ant

Structure of P46, an immunodominant surface protein from Mycoplasma hyopneumoniae: interaction with a monoclonal antibody

Structures of the immunodominant protein P46 from M. hyopneumoniae has been determined by X-ray crystallography and it is shown that P46 can bind a diversity of oligosaccharides, particularly xylose, which exhibits a very high affinity for this protein. Structures of a monoclonal antibody, both alone and in complex with P46, that was raised against M. hyopnemoniae cells and specifically recognizes P46 are also reported.




ant

Structural and thermodynamic analysis of interactions between death-associated protein kinase 1 and anthraquinones

Death-associated protein kinase 1 (DAPK1) was found to form a complex with purpurin and the crystal structure of the complex was determined. Purpurin may be a good lead compound for for the discovery of inhibitors of DAPK1.




ant

Structure of ClpC1-NTD in complex with the anti-TB natural product ecumicin reveals unique binding interactions

Comparison of the structures of ClpC1-Ecumicin and ClpC1-Rufomycin reveals unique interaction relevant to the mode of action.




ant

6-Nitro-1,10-phenanthrolin-5-amine

In the title compound, C12H8N4O2, the dihedral angle between the phenanthroline ring system and the nitro group is 23.75 (14)°. The mol­ecule features intra­molecular N—H⋯O and C—H⋯O hydrogen bonds. In the crystal, N—H⋯(N,N), C—H⋯N and C—H⋯O hydrogen bonds link the mol­ecules into [100] chains.




ant

μ2-Methanol-κ2O:O-bis­[(1,10-phenanthroline-κ2N,N')bis­(2,3,4,5-tetra­fluoro­benzoato)-κO;κ2O,O'-copper(II)]

In the title compound, [Cu2(C7HF4O2)4(C12H8N2)2(CH3OH)], the mol­ecule lies on a twofold rotation axis in space group C2/c. The Cu2+ ion exhibits a distorted octa­hedral sphere with two N atoms from the phenanthroline ligand, three O atoms from the 2,3,4,5-tetra­fluoro­benzoate ligands and one O atom from a methanol mol­ecule. The distortion from an octa­hedral shape is a consequence of the Jahn–Teller effect of CuII and the small bite angle for the bidentate fluoro­benzoate ligand [54.50 (11)°]. The methanol mol­ecule bridges two symmetry-related CuII atoms to form the complete mol­ecule. In the bidentate fluoro­benzoate ligand, one F atom is disordered over two positions of equal occupancy. In the crystal structure, only weak inter­molecular inter­actions are observed.




ant

Bis(N-adamantyl-N'-ethyl­imidazolium) tetra­bromido­manganate(II)

The title compound, (C15H23N2)2[MnBr4], comprises two N-adamantyl-N'-ethyl­imidazolium cations and one tetra­hedral [MnBr4]2− anion. Next to Coulombic inter­actions, weak hydrogen bonds of the type C—H⋯Br consolidate the crystal packing, building up a three-dimensional network.




ant

Crystal structure of tetra­kis­[μ-3-carboxy-1-(1,2,4-triazol-4-yl)adamantane-κ2N1:N2]tetra­fluoridodi-μ2-oxido-dioxidodisilver(I)divanadium(V) tetra­hydrate

The crystal structure of the title mol­ecular complex, [Ag2{VO2F2}2(C13H17N3O2)4]·4H2O, supported by the heterofunctional ligand tr-ad-COOH [1-(1,2,4-triazol-4-yl)-3-carb­oxy­adamantane] is reported. Four 1,2,4-triazole groups of the ligand link two AgI atoms, as well as AgI and VV centres, forming the heterobimetallic coordination cluster {AgI2(VVO2F2)2(tr)4}. VV exists as a vanadium oxofluoride anion and possesses a distorted trigonal–bipyramidal coordination environment [VO2F2N]. A carb­oxy­lic acid functional group of the ligand stays in a neutral form and is involved in hydrogen bonding with solvent water mol­ecules and VO2F2− ions of adjacent mol­ecules. The extended hydrogen-bonding network is responsible for the crystal packing in the structure.




ant

The crystal structure of (RS)-7-chloro-2-(2,5-di­meth­oxy­phen­yl)-2,3-di­hydro­quinazolin-4(1H)-one: two hydrogen bonds generate an elegant three-dimensional framework structure

In the title compound, C61H15ClN2O3, the heterocyclic ring adopts an envelope conformation, folded across the N⋯N line, with the 2,5-di­meth­oxy­phenyl unit occupying a quasi-axial site. There are two N—H⋯O hydrogen bonds in the structure: one hydrogen bond links mol­ecules related by a 41 screw axis to form a C(6) chain, and the other links inversion-related pairs of mol­ecules to form an R22(8) ring. The ring motif links all of the chains into a continuous three-dimensional framework structure. Comparisons are made with the structures of some related compounds.




ant

Crystal structure of bis­[di­hydro­bis­(pyrazol-1-yl)borato-κ2N2,N2'](1,10-phenanthroline-κ2N,N')zinc(II)

The asymmetric unit of the title compound, [Zn(C6H8N4B)2(C12H8N2)], comprises one half of a ZnII cation (site symmetry 2), one di­hydro­bis­(pyrazol-1-yl)borate ligand in a general position, and one half of a phenanthroline ligand, the other half being completed by twofold rotation symmetry. The ZnII cation is coordinated in form of a slightly distorted octa­hedron by the N atoms of a phenanthroline ligand and by two pairs of N atoms of symmetry-related di­hydro­bis­(pyrazol-1-yl)borate ligands. The discrete complexes are arranged into columns that elongate in the c-axis direction with a parallel alignment of the phenanthroline ligands, indicating weak π–π inter­actions.




ant

(E)-6,6'-(Diazene-1,2-di­yl)bis­(1,10-phenanthrolin-5-ol) tri­chloro­methane disolvate: a superconjugated ligand

Phenanthroline ligands are important metal-binding mol­ecules which have been extensively researched for applications in both material science and medicinal chemistry. Azo­benzene and its derivatives have received significant attention because of their ability to be reversibly switched between the E and Z forms and so could have applications in optical memory and logic devices or as mol­ecular machines. Herein we report the formation and crystal structure of a highly unusual novel diazo-diphenanthroline compound, C24H14N6O2·2CHCl3.




ant

Crystal structure of poly[[[μ4-3-(1,2,4-triazol-4-yl)adamantane-1-carboxyl­ato-κ5N1:N2:O1:O1,O1']silver(I)] dihydrate]

The heterobifunctional organic ligand, 3-(1,2,4-triazol-4-yl)adamantane-1-carboxyl­ate (tr-ad-COO−), was employed for the synthesis of the title silver(I) coordination polymer, {[Ag(C13H16N3O2)]·2H2O}n, crystallizing in the rare ortho­rhom­bic C2221 space group. Alternation of the double μ2-1,2,4-triazole and μ2-η2:η1-COO− (chelating, bridging mode) bridges between AgI cations supports the formation of sinusoidal coordination chains. The AgI centers possess a distorted {N2O3} square-pyramidal arrangement with τ5 = 0.30. The angular organic linkers connect the chains into a tetra­gonal framework with small channels along the c-axis direction occupied by water mol­ecules of crystallization, which are inter­linked via O—H⋯O hydrogen bonds with carboxyl­ate groups, leading to right- and left-handed helical dispositions.




ant

(3,5-Di­methyl­adamantan-1-yl)ammonium methane­sulfonate (memanti­nium mesylate): synthesis, structure and solid-state properties

The asymmetric unit of the title compound, C12H22N+·CH3O3S−, consists of three (3,5-di­methyl­adamantan-1-yl)ammonium cations, C12H22N+, and three methane­sulfonate anions, CH3O3S−. In the crystal, the cations and anions associate via N—H⋯O hydrogen bonds into layers, parallel to the (001) plane, which include large supra­molecular hydrogen-bonded rings.




ant

Crystal structure of a binuclear mixed-valence ytterbium complex containing a 2-anthracene-substituted phenoxide ligand

Reaction of 2-(anthracen-9-yl)phenol (HOPhAn, 1) with divalent Yb[N(SiMe3)2]2·2THF in THF–toluene mixtures affords the mixed-valence YbII–YbIII dimer {[2-(anthracen-9-yl)phenolato-κO]bis­(tetra­hydro­furan)­ytterbium(III)}-tris­[μ-2-(anthracen-9-yl)phenolato]-κ4O:O;κO:1,2-η,κO-{[2-(anthracen-9-yl)phenolato-κO]ytterbium(II)} toluene tris­olvate, [Yb2(C20H13O)5(C4H8O)2]·3C7H7 or [YbIII(THF)2(OPhAn)](μ-OPhAn)3[YbII(OPhAn)]·3C7H7 (2), as the major product. It crystallized as a toluene tris­olvate. The Yb—O bond lengths in the crystal structure of this dimer clearly identify the YbII and YbIII centres. Inter­estingly, the formally four-coordinate YbII centre shows a close contact with one anthracene C—C bond of a bridging OPhAn ligand, bringing the formal coordination number to five.




ant

Crystal structure and DFT study of a zinc xanthate complex

In the title compound, bis­(2-meth­oxy­ethyl xanthato-κS)(N,N,N',N'-tetra­methyl­ethylenedi­amine-κ2N,N')zinc(II) acetone hemisolvate, [Zn(C4H7O2S2)2(C6H16N2)]·0.5C3H6O, the ZnII ion is coordinated by two N atoms of the N,N,N',N'-tetra­methyl­ethylenedi­amine ligand and two S atoms from two 2-meth­oxy­ethyl xanthate ligands. The amine ligand is disordered over two orientations and was modelled with refined occupancies of 0.538 (6) and 0.462 (6). The mol­ecular structure features two C—H⋯O and two C—H⋯S intra­molecular inter­actions. In the crystal, mol­ecules are linked by weak C—H⋯O and C—H⋯S hydrogen bonds, forming a three-dimensional supra­molecular architecture. The mol­ecular structure was optimized using density functional theory (DFT) at the B3LYP/6–311 G(d,p) level. The smallest HOMO–LUMO energy gap (3.19 eV) indicates the suitability of this crystal for optoelectronic applications. The mol­ecular electrostatic potential (MEP) further identifies the positive, negative and neutral electrostatic potential regions of the mol­ecules. Half a mol­ecule of disordered acetone was removed with the solvent-mask procedure in OLEX2 [Dolomanov et al. (2009). J. Appl. Cryst. 42, 339–341] and this contribition is included in the formula.




ant

Crystal structure and Hirshfeld surface analysis of a zinc xanthate complex containing the 2,2'-bi­pyridine ligand

In the title compound, (2,2'-bi­pyridine-κ2N,N')bis­(2-meth­oxy­ethyl xanthato-κS)zinc(II), [Zn(C4H7O2S2)2(C10H8N2)], the ZnII ion is coordinated to two N atoms of the 2,2'-bi­pyridine ligand and two S atoms from two 2-meth­oxy­ethyl xanthate ligands. The ZnII ion lies on a crystallographic twofold rotation axis and has distorted tetra­hedral coordination geometry. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming supramolecular chains propagating along the a-axis direction. Weak intra­molecular C—H⋯S hydrogen bonds are also observed. The inter­molecular contacts in the crystal were further analysed using Hirshfield surface analysis, which indicates that the most significant contacts are H⋯H (36.3%), followed by S⋯H/H⋯S (24.7%), C⋯H/H⋯C (15.1%), O⋯H/H⋯O (14.4%), N⋯H/H⋯N (4.1%) and C⋯C (2.9%).




ant

Crystal structure and Hirshfeld surface analysis of 4-{[(anthracen-9-yl)meth­yl]amino}­benzoic acid

In the mol­ecule of the title anthracene derivative, C22H17NO2, the benzene ring is inclined to the mean plane of the anthracene ring system (r.m.s. deviation = 0.024 Å) by 75.21 (9)°. In the crystal, mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming classical carb­oxy­lic acid inversion dimers with an R22(8) ring motif. The dimers are linked by C—H⋯π inter­actions, forming a supra­molecular framework.




ant

Synthesis and crystal structure of catena-poly[[bis[(2,2';6',2''-terpyridine)­manganese(II)]-μ4-penta­thio­dianti­monato] tetra­hydrate] showing a 1D MnSbS network

The asymmetric unit of the title compound, {[Mn2Sb2S5(C15H11N3)2]·4H2O}n, consists of two crystallographically independent MnII ions, two unique terpyridine ligands, one [Sb2S5]4− anion and four solvent water mol­ecules, all of which are located in general positions. The [Sb2S5]4− anion consists of two SbS3 units that share common corners. Each of the MnII ions is fivefold coordinated by two symmetry-related S atoms of [Sb2S5]4− anions and three N atoms of a terpyridine ligand within an irregular coordination. Each two anions are linked by two [Mn(terpyridine)]2+ cations into chains along the c-axis direction that consist of eight-membered Mn2Sb2S4 rings. These chains are further connected into a three-dimensional network by inter­molecular O—H⋯O and O—H⋯S hydrogen bonds. The crystal investigated was twinned and therefore, a twin refinement using data in HKLF-5 [Sheldrick (2015). Acta Cryst. C71, 3–8] format was performed.




ant

Synthesis and crystal structure of 3-(adamantan-1-yl)-4-(2-bromo-4-fluoro­phen­yl)-1H-1,2,4-triazole-5(4H)-thione

In the title compound, C18H19BrFN3S, the 1,2,4-triazole ring is nearly planar with a maximum deviation of −0.009 (3) and 0.009 (4) Å, respectively, for the S-bound C atom and the N atom bonded to the bromo­fluoro­phenyl ring. The phenyl and triazole rings are almost perpendicular to each other, forming a dihedral angle of 89.5 (2)°. In the crystal, the mol­ecules are linked by weak C—H⋯π(phen­yl) inter­actions, forming supra­molecular chains extending along the c-axis direction. The crystal packing is further consolidated by inter­molecular N—H⋯S hydrogen bonds and by weak C—H⋯S inter­actions, yielding double chains propagating along the a-axis direction. The crystal studied was refined as a racemic twin.




ant

Phospho­rescent mono- and diiridium(III) complexes cyclo­metalated by fluorenyl- or phenyl-pyridino ligands with bulky substituents, as prospective OLED dopants

The crystal structures of tris­[9,9-dihexyl-2-(5-meth­oxy­pyridin-2-yl-κN)-9H-fluoren-3-yl-κC3]iridium pentane monosolvate, [Ir(C31H38NO)3]·C5H12, (I), di-μ2-chlorido-bis­{bis­[2-(5-fluoro­pyridin-2-yl)-9,9-dihexyl-9H-fluoren-3-yl]iridium} pentane 0.3-solvate, [Ir2(C30H35FN)4Cl2]·0.3C5H12, (II), di-μ2-cyanato-bis­{bis­[9,9-dihexyl-2-(5-meth­oxy­pyridin-2-yl)-9H-fluoren-1-yl]iridium} pentane monosolvate, [Ir2(C31H38NO)4(NCO)2(NCO)2]·C5H12, (III), and {μ-N,N'-bis­[3,5-bis­(tri­fluoro­meth­yl)phen­yl]oxamidato}bis(bis{2-[4-(2,4,6-trimethylphenyl)pyridin-2-yl]phenyl-κ2C1,N'}iridium)–chloro­benzene–pentane (1/2.3/0.4), [Ir2(C20H19N)4(C18H6F12N2O2)]·2.3C6H5Cl·0.4C5H12, (IV), synthesized in the quest for organic light-emitting devices, were determined. The bis-μ2-chloro and bis-μ2-cyanato complexes have ΔΔ and ΛΛ configurations of the distorted octa­hedral Ir centres in racemic crystals, whereas the oxamido complex has a centrosymmetric (meso) structure with the ΔΛ configuration. The bridging oxamido moiety has a nearly planar anti geometry. All structures show substantial disorder of both host mol­ecules and solvents of crystallization.




ant

Structural and luminescent properties of co-crystals of tetra­iodo­ethyl­ene with two aza­phenanthrenes

Two new co-crystals, tetra­iodo­ethyl­ene–phenanthridine (1/2), 0.5C2I4·C13H9N (1) and tetra­iodo­ethyl­ene–benzo[f]quinoline (1/2), 0.5C2I4·C13H9N (2), were obtained from tetra­iodo­ethyl­ene and aza­phenanthrenes, and characterized by IR and fluorescence spectroscopy, elemental analysis and X-ray crystallography. In the crystal structures, C—I⋯π and C—I⋯N halogen bonds link the independent mol­ecules into one-dimensional chains and two-dimensional networks with subloops. In addition, the planar aza­phenanthrenes lend themselves to π–π stacking and C—H⋯π inter­actions, leading to a diversity of supra­molecular three-dimensional structural motifs being formed by these inter­actions. Luminescence studies show that co-crystals 1 and 2 exhibit distinctly different luminescence properties in the solid state at room temperature.




ant

Crystal structures of trans-acetyl­dicarbon­yl(η5-cyclo­penta­dien­yl)(1,3,5-tri­aza-7-phosphaadamantane)molybdenum(II) and trans-acetyl­di­carbon­yl(η5-cyclo­penta­dien­yl)(3,7-diacetyl-1,3,7-tr

The title compounds, [Mo(C5H5)(COCH3)(C6H12N3P)(CO)2], (1), and [Mo(C5H5)(COCH3)(C9H16N3O2P)(C6H5)2))(CO)2], (2), have been prepared by phosphine-induced migratory insertion from [Mo(C5H5)(CO)3(CH3)]. The mol­ecular structures of these complexes are quite similar, exhibiting a four-legged piano-stool geometry with trans-disposed carbonyl ligands. The extended structures of complexes (1) and (2) differ substanti­ally. For complex (1), the molybdenum acetyl unit plays a dominant role in the organization of the extended structure, joining the mol­ecules into centrosymmetrical dimers through C—H⋯O inter­actions with a cyclo­penta­dienyl ligand of a neighboring mol­ecule, and these dimers are linked into layers parallel to (100) by C—H⋯O inter­actions between the molybdenum acetyl and the cyclo­penta­dienyl ligand of another neighbor. The extended structure of (2) is dominated by C—H⋯O inter­actions involving the carbonyl groups of the acetamide groups of the DAPTA ligand, which join the mol­ecules into centrosymmetrical dimers and link them into chains along [010]. Additional C—H⋯O inter­actions between the molybdenum acetyl oxygen atom and an acetamide methyl group join the chains into layers parallel to (101).




ant

Crystal structure and Hirshfeld surface analysis of 3,4-di­hydro-2H-anthra[1,2-b][1,4]dioxepine-8,13-dione

The title compound, C17H12O4, was synthesized from the dye alizarin. The dihedral angle between the mean plane of the anthra­quinone ring system (r.m.s. deviation = 0.039 Å) and the dioxepine ring is 16.29 (8)°. In the crystal, the mol­ecules are linked by C—H⋯O hydrogen bonds, forming sheets lying parallel to the ab plane. The sheets are connected through π–π and C=O⋯π inter­actions to generate a three-dimensional supra­molecular network. Hirshfeld surface analysis was used to investigate inter­molecular inter­actions in the solid-state: the most important contributions are from H⋯H (43.0%), H⋯O/O⋯H (27%), H⋯C/C⋯H (13.8%) and C⋯C (12.4%) contacts.




ant

Crystal structure, Hirshfeld surface analysis and inter­action energy, DFT and anti­bacterial activity studies of ethyl 2-[(2Z)-2-(2-chloro­benzyl­idene)-3-oxo-3,4-di­hydro-2H-1,4-benzo­thia­zin-4-yl]acetate

The title compound, C19H16ClNO3S, consists of chloro­phenyl methyl­idene and di­hydro­benzo­thia­zine units linked to an acetate moiety, where the thia­zine ring adopts a screw-boat conformation. In the crystal, two sets of weak C—HPh⋯ODbt (Ph = phenyl and Dbt = di­hydro­benzo­thia­zine) hydrogen bonds form layers of mol­ecules parallel to the bc plane. The layers stack along the a-axis direction with inter­calation of the ester chains. The crystal studied was a two component twin with a refined BASF of 0.34961 (5). The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (37.5%), H⋯C/C⋯H (24.6%) and H⋯O/O⋯H (16.7%) inter­actions. Hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, C—HPh⋯ODbt hydrogen bond energies are 38.3 and 30.3 kJ mol−1. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Moreover, the anti­bacterial activity of the title compound has been evaluated against gram-positive and gram-negative bacteria.




ant

Crystal structure and Hirshfeld surface analysis of 2-phenyl-1H-phenanthro[9,10-d]imidazol-3-ium benzoate

In the title compound, C21H15N2+·C7H5O2−, 2-phenyl-1H-phenanthro[9,10-d]imidazole and benzoic acid form an ion pair complex. The system is consolidated by hydrogen bonds along with π–π inter­actions and N—H⋯π inter­actions between the constituent units. For a better understanding of the crystal structure and inter­molecular inter­actions, a Hirshfeld surface analysis was performed.




ant

Crystal structure and Hirshfeld surface analysis of 4-{[(anthracen-9-yl)meth­yl]amino}­benzoic acid di­methyl­formamide monosolvate

The title compound, C22H17NO2·C3H7NO, was synthesized by condensation of an aromatic aldehyde with a secondary amine and subsequent reduction. It was crystallized from a di­methyl­formamide solution as a monosolvate, C22H17NO2·C3H7NO. The aromatic mol­ecule is non-planar with a dihedral angle between the mean planes of the aniline moiety and the methyl anthracene moiety of 81.36 (8)°. The torsion angle of the Car­yl—CH2—NH—Car­yl backbone is 175.9 (2)°. The crystal structure exhibits a three-dimensional supra­molecular network, resulting from hydrogen-bonding inter­actions between the carb­oxy­lic OH group and the solvent O atom as well as between the amine functionality and the O atom of the carb­oxy­lic group and additional C—H⋯π inter­actions. Hirshfeld surface analysis was performed to qu­antify the inter­molecular inter­actions.




ant

A five-coordinate cobalt bis­(di­thiol­ene)–phosphine complex [Co(pdt)2(PTA)] (pdt = phenyl­dithiol­ene; PTA = 1,3,5-tri­aza-7-phosphaadamantane)

The title compound, bis­(1,2-diphenyl-2-sulfanyl­idene­ethane­thiol­ato-κ2S,S')(1,3,5-tri­aza-7-phosphaadamantane-κP)cobalt(II) dichloromethane hemisolvate, [Co(pdt)2(PTA)]·0.5C2H4Cl2 or [Co(C14H10S2)2(C6H12N3P)]·0.5C2H4Cl2, contains two phenyl­dithiol­ene (pdt) ligands and a 1,3,5-tri­aza-7-phosphaadamantane (PTA) ligand bound to cobalt with the solvent 1,2-di­chloro­ethane mol­ecule located on an inversion center. The cobalt core exhibits an approximately square-pyramidal geometry with partially reduced thienyl radical monoanionic ligands. The supra­molecular network is consolidated by hydrogen-bonding inter­actions primarily with nitro­gen, sulfur and chlorine atoms, as well as parallel displaced π-stacking of the aryl rings. The UV–vis, IR, and CV data are also consistent with monoanionic di­thiol­ene ligands and an overall CoII oxidation state.




ant

Symmetry-mode analysis for intuitive observation of structure–property relationships in the lead-free antiferroelectric (1−x)AgNbO3–xLiTaO3

Functional materials are of critical importance to electronic and smart devices. A deep understanding of the structure–property relationship is essential for designing new materials. In this work, instead of utilizing conventional atomic coordinates, a symmetry-mode approach is successfully used to conduct structure refinement of the neutron powder diffraction data of (1−x)AgNbO3–xLiTaO3 (0 ≤ x ≤ 0.09) ceramics. This provides rich structural information that not only clarifies the controversial symmetry assigned to pure AgNbO3 but also explains well the detailed structural evolution of (1−x)AgNbO3–xLiTaO3 (0 ≤ x ≤ 0.09) ceramics, and builds a comprehensive and straightforward relationship between structural distortion and electrical properties. It is concluded that there are four relatively large-amplitude major modes that dominate the distorted Pmc21 structure of pure AgNbO3, namely a Λ3 antiferroelectric mode, a T4+ a−a−c0 octahedral tilting mode, an H2 a0a0c+/a0a0c− octahedral tilting mode and a Γ4− ferroelectric mode. The H2 and Λ3 modes become progressively inactive with increasing x and their destabilization is the driving force behind the composition-driven phase transition between the Pmc21 and R3c phases. This structural variation is consistent with the trend observed in the measured temperature-dependent dielectric properties and polarization–electric field (P-E) hysteresis loops. The mode crystallography applied in this study provides a strategy for optimizing related properties by tuning the amplitudes of the corresponding modes in these novel AgNbO3-based (anti)ferroelectric materials.




ant

Catalytically important damage-free structures of a copper nitrite reductase obtained by femtosecond X-ray laser and room-temperature neutron crystallography

Copper-containing nitrite reductases (CuNiRs) that convert NO2− to NO via a CuCAT–His–Cys–CuET proton-coupled redox system are of central importance in nitrogen-based energy metabolism. These metalloenzymes, like all redox enzymes, are very susceptible to radiation damage from the intense synchrotron-radiation X-rays that are used to obtain structures at high resolution. Understanding the chemistry that underpins the enzyme mechanisms in these systems requires resolutions of better than 2 Å. Here, for the first time, the damage-free structure of the resting state of one of the most studied CuNiRs was obtained by combining X-ray free-electron laser (XFEL) and neutron crystallography. This represents the first direct comparison of neutron and XFEL structural data for any protein. In addition, damage-free structures of the reduced and nitrite-bound forms have been obtained to high resolution from cryogenically maintained crystals by XFEL crystallography. It is demonstrated that AspCAT and HisCAT are deprotonated in the resting state of CuNiRs at pH values close to the optimum for activity. A bridging neutral water (D2O) is positioned with one deuteron directed towards AspCAT Oδ1 and one towards HisCAT N∊2. The catalytic T2Cu-ligated water (W1) can clearly be modelled as a neutral D2O molecule as opposed to D3O+ or OD−, which have previously been suggested as possible alternatives. The bridging water restricts the movement of the unprotonated AspCAT and is too distant to form a hydrogen bond to the O atom of the bound nitrite that interacts with AspCAT. Upon the binding of NO2− a proton is transferred from the bridging water to the Oδ2 atom of AspCAT, prompting electron transfer from T1Cu to T2Cu and reducing the catalytic redox centre. This triggers the transfer of a proton from AspCAT to the bound nitrite, enabling the reaction to proceed.




ant

fragHAR: towards ab initio quantum-crystallographic X-ray structure refinement for polypeptides and proteins

The first ab initio aspherical structure refinement against experimental X-ray structure factors for polypeptides and proteins using a fragmentation approach to break up the protein into residues and solvent, thereby speeding up quantum-crystallographic Hirshfeld atom refinement (HAR) calculations, is described. It it found that the geometric and atomic displacement parameters from the new fragHAR method are essentially unchanged from a HAR on the complete unfragmented system when tested on dipeptides, tripeptides and hexapeptides. The largest changes are for the parameters describing H atoms involved in hydrogen-bond interactions, but it is shown that these discrepancies can be removed by including the interacting fragments as a single larger fragment in the fragmentation scheme. Significant speed-ups are observed for the larger systems. Using this approach, it is possible to perform a highly parallelized HAR in reasonable times for large systems. The method has been implemented in the TONTO software.




ant

High-resolution cryo-EM reconstructions in the presence of substantial aberrations

Here, an analysis is performed of how uncorrected antisymmetric aberrations, such as coma and trefoil, affect cryo-EM single-particle reconstruction (SPR) results, and an analytical formula quantifying information loss owing to their presence is inferred that explains why Fourier-shell coefficient-based statistics may report significantly overestimated resolution if these aberrations are not fully corrected. The analysis is validated with reference-based aberration refinement for two cryo-EM SPR data sets acquired with a 200 kV microscope in the presence of coma exceeding 40 µm, and 2.3 and 2.7 Å reconstructions for 144 and 173 kDa particles, respectively, were obtained. The results provide a description of an efficient approach for assessing information loss in cryo-EM SPR data acquired in the presence of higher order aberrations, and address inconsistent guidelines regarding the level of aberrations that is acceptable in cryo-EM SPR experiments.




ant

Calcium-ligand variants of the myocilin olfactomedin propeller selected from invertebrate phyla reveal cross-talk with N-terminal blade and surface helices

Olfactomedins are a family of modular proteins found in multicellular organisms that all contain five-bladed β-propeller olfactomedin (OLF) domains. In support of differential functions for the OLF propeller, the available crystal structures reveal that only some OLF domains harbor an internal calcium-binding site with ligands derived from a triad of residues. For the myocilin OLF domain (myoc-OLF), ablation of the ion-binding site (triad Asp, Asn, Asp) by altering the coordinating residues affects the stability and overall structure, in one case leading to misfolding and glaucoma. Bioinformatics analysis reveals a variety of triads with possible ion-binding characteristics lurking in OLF domains in invertebrate chordates such as Arthropoda (Asp–Glu–Ser), Nematoda (Asp–Asp–His) and Echinodermata (Asp–Glu–Lys). To test ion binding and to extend the observed connection between ion binding and distal structural rearrangements, consensus triads from these phyla were installed in the myoc-OLF. All three protein variants exhibit wild-type-like or better stability, but their calcium-binding properties differ, concomitant with new structural deviations from wild-type myoc-OLF. Taken together, the results indicate that calcium binding is not intrinsically destabilizing to myoc-OLF or required to observe a well ordered side helix, and that ion binding is a differential feature that may underlie the largely elusive biological function of OLF propellers.




ant

Antibody fragments structurally enable a drug-discovery campaign on the cancer target Mcl-1

Apoptosis is a crucial process by which multicellular organisms control tissue growth, removal and inflammation. Disruption of the normal apoptotic function is often observed in cancer, where cell death is avoided by the overexpression of anti-apoptotic proteins of the Bcl-2 (B-cell lymphoma 2) family, including Mcl-1 (myeloid cell leukaemia 1). This makes Mcl-1 a potential target for drug therapy, through which normal apoptosis may be restored by inhibiting the protective function of Mcl-1. Here, the discovery and biophysical properties of an anti-Mcl-1 antibody fragment are described and the utility of both the scFv and Fab are demonstrated in generating an Mcl-1 crystal system amenable to iterative structure-guided drug design.




ant

Refinement of protein structures using a combination of quantum-mechanical calculations with neutron and X-ray crystallographic data. Corrigendum

Corrections are published for the article by Caldararu et al. [(2019), Acta Cryst. D75, 368–380].




ant

The use of local structural similarity of distant homologues for crystallographic model building from a molecular-replacement solution

The performance of automated protein model building usually decreases with resolution, mainly owing to the lower information content of the experimental data. This calls for a more elaborate use of the available structural information about macromolecules. Here, a new method is presented that uses structural homologues to improve the quality of protein models automatically constructed using ARP/wARP. The method uses local structural similarity between deposited models and the model being built, and results in longer main-chain fragments that in turn can be more reliably docked to the protein sequence. The application of the homology-based model extension method to the example of a CFA synthase at 2.7 Å resolution resulted in a more complete model with almost all of the residues correctly built and docked to the sequence. The method was also evaluated on 1493 molecular-replacement solutions at a resolution of 4.0 Å and better that were submitted to the ARP/wARP web service for model building. A significant improvement in the completeness and sequence coverage of the built models has been observed.




ant

Radiochromic film dosimetry in synchrotron radiation breast computed tomography: a phantom study

This study relates to the INFN project SYRMA-3D for in vivo phase-contrast breast computed tomography using the SYRMEP synchrotron radiation beamline at the ELETTRA facility in Trieste, Italy. This peculiar imaging technique uses a novel dosimetric approach with respect to the standard clinical procedure. In this study, optimization of the acquisition procedure was evaluated in terms of dose delivered to the breast. An offline dose monitoring method was also investigated using radiochromic film dosimetry. Various irradiation geometries have been investigated for scanning the prone patient's pendant breast, simulated by a 14 cm-diameter polymethylmethacrylate cylindrical phantom containing pieces of calibrated radiochromic film type XR-QA2. Films were inserted mid-plane in the phantom, as well as wrapped around its external surface, and irradiated at 38 keV, with an air kerma value that would produce an estimated mean glandular dose of 5 mGy for a 14 cm-diameter 50% glandular breast. Axial scans were performed over a full rotation or over 180°. The results point out that a scheme adopting a stepped rotation irradiation represents the best geometry to optimize the dose distribution to the breast. The feasibility of using a piece of calibrated radiochromic film wrapped around a suitable holder around the breast to monitor the scan dose offline is demonstrated.




ant

Quantitative three-dimensional nondestructive imaging of whole anaerobic ammonium-oxidizing bacteria

Anaerobic ammonium-oxidizing (anammox) bacteria play a key role in the global nitrogen cycle and in nitrogenous wastewater treatment. The anammox bacteria ultrastructure is unique and distinctly different from that of other prokaryotic cells. The morphological structure of an organism is related to its function; however, research on the ultrastructure of intact anammox bacteria is lacking. In this study, in situ three-dimensional nondestructive ultrastructure imaging of a whole anammox cell was performed using synchrotron soft X-ray tomography (SXT) and the total variation-based simultaneous algebraic reconstruction technique (TV-SART). Statistical and quantitative analyses of the intact anammox bacteria were performed. High soft X-ray absorption composition inside anammoxosome was detected and verified to be relevant to iron-binding protein. On this basis, the shape adaptation of the anammox bacteria response to iron was explored.




ant

Quantifying redox heterogeneity in single-crystalline LiCoO2 cathode particles

Active cathode particles are fundamental architectural units for the composite electrode of Li-ion batteries. The microstructure of the particles has a profound impact on their behavior and, consequently, on the cell-level electrochemical performance. LiCoO2 (LCO, a dominant cathode material) is often in the form of well-shaped particles, a few micrometres in size, with good crystallinity. In contrast to secondary particles (an agglomeration of many fine primary grains), which are the other common form of battery particles populated with structural and chemical defects, it is often anticipated that good particle crystallinity leads to superior mechanical robustness and suppressed charge heterogeneity. Yet, sub-particle level charge inhomogeneity in LCO particles has been widely reported in the literature, posing a frontier challenge in this field. Herein, this topic is revisited and it is demonstrated that X-ray absorption spectra on single-crystalline particles with highly anisotropic lattice structures are sensitive to the polarization configuration of the incident X-rays, causing some degree of ambiguity in analyzing the local spectroscopic fingerprint. To tackle this issue, a methodology is developed that extracts the white-line peak energy in the X-ray absorption near-edge structure spectra as a key data attribute for representing the local state of charge in the LCO crystal. This method demonstrates significantly improved accuracy and reveals the mesoscale chemical complexity in LCO particles with better fidelity. In addition to the implications on the importance of particle engineering for LCO cathodes, the method developed herein also has significant impact on spectro-microscopic studies of single-crystalline materials at synchrotron facilities, which is broadly applicable to a wide range of scientific disciplines well beyond battery research.




ant

A design of resonant inelastic X-ray scattering (RIXS) spectrometer for spatial- and time-resolved spectroscopy

The optical design of a Hettrick–Underwood-style soft X-ray spectrometer with Wolter type 1 mirrors is presented. The spectrometer with a nominal length of 3.1 m can achieve a high resolving power (resolving power higher than 10000) in the soft X-ray regime when a small source beam (<3 µm in the grating dispersion direction) and small pixel detector (5 µm effective pixel size) are used. Adding Wolter mirrors to the spectrometer before its dispersive elements can realize the spatial imaging capability, which finds applications in the spectroscopic studies of spatially dependent electronic structures in tandem catalysts, heterostructures, etc. In the pump–probe experiments where the pump beam perturbs the materials followed by the time-delayed probe beam to reveal the transient evolution of electronic structures, the imaging capability of the Wolter mirrors can offer the pixel-equivalent femtosecond time delay between the pump and probe beams when their wavefronts are not collinear. In combination with some special sample handing systems, such as liquid jets and droplets, the imaging capability can also be used to study the time-dependent electronic structure of chemical transformation spanning multiple time domains from microseconds to nanoseconds. The proposed Wolter mirrors can also be adopted to the existing soft X-ray spectrometers that use the Hettrick–Underwood optical scheme, expanding their capabilities in materials research.




ant

Zeeman quantum beats of helium Rydberg states excited by synchrotron radiation

Quantum beats in fluorescence decay from Zeeman-split magnetic sublevels have been measured for helium Rydberg states excited by synchrotron radiation. The Zeeman quantum beats observed in this prototypical case were fitted with an equation from a theoretical formulation. It is proposed that Zeeman quantum beat measurement can be a useful way to simply evaluate the polarization characteristics of extreme ultraviolet light.




ant

Saturation and self-absorption effects in the angle-dependent 2p3d resonant inelastic X-ray scattering spectra of Co3+

It is shown that the 2p3d resonant inelastic X-ray scattering intensity is distorted by saturation and self-absorption effects, i.e. by incident-energy-dependent saturation and by emission-energy-dependent self-absorption.




ant

Hard X-ray phase-contrast-enhanced micro-CT for quantifying interfaces within brittle dense root-filling-restored human teeth

Phase-contrast enhanced micro-computed tomography reveals huge discontinuities at the interfaces between dental fillings and the tooth substrate. Despite the complex micromorphology, gaps in bonding could be visualized and quantified in 3D.




ant

Diffraction-based determination of single-crystal elastic constants of polycrystalline titanium alloys

Single-crystal elastic constants have been derived by lattice strain measurements using neutron diffraction on polycrystalline Ti-6Al-4V, Ti-6Al-2Sn-4Zr-6Mo and Ti-3Al-8V-6Cr-4Zr-4Mo alloy samples. A variety of model approximations for the grain-to-grain interactions, namely approaches by Voigt, Reuss, Hill, Kroener, de Wit and Matthies, including texture weightings, have been applied and compared. A load-transfer approach for multiphase alloys was also implemented and the results are compared with single-phase data. For the materials under investigation, the results for multiphase alloys agree well with the results for single-phase materials in the corresponding phases. In this respect, all eight elastic constants in the dual-phase Ti-6Al-2Sn-4Zr-6Mo alloy have been derived for the first time.




ant

Quantifying nanoparticles in clays and soils with a small-angle X-ray scattering method

Clays and soils produce strong small-angle X-ray scattering (SAXS) because they contain large numbers of nanoparticles, namely allophane and ferrihydrite. These nanoparticles are amorphous and have approximately spherical shape with a size of around 3–10 nm. The weight ratios of these nanoparticles will affect the properties of the clays and soils. However, the nanoparticles in clays and soils are not generally quantified and are sometimes ignored because there is no standard method to quantify them. This paper describes a method to quantify nanoparticles in clays and soils with SAXS. This is achieved by deriving normalized SAXS intensities from unit weight of the sample, which are not affected by absorption. By integrating the normalized SAXS intensities over the reciprocal space, one obtains a value that is proportional to the weight ratio of the nanoparticles, proportional to the square of the difference of density between the nanoparticles and the liquid surrounding the nanoparticles, and inversely proportional to the density of the nanoparticles. If the density of the nanoparticles is known, the weight ratio of the nanoparticles can be calculated from the SAXS intensities. The density of nanoparticles was estimated from the chemical composition of the sample. Nanoparticles in colloidal silica, silica gels, mixtures of silica gel and α-aluminium oxide, and synthetic clays have been quantified with the integral SAXS method. The results show that the errors of the weight ratios of nanoparticles are around 25% of the weight ratio. It is also shown that some natural clays contain large fractions of nanoparticles; montmorillonite clay from the Mikawa deposit, pyrophillite clay from the Shokozan deposit and kaolinite clay from the Kanpaku deposit contain 25 (7), 10 (2) and 19 (5) wt% nanoparticles, respectively, where errors are shown in parentheses.




ant

Significant texture improvement in single-crystalline-like materials on low-cost flexible metal foils through growth of silver thin films

Single-crystalline-like thin films composed of crystallographically aligned grains are a new prototype of 2D materials developed recently for low-cost and high-performance flexible electronics as well as second-generation high-temperature superconductors. In this work, significant texture improvement in single-crystalline-like materials is achieved through growth of a 330 nm-thick silver layer.




ant

Synthesis, crystal structure, polymorphism and microscopic luminescence properties of anthracene derivative compounds

Crystal structure and microscopic optical properties of anthracene derivative compounds have been investigated by single-crystal synchrotron X-ray diffraction, laser confocal microscopy and fluorescence lifetime imaging microscopy.




ant

The crystal structure of haemoglobin from Atlantic cod

The crystal structure of haemoglobin from Atlantic cod has been solved to 2.54 Å resolution. The structure consists of two tetramers in the crystallographic asymmetric unit. The structure of haemoglobin obtained from one individual cod suggests polymorphism in the tetrameric assembly.




ant

Structure of GTP cyclohydrolase I from Listeria monocytogenes, a potential anti-infective drug target

A putative open reading frame encoding GTP cyclohydrolase I from Listeria monocytogenes was expressed in a recombinant Escherichia coli strain. The recombinant protein was purified and was confirmed to convert GTP to dihydroneopterin triphosphate (Km = 53 µM; vmax = 180 nmol mg−1 min−1). The protein was crystallized from 1.3 M sodium citrate pH 7.3 and the crystal structure was solved at a resolution of 2.4 Å (Rfree = 0.226) by molecular replacement using human GTP cyclohydrolase I as a template. The protein is a D5-symmetric decamer with ten topologically equivalent active sites. Screening a small library of about 9000 compounds afforded several inhibitors with IC50 values in the low-micromolar range. Several inhibitors had significant selectivity with regard to human GTP cyclohydrolase I. Hence, GTP cyclohydrolase I may be a potential target for novel drugs directed at microbial infections, including listeriosis, a rare disease with high mortality.




ant

Structure of the dihydrolipoamide succinyltransferase catalytic domain from Escherichia coli in a novel crystal form: a tale of a common protein crystallization contaminant

The crystallization of amidase, the ultimate enzyme in the Trp-dependent auxin-biosynthesis pathway, from Arabidopsis thaliana was attempted using protein samples with at least 95% purity. Cube-shaped crystals that were assumed to be amidase crystals that belonged to space group I4 (unit-cell parameters a = b = 128.6, c = 249.7 Å) were obtained and diffracted to 3.0 Å resolution. Molecular replacement using structures from the PDB containing the amidase signature fold as search models was unsuccessful in yielding a convincing solution. Using the Sequence-Independent Molecular replacement Based on Available Databases (SIMBAD) program, it was discovered that the structure corresponded to dihydrolipoamide succinyltransferase from Escherichia coli (PDB entry 1c4t), which is considered to be a common crystallization contaminant protein. The structure was refined to an Rwork of 23.0% and an Rfree of 27.2% at 3.0 Å resolution. The structure was compared with others of the same protein deposited in the PDB. This is the first report of the structure of dihydrolipo­amide succinyltransferase isolated without an expression tag and in this novel crystal form.




ant

Crystal structure of an oxidized mutant of human mitochondrial branched-chain aminotransferase

This study presents the crystal structure of a thiol variant of the human mitochondrial branched-chain aminotransferase protein. Human branched-chain aminotransferase (hBCAT) catalyzes the transamination of the branched-chain amino acids leucine, valine and isoleucine and α-ketoglutarate to their respective α-keto acids and glutamate. hBCAT activity is regulated by a CXXC center located approximately 10 Å from the active site. This redox-active center facilitates recycling between the reduced and oxidized states, representing hBCAT in its active and inactive forms, respectively. Site-directed mutagenesis of the redox sensor (Cys315) results in a significant loss of activity, with no loss of activity reported on the mutation of the resolving cysteine (Cys318), which allows the reversible formation of a disulfide bond between Cys315 and Cys318. The crystal structure of the oxidized form of the C318A variant was used to better understand the contributions of the individual cysteines and their oxidation states. The structure reveals the modified CXXC center in a conformation similar to that in the oxidized wild type, supporting the notion that its regulatory mechanism depends on switching the Cys315 side chain between active and inactive conformations. Moreover, the structure reveals conformational differences in the N-terminal and inter-domain region that may correlate with the inactivated state of the CXXC center.




ant

Engineering the Fab fragment of the anti-IgE omalizumab to prevent Fab crystallization and permit IgE-Fc complex crystallization

Immunoglobulin E (IgE) plays a central role in the allergic response, in which cross-linking of allergen by Fc∊RI-bound IgE triggers mast cell and basophil degranulation and the release of inflammatory mediators. The high-affinity interaction between IgE and Fc∊RI is a long-standing target for therapeutic intervention in allergic disease. Omalizumab is a clinically approved anti-IgE monoclonal antibody that binds to free IgE, also with high affinity, preventing its interaction with Fc∊RI. All attempts to crystallize the pre-formed complex between the omalizumab Fab and the Fc region of IgE (IgE-Fc), to understand the structural basis for its mechanism of action, surprisingly failed. Instead, the Fab alone selectively crystallized in different crystal forms, but their structures revealed intermolecular Fab/Fab interactions that were clearly strong enough to disrupt the Fab/IgE-Fc complexes. Some of these interactions were common to other Fab crystal structures. Mutations were therefore designed to disrupt two recurring packing interactions observed in the omalizumab Fab crystal structures without interfering with the ability of the omalizumab Fab to recognize IgE-Fc; this led to the successful crystallization and subsequent structure determination of the Fab/IgE-Fc complex. The mutagenesis strategy adopted to achieve this result is applicable to other intractable Fab/antigen complexes or systems in which Fabs are used as crystallization chaperones.