarist Estevan Moreno.

This content is from Southern California Public Radio. View the original story at SCPR.org.




rap

Could graphene-lined clothing prevent mosquito bites?

Full Text:

A new study shows that graphene sheets can block the signals mosquitoes use to identify a blood meal, potentially enabling a new chemical-free approach to mosquito bite prevention. Researchers showed that multilayer graphene can provide a twofold defense against mosquito bites. The ultra-thin yet strong material acts as a barrier that mosquitoes are unable to bite through. At the same time, experiments showed that graphene also blocks chemical signals mosquitoes use to sense that a blood meal is near, blunting their urge to bite in the first place. The findings suggest that clothing with a graphene lining could be an effective mosquito barrier.

Image credit: Hurt Lab/Brown University




rap

USGS Releases New Topographic Maps for Puerto Rico and the U.S. Virgin Islands - Updated Maps for Essential Needs

The USGS is pleased to announce the release of new US Topo maps for Puerto Rico and the U.S. Virgin Islands. These updated topographic maps offer valuable, current geographic information for residents, visitors, and professionals, providing essential resources for communities in these areas.




rap

A new science synthesis for public land management of the effects of noise from oil and gas development on raptors and songbirds

The USGS is working with federal land management agencies to develop a series of structured science syntheses (SSS) to support National Environmental Policy Act (NEPA) analyses. This new synthesis is the third publication in the SSS series and provides science to support NEPA analyses for agency decisions regarding oil and gas leasing and permitting.




rap

Poetry Challenge: Create A List Poem That Grapples With Rise Of Anti-Asian Racism

; Credit: /Katherine Du

Casey Noenickx | NPR

Over the years, NPR's poetry community has turned both painful and joyful experiences into magnificent work.

As the world still endures the coronavirus pandemic, the U.S. also grieves over increased violence against Asian Americans and a mass shooting in Georgia that left six women of Asian descent dead.

"Let's be clear: Anti-Asian violence and discrimination are not new. But, this racism seems to be heightened," says Kwame Alexander, NPR's resident poet. "And the onus is not on Asian Americans to figure this out. Frankly, it's on white people, it's on the rest of us — individually, systemically, to talk about it, to pay attention to, advocate against it."

"Between Autumn Equinox and Winter Solstice, Today," by Emily Jungmin Yoon, is a list poem that reflects the coldness of the world and how it wears on us. Yoon is a South Korean-born poet pursuing her Ph.D. in Korean literature at the University of Chicago.

Alexander and Morning Edition's Rachel Martin ask listeners: How do you cope with recent anti-Asian violence and discrimination? Tell us in a list poem.

Your poem doesn't have to rhyme. It just needs to have an ordered list with details that show your state of mind — and must begin with the word "today."

Share your poem through the form below. Then Alexander will take lines from some of your pieces and create a community crowdsourced poem. Alexander and Martin will read it on air, and NPR will publish it online, where contributors will be credited.

Submissions are due by noon ET on Monday, April 5.


Here are the terms of the callout:

By providing your Submission to us, you agree that you have read, understand and accept the following terms in relation to the content and information (your "Submission") you are providing to National Public Radio ("NPR," "us" or "our"):

You are submitting content pursuant to a callout by Morning Edition related to a segment with Kwame Alexander wherein he creates unique poetry based on listener submissions. You understand that you are submitting content for the purpose of having Kwame use that content to create a new poem or poems ("Poem") with the material you submit. You must be over the age of 18 to submit material.

You will retain copyright in your Submission, but agree that NPR and/or Kwame Alexander may edit, modify, use, excerpt, publish, adapt or otherwise make derivative works from your Submission and use your Submission or derivative works in whole or in part in any media or format and/or use the Submission or Poem for journalistic and/or promotional purposes generally, and may allow others to do so. You understand that the Poem created by Kwame Alexander will be a new creative work and may be distributed through NPR's programs (or other media), and the Poem and programs can be separately subject to copyright protection. Your Submission does not plagiarize or otherwise infringe any third-party copyright, moral rights or any other intellectual property rights or similar rights. You have not copied any part of your Submission from another source. If your Submission is selected for inclusion in the Poem, you will be acknowledged in a list of contributors on NPR's website or otherwise receive appropriate credit, but failure to do so shall not be deemed a breach of your rights.

Your submission will be governed by our general Terms of Use and Privacy Policy. As the Privacy Policy says, we want you to be aware that there may be circumstances in which the exemptions provided under law for journalistic activities or freedom of expression may override privacy rights you might otherwise have.

Copyright 2021 NPR. To see more, visit https://www.npr.org.

This content is from Southern California Public Radio. View the original story at SCPR.org.




rap

No Single Solution for Protecting Kids From Internet Pornography

No single approach -- technical, legal, economic, or educational -- will be sufficient to protect children from online pornography.




rap

The Polygraph and Lie Detection

Good morning. On behalf of the National Academies and my colleagues on the committee, I welcome those of you in the room as well as those listening to the live audio webcast.




rap

Polygraph Testing Too Flawed for Security Screening

The federal government should not rely on polygraph examinations for screening prospective or current employees to identify spies or other national-security risks because the test results are too inaccurate when used this way.




rap

Eleven Questions for the Next Decade of Geographical Sciences Identified

Eleven questions that should shape the next decade of geographical sciences research were identified today in a new report by the National Research Council.




rap

National Crime Victimization Survey Is Likely Undercounting Rape and Sexual Assault - Justice Department Should Create New, Separate Survey

One of the nation’s largest surveys of crime victims is likely undercounting incidences of rape and sexual assault, making it difficult to ensure that adequate law enforcement resources and support services are available for victims, says a new report by the National Research Council.