ph

SBCGLOBAL Customer Support phone number 1800 308 1474 Get answers SBCGLOBAL




ph

SBCGLOBAL Customer Care phone number 1800 308 1474 Get answers to your SBCGLOBAL




ph

SBCGLOBAL Customer Service phone number 1800 308 1474 Get answers SBCGLOBAL




ph

SBCGLOBAL Mail Support phone number 1800 308 1474 Get answers to your SBCGLOBAL




ph

SBCGLOBAL Customer Service phone number 1800 308 1474 Get answers to SBCGLOBAL




ph

SBCGLOBAL Password Recovery 1800 308 1474 phone number Get answers SBCGLOBAL




ph

SBCGLOBAL Password Reset 1800 308 1474 phone number Get answers SBCGLOBAL




ph

BELLSOUTH Password Recovery 1800 308 1474 phone Number Get to BELLSOUTH Mail




ph

YAHOO Mail Password Recovery 1800 308 1474 phone Number Get to YAHOO Mail




ph

HOTMAIL Password Recovery 1800 308 1474 phone Number Get to HOTMAIL Mail




ph

OUTLOOK Password Recovery 1800 308 1474 phone Number Get to OUTLOOK Mail




ph

ICLOUD Mail Password Recovery 1800 308 1474 phone Number Get to ICLOUD Mail




ph

AOL Mail Tech Support Phone Number 18773238313 Search for your question




ph

AOL Tech Support phone number 1877 323 8313 Get answers to your AOL Mail




ph

AOL Mail Password Recovery +1800-308-1474 Phone Number uSa eMaIl Contact




ph

Crystal structure and Hirshfeld surface analysis of 4-{2,2-dichloro-1-[(E)-(4-fluorophenyl)diazenyl]ethenyl}-N,N-dimethylaniline

In the title compound, C16H14Cl2FN3, the dihedral angle between the two aromatic rings is 64.12 (14)°. The crystal structure is stabilized by a short Cl...H contact, C—Cl...π and van der Waals interactions. The Hirshfeld surface analysis and two-dimensional fingerprint plots show that H...H (33.3%), Cl...H/H...Cl (22.9%) and C...H/H...C (15.5%) interactions are the most important contributors towards the crystal packing.




ph

Synthesis and crystal structure of (1,10-phenanthroline-κ2N,N')[2-(1H-pyrazol-1-yl)phenyl-κ2N2,C1]iridium(III) hexafluoridophosphate with an unknown number of solvent molecules

The cationic complex in the title compound, [Ir(C9H7N2)2(C12H8N2)]PF6, comprises two phenylpyrazole (ppz) cyclometallating ligands and one 1,10-phenanthroline (phen) ancillary ligand. The asymmetric unit consists of one [Ir(ppz)2(phen)]+ cation and one [PF6]− counter-ion. The central IrIII ion is six-coordinated by two N atoms and two C atoms from the two ppz ligands as well as by two N atoms from the phen ligand within a distorted octahedral C2N4 coordination set. In the crystal structure, the [Ir(ppz)2(phen)]+ cations and PF6− counter-ions are connected with each other through weak intermolecular C—H...F hydrogen bonds. Additional C—H...π interactions between the rings of neighbouring cations consolidate the three-dimensional network. Electron density associated with additional disordered solvent molecules inside cavities of the structure was removed with the SQUEEZE procedure in PLATON [Spek (2015). Acta Cryst. C71, 9–18]. The given chemical formula and other crystal data do not take into account the unknown solvent molecule(s). The title compound has a different space-group symmetry (C2/c) from its solvatomorph (P21/c) comprising 1.5CH2Cl2 solvent molecules per ion pair.




ph

Crystal structure, Hirshfeld surface analysis and DFT studies of 2-(2,3-dihydro-1H-perimidin-2-yl)phenol

The asymmetric unit of the title compound, C17H14N2O, contains two independent molecules each consisting of perimidine and phenol units. The tricyclic perimidine units contain naphthalene ring systems and non-planar C4N2 rings adopting envelope conformations with the C atoms of the NCN groups hinged by 44.11 (7) and 48.50 (6)° with respect to the best planes of the other five atoms. Intramolecular O—H...N hydrogen bonds may help to consolidate the molecular conformations. The two independent molecules are linked through an N—H...O hydrogen bond. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (52.9%) and H...C/C...H (39.5%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.




ph

The crystal structure and Hirshfeld surface analysis of 1-(2,5-dimethoxyphenyl)-2,2,6,6-tetramethylpiperidine

In the title compound, C17H27NO2, the piperidine ring has a chair conformation and is positioned normal to the benzene ring. In the crystal, molecules are linked by C—H...O hydrogen bonds, forming chains propagating along the c-axis direction.





ph

A simple graphical method to pinpoint local pseudosymmetries in Z' > 1 cases

An intuitive method is presented for detecting pseudosymmetries in Z' > 1 cases as a complement to well-proven strategies already available in the literature. It is based in the simple idea that the mid-points between equivalent atoms in symmetrically related mol­ecules are disposed according to simple well-known patterns, which are easily recognizable by optical inspection. A number of Z' = 4 cases in the literature are analyzed, which allows some of the potentialities of the method to be revealed.




ph

Three new acid M+ arsenates and phosphates with multiply protonated As/PO4 groups

The crystal structures of caesium di­hydrogen arsenate(V) bis­[tri­hydrogen arsen­ate(V)], Cs(H2AsO4)(H3AsO4)2, ammonium di­hydrogen arsenate(V) tri­hydrogen arsenate(V), NH4(H2AsO4)(H3AsO4), and dilithium bis­(di­hydrogen phosphate), Li2(H2PO4)2, were solved from single-crystal X-ray diffraction data. NH4(H2AsO4)(H3AsO4), which was hydro­thermally synthesized (T = 493 K), is homeotypic with Rb(H2AsO4)(H3AsO4), while Cs(H2AsO4)(H3AsO4)2 crystallizes in a novel structure type and Li2(H2PO4)2 represents a new polymorph of this composition. The Cs and Li compounds grew at room temperature from highly acidic aqueous solutions. Li2(H2PO4)2 forms a three-dimensional (3D) framework of PO4 tetra­hedra sharing corners with Li2O6 dimers built of edge-sharing LiO4 groups, which is reinforced by hydrogen bonds. The two arsenate compounds are characterized by a 3D network of AsO4 groups that are connected solely via multiple strong hydrogen bonds. A statistical evaluation of the As—O bond lengths in singly, doubly and triply protonated AsO4 groups gave average values of 1.70 (2) Å for 199 As—OH bonds, 1.728 (19) Å for As—OH bonds in HAsO4 groups, 1.714 (12) Å for As—OH bonds in H2AsO4 groups and 1.694 (16) Å for As—OH bonds in H3AsO4 groups, and a grand mean value of 1.667 (18) Å for As—O bonds to nonprotonated O atoms.




ph

Crystallographic curiosities: polymorphism and structures with Z' > 1




ph

Deciphering the hydrogen-bonding scheme in the crystal structure of tri­phenyl­methanol: a tribute to George Ferguson and co-workers

The crystal structure of tri­phenyl­methanol, C19H16O, has been redetermined using data collected at 295 and 153 K, and is compared to the model published by Ferguson et al. over 25 years ago [Ferguson et al. (1992). Acta Cryst. C48, 1272–1275] and that published by Serrano-González et al., using neutron and X-ray diffraction data [Serrano-González et al. (1999). J. Phys. Chem. B, 103, 6215–6223]. As predicted by these authors, the hy­droxy groups are involved in weak inter­molecular hydrogen bonds in the crystal, forming tetra­hedral tetra­­mers based on the two independent mol­ecules in the asymmetric unit, one of which is placed on the threefold symmetry axis of the Roverline{3} space group. However, the reliable determination of the hy­droxy H-atom positions is difficult to achieve, for two reasons. Firstly, a positional disorder affects the full asymmetric unit, which is split over two sets of positions, with occupancy factors of ca 0.74 and 0.26. Secondly, all hy­droxy H atoms are further disordered, either by symmetry, or through a positional disorder in the case of parts placed in general positions. We show that the correct description of the hydrogen-bonding scheme is possible only if diffraction data are collected at low temperature. The pro­chiral character of the hydrogen-bonded tetra­meric supra­molecular clusters leads to enanti­omorphic three-dimensional graphs in each tetra­mer. The crystal is thus a racemic mixture of supS and supR motifs, consistent with the centro­symmetric nature of the Roverline{3} space group.




ph

Phase transition and structures of the twinned low-temperature phases of (Et4N)[ReS4]

The title com­pound, tetra­ethyl­ammonium tetra­thio­rhenate, [(C2H5)4N][ReS4], has, at room temperature, a disordered structure in the space group P63mc (Z = 2, α-phase). A phase transition to the monoclinic space group P21 (Z = 2, γ-phase) at 285 K leads to a pseudo-merohedral twin. The high deviation from the hexa­gonal metric causes split reflections. However, the different orientations could not be separated, but were integrated using a large integration box. Rapid cooling to 110–170 K produces a metastable β-phase (P63, Z = 18) in addition to the γ-phase. All crystals of the β-phase are contaminated with the γ-phase. Additionally, the crystals of the β-phase are merohedrally twinned. In contrast to the α-phase, the β- and γ-phases do not show disorder.




ph

Tolerance factor and phase stability of the garnet structure. Corrigendum

An error in an equation in the paper by Song et al. [Acta Cryst. (2019), C75, 1353–1358] is corrected.




ph

7-Iodo-5-aza-7-deazaguanine ribonucleoside: crystal structure, physical properties, base-pair stability and functionalization

The positional change of nitro­gen-7 of the RNA constituent guanosine to the bridgehead position-5 leads to the base-modified nucleoside 5-aza-7-de­aza­guanosine. Contrary to guanosine, this mol­ecule cannot form Hoogsteen base pairs and the Watson–Crick proton donor site N3—H becomes a proton-acceptor site. This causes changes in nucleobase recognition in nucleic acids and has been used to construct stable `all-purine' DNA and DNA with silver-mediated base pairs. The present work reports the single-crystal X-ray structure of 7-iodo-5-aza-7-de­aza­guanosine, C10H12IN5O5 (1). The iodinated nucleoside shows an anti conformation at the glycosylic bond and an N conformation (O4'-endo) for the ribose moiety, with an anti­periplanar orientation of the 5'-hy­droxy group. Crystal packing is controlled by inter­actions between nucleobase and sugar moieties. The 7-iodo substituent forms a contact to oxygen-2' of the ribose moiety. Self-pairing of the nucleobases does not take place. A Hirshfeld surface analysis of 1 highlights the contacts of the nucleobase and sugar moiety (O—H⋯O and N—H⋯O). The concept of pK-value differences to evaluate base-pair stability was applied to purine–purine base pairing and stable base pairs were predicted for the construction of `all-purine' RNA. Furthermore, the 7-iodo substituent of 1 was functionalized with benzo­furan to detect motional constraints by fluorescence spectroscopy.




ph

Polymorphism and phase transformation in the dimethyl sulfoxide solvate of 2,3,5,6-tetra­fluoro-1,4-di­iodo­benzene

A new polymorph (form II) is reported for the 1:1 dimethyl sulfoxide solvate of 2,3,5,6-tetra­fluoro-1,4-di­iodo­benzene (TFDIB·DMSO or C6F4I2·C2H6SO). The structure is similar to that of a previously reported polymorph (form I) [Britton (2003). Acta Cryst. E59, o1332–o1333], containing layers of TFDIB mol­ecules with DMSO mol­ecules between, accepting I⋯O halogen bonds from two TFDIB mol­ecules. Re-examination of form I over the temperature range 300–120 K shows that it undergoes a phase transformation around 220 K, where the DMSO mol­ecules undergo re-orientation and become ordered. The unit cell expands by ca 0.5 Å along the c axis and contracts by ca 1.0 Å along the a axis, and the space-group symmetry is reduced from Pnma to P212121. Refinement of form I against data collected at 220 K captures the (average) structure of the crystal prior to the phase transformation, with the DMSO mol­ecules showing four distinct disorder com­ponents, corresponding to an overlay of the 297 and 120 K structures. Assessment of the inter­molecular inter­action energies using the PIXEL method indicates that the various orientations of the DMSO mol­ecules have very similar total inter­action energies with the molecules of the TFDIB framework. The phase transformation is driven by inter­actions between DMSO mol­ecules, whereby re-orientation at lower temperature yields significantly closer and more stabilizing inter­actions between neighbouring DMSO mol­ecules, which lock in an ordered arrangement along the shortened a axis.




ph

Open-access and free articles in Acta Crystallographica Section C: Crystal Structural Communications




ph

A Journey into Reciprocal Space: A Crystallographer's Perspective. By A. M. Glazer. Morgan & Claypool, 2017. Paperback, pp. 190. Price USD 55.00. ISBN 9781681746203.




ph

Geometric realizations of abstract regular polyhedra with automorphism group H3

A method is adapted to generate a full rank realization of an abstract regular polyhedron with automorphism group H3.




ph

Wedge reversion antisymmetry and 41 types of physical quantities in arbitrary dimensions

Physical quantities in arbitrary dimensional space can be classified into 41 types using three antisymmetries within the framework of Clifford algebra.




ph

Direct recovery of interfacial topography from coherent X-ray reflectivity: model calculations for a one-dimensional interface

The inversion of X-ray reflectivity to reveal the topography of a one-dimensional interface is evaluated through model calculations.




ph

Domain formation and phase transitions in the wurtzite-based heterovalent ternaries: a Landau theory analysis

A Landau theory for the wurtzite-based heterovalent ternary semiconductor ZnSnN2 is developed and a first-order reconstructive phase transition is proposed as the cause of observed crystal structure disorder. The model infers that the phase transition is paraelectric to antiferroelectric.




ph

Forthcoming article in Acta Crystallographica Section A Foundations and Advances




ph

Cybersec company Sophos bought by Thoma Bravo for USD 3.8 billion

(The Paypers)



ph

transferring a text from mobile phone to laptop




ph

IPhone Storage




ph

new google account and cell phone no other cell phone




ph

incognito or private mode browser sessions in android phone?




ph

To Choose between Android and iPhone




ph

Transfering iPhone DCIM and dropping out




ph

Want to Rid Phone of Google




ph

Explanation for Unlocked Phone




ph

Android phone... says under android settings i have 3rd party with trusted cert




ph

Trustworthy website that pays the most for old phones in New York?




ph

My old phone without sim card shows same ip address as my active phone




ph

Fair price for old iPhone 6s




ph

Protein tyrosine phosphatase 1B is involved in efficient type I interferon secretion upon viral infection

Elisa Reimer
Apr 23, 2020; 134:jcs246421-jcs246421
Articles




ph

Automated 3D light-sheet screening with high spatiotemporal resolution reveals mitotic phenotypes

Björn Eismann
Apr 15, 2020; 0:jcs.245043v1-jcs.245043
TOOLS AND RESOURCES