met

Spectral and matrix factorization methods for consistent community detection in multi-layer networks

Subhadeep Paul, Yuguo Chen.

Source: The Annals of Statistics, Volume 48, Number 1, 230--250.

Abstract:
We consider the problem of estimating a consensus community structure by combining information from multiple layers of a multi-layer network using methods based on the spectral clustering or a low-rank matrix factorization. As a general theme, these “intermediate fusion” methods involve obtaining a low column rank matrix by optimizing an objective function and then using the columns of the matrix for clustering. However, the theoretical properties of these methods remain largely unexplored. In the absence of statistical guarantees on the objective functions, it is difficult to determine if the algorithms optimizing the objectives will return good community structures. We investigate the consistency properties of the global optimizer of some of these objective functions under the multi-layer stochastic blockmodel. For this purpose, we derive several new asymptotic results showing consistency of the intermediate fusion techniques along with the spectral clustering of mean adjacency matrix under a high dimensional setup, where the number of nodes, the number of layers and the number of communities of the multi-layer graph grow. Our numerical study shows that the intermediate fusion techniques outperform late fusion methods, namely spectral clustering on aggregate spectral kernel and module allegiance matrix in sparse networks, while they outperform the spectral clustering of mean adjacency matrix in multi-layer networks that contain layers with both homophilic and heterophilic communities.




met

Two-step semiparametric empirical likelihood inference

Francesco Bravo, Juan Carlos Escanciano, Ingrid Van Keilegom.

Source: The Annals of Statistics, Volume 48, Number 1, 1--26.

Abstract:
In both parametric and certain nonparametric statistical models, the empirical likelihood ratio satisfies a nonparametric version of Wilks’ theorem. For many semiparametric models, however, the commonly used two-step (plug-in) empirical likelihood ratio is not asymptotically distribution-free, that is, its asymptotic distribution contains unknown quantities, and hence Wilks’ theorem breaks down. This article suggests a general approach to restore Wilks’ phenomenon in two-step semiparametric empirical likelihood inferences. The main insight consists in using as the moment function in the estimating equation the influence function of the plug-in sample moment. The proposed method is general; it leads to a chi-squared limiting distribution with known degrees of freedom; it is efficient; it does not require undersmoothing; and it is less sensitive to the first-step than alternative methods, which is particularly appealing for high-dimensional settings. Several examples and simulation studies illustrate the general applicability of the procedure and its excellent finite sample performance relative to competing methods.




met

Active ranking from pairwise comparisons and when parametric assumptions do not help

Reinhard Heckel, Nihar B. Shah, Kannan Ramchandran, Martin J. Wainwright.

Source: The Annals of Statistics, Volume 47, Number 6, 3099--3126.

Abstract:
We consider sequential or active ranking of a set of $n$ items based on noisy pairwise comparisons. Items are ranked according to the probability that a given item beats a randomly chosen item, and ranking refers to partitioning the items into sets of prespecified sizes according to their scores. This notion of ranking includes as special cases the identification of the top-$k$ items and the total ordering of the items. We first analyze a sequential ranking algorithm that counts the number of comparisons won, and uses these counts to decide whether to stop, or to compare another pair of items, chosen based on confidence intervals specified by the data collected up to that point. We prove that this algorithm succeeds in recovering the ranking using a number of comparisons that is optimal up to logarithmic factors. This guarantee does depend on whether or not the underlying pairwise probability matrix, satisfies a particular structural property, unlike a significant body of past work on pairwise ranking based on parametric models such as the Thurstone or Bradley–Terry–Luce models. It has been a long-standing open question as to whether or not imposing these parametric assumptions allows for improved ranking algorithms. For stochastic comparison models, in which the pairwise probabilities are bounded away from zero, our second contribution is to resolve this issue by proving a lower bound for parametric models. This shows, perhaps surprisingly, that these popular parametric modeling choices offer at most logarithmic gains for stochastic comparisons.




met

Projected spline estimation of the nonparametric function in high-dimensional partially linear models for massive data

Heng Lian, Kaifeng Zhao, Shaogao Lv.

Source: The Annals of Statistics, Volume 47, Number 5, 2922--2949.

Abstract:
In this paper, we consider the local asymptotics of the nonparametric function in a partially linear model, within the framework of the divide-and-conquer estimation. Unlike the fixed-dimensional setting in which the parametric part does not affect the nonparametric part, the high-dimensional setting makes the issue more complicated. In particular, when a sparsity-inducing penalty such as lasso is used to make the estimation of the linear part feasible, the bias introduced will propagate to the nonparametric part. We propose a novel approach for estimation of the nonparametric function and establish the local asymptotics of the estimator. The result is useful for massive data with possibly different linear coefficients in each subpopulation but common nonparametric function. Some numerical illustrations are also presented.




met

An operator theoretic approach to nonparametric mixture models

Robert A. Vandermeulen, Clayton D. Scott.

Source: The Annals of Statistics, Volume 47, Number 5, 2704--2733.

Abstract:
When estimating finite mixture models, it is common to make assumptions on the mixture components, such as parametric assumptions. In this work, we make no distributional assumptions on the mixture components and instead assume that observations from the mixture model are grouped, such that observations in the same group are known to be drawn from the same mixture component. We precisely characterize the number of observations $n$ per group needed for the mixture model to be identifiable, as a function of the number $m$ of mixture components. In addition to our assumption-free analysis, we also study the settings where the mixture components are either linearly independent or jointly irreducible. Furthermore, our analysis considers two kinds of identifiability, where the mixture model is the simplest one explaining the data, and where it is the only one. As an application of these results, we precisely characterize identifiability of multinomial mixture models. Our analysis relies on an operator-theoretic framework that associates mixture models in the grouped-sample setting with certain infinite-dimensional tensors. Based on this framework, we introduce a general spectral algorithm for recovering the mixture components.




met

Semiparametrically point-optimal hybrid rank tests for unit roots

Bo Zhou, Ramon van den Akker, Bas J. M. Werker.

Source: The Annals of Statistics, Volume 47, Number 5, 2601--2638.

Abstract:
We propose a new class of unit root tests that exploits invariance properties in the Locally Asymptotically Brownian Functional limit experiment associated to the unit root model. The invariance structures naturally suggest tests that are based on the ranks of the increments of the observations, their average and an assumed reference density for the innovations. The tests are semiparametric in the sense that they are valid, that is, have the correct (asymptotic) size, irrespective of the true innovation density. For a correctly specified reference density, our test is point-optimal and nearly efficient. For arbitrary reference densities, we establish a Chernoff–Savage-type result, that is, our test performs as well as commonly used tests under Gaussian innovations but has improved power under other, for example, fat-tailed or skewed, innovation distributions. To avoid nonparametric estimation, we propose a simplified version of our test that exhibits the same asymptotic properties, except for the Chernoff–Savage result that we are only able to demonstrate by means of simulations.




met

The two-to-infinity norm and singular subspace geometry with applications to high-dimensional statistics

Joshua Cape, Minh Tang, Carey E. Priebe.

Source: The Annals of Statistics, Volume 47, Number 5, 2405--2439.

Abstract:
The singular value matrix decomposition plays a ubiquitous role throughout statistics and related fields. Myriad applications including clustering, classification, and dimensionality reduction involve studying and exploiting the geometric structure of singular values and singular vectors. This paper provides a novel collection of technical and theoretical tools for studying the geometry of singular subspaces using the two-to-infinity norm. Motivated by preliminary deterministic Procrustes analysis, we consider a general matrix perturbation setting in which we derive a new Procrustean matrix decomposition. Together with flexible machinery developed for the two-to-infinity norm, this allows us to conduct a refined analysis of the induced perturbation geometry with respect to the underlying singular vectors even in the presence of singular value multiplicity. Our analysis yields singular vector entrywise perturbation bounds for a range of popular matrix noise models, each of which has a meaningful associated statistical inference task. In addition, we demonstrate how the two-to-infinity norm is the preferred norm in certain statistical settings. Specific applications discussed in this paper include covariance estimation, singular subspace recovery, and multiple graph inference. Both our Procrustean matrix decomposition and the technical machinery developed for the two-to-infinity norm may be of independent interest.




met

On deep learning as a remedy for the curse of dimensionality in nonparametric regression

Benedikt Bauer, Michael Kohler.

Source: The Annals of Statistics, Volume 47, Number 4, 2261--2285.

Abstract:
Assuming that a smoothness condition and a suitable restriction on the structure of the regression function hold, it is shown that least squares estimates based on multilayer feedforward neural networks are able to circumvent the curse of dimensionality in nonparametric regression. The proof is based on new approximation results concerning multilayer feedforward neural networks with bounded weights and a bounded number of hidden neurons. The estimates are compared with various other approaches by using simulated data.




met

Negative association, ordering and convergence of resampling methods

Mathieu Gerber, Nicolas Chopin, Nick Whiteley.

Source: The Annals of Statistics, Volume 47, Number 4, 2236--2260.

Abstract:
We study convergence and convergence rates for resampling schemes. Our first main result is a general consistency theorem based on the notion of negative association, which is applied to establish the almost sure weak convergence of measures output from Kitagawa’s [ J. Comput. Graph. Statist. 5 (1996) 1–25] stratified resampling method. Carpenter, Ckiffird and Fearnhead’s [ IEE Proc. Radar Sonar Navig. 146 (1999) 2–7] systematic resampling method is similar in structure but can fail to converge depending on the order of the input samples. We introduce a new resampling algorithm based on a stochastic rounding technique of [In 42nd IEEE Symposium on Foundations of Computer Science ( Las Vegas , NV , 2001) (2001) 588–597 IEEE Computer Soc.], which shares some attractive properties of systematic resampling, but which exhibits negative association and, therefore, converges irrespective of the order of the input samples. We confirm a conjecture made by [ J. Comput. Graph. Statist. 5 (1996) 1–25] that ordering input samples by their states in $mathbb{R}$ yields a faster rate of convergence; we establish that when particles are ordered using the Hilbert curve in $mathbb{R}^{d}$, the variance of the resampling error is ${scriptstylemathcal{O}}(N^{-(1+1/d)})$ under mild conditions, where $N$ is the number of particles. We use these results to establish asymptotic properties of particle algorithms based on resampling schemes that differ from multinomial resampling.




met

Spectral method and regularized MLE are both optimal for top-$K$ ranking

Yuxin Chen, Jianqing Fan, Cong Ma, Kaizheng Wang.

Source: The Annals of Statistics, Volume 47, Number 4, 2204--2235.

Abstract:
This paper is concerned with the problem of top-$K$ ranking from pairwise comparisons. Given a collection of $n$ items and a few pairwise comparisons across them, one wishes to identify the set of $K$ items that receive the highest ranks. To tackle this problem, we adopt the logistic parametric model—the Bradley–Terry–Luce model, where each item is assigned a latent preference score, and where the outcome of each pairwise comparison depends solely on the relative scores of the two items involved. Recent works have made significant progress toward characterizing the performance (e.g., the mean square error for estimating the scores) of several classical methods, including the spectral method and the maximum likelihood estimator (MLE). However, where they stand regarding top-$K$ ranking remains unsettled. We demonstrate that under a natural random sampling model, the spectral method alone, or the regularized MLE alone, is minimax optimal in terms of the sample complexity—the number of paired comparisons needed to ensure exact top-$K$ identification, for the fixed dynamic range regime. This is accomplished via optimal control of the entrywise error of the score estimates. We complement our theoretical studies by numerical experiments, confirming that both methods yield low entrywise errors for estimating the underlying scores. Our theory is established via a novel leave-one-out trick, which proves effective for analyzing both iterative and noniterative procedures. Along the way, we derive an elementary eigenvector perturbation bound for probability transition matrices, which parallels the Davis–Kahan $mathop{mathrm{sin}} olimits Theta $ theorem for symmetric matrices. This also allows us to close the gap between the $ell_{2}$ error upper bound for the spectral method and the minimax lower limit.




met

metadata

Data about data. In common usage as a generic term, metadata stores data about the structure, context and meaning of raw data, and computers use it to help organize and interpret data, turning it into meaningful information. The WorldWide Web has driven usage of metadata to new levels, as the tags used in HTML and XML are a form of metadata, although the meaning they convey is often limited because the metadata means different things to different people.




met

Estimating causal effects in studies of human brain function: New models, methods and estimands

Michael E. Sobel, Martin A. Lindquist.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 452--472.

Abstract:
Neuroscientists often use functional magnetic resonance imaging (fMRI) to infer effects of treatments on neural activity in brain regions. In a typical fMRI experiment, each subject is observed at several hundred time points. At each point, the blood oxygenation level dependent (BOLD) response is measured at 100,000 or more locations (voxels). Typically, these responses are modeled treating each voxel separately, and no rationale for interpreting associations as effects is given. Building on Sobel and Lindquist ( J. Amer. Statist. Assoc. 109 (2014) 967–976), who used potential outcomes to define unit and average effects at each voxel and time point, we define and estimate both “point” and “cumulated” effects for brain regions. Second, we construct a multisubject, multivoxel, multirun whole brain causal model with explicit parameters for regions. We justify estimation using BOLD responses averaged over voxels within regions, making feasible estimation for all regions simultaneously, thereby also facilitating inferences about association between effects in different regions. We apply the model to a study of pain, finding effects in standard pain regions. We also observe more cerebellar activity than observed in previous studies using prevailing methods.




met

A comparison of principal component methods between multiple phenotype regression and multiple SNP regression in genetic association studies

Zhonghua Liu, Ian Barnett, Xihong Lin.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 433--451.

Abstract:
Principal component analysis (PCA) is a popular method for dimension reduction in unsupervised multivariate analysis. However, existing ad hoc uses of PCA in both multivariate regression (multiple outcomes) and multiple regression (multiple predictors) lack theoretical justification. The differences in the statistical properties of PCAs in these two regression settings are not well understood. In this paper we provide theoretical results on the power of PCA in genetic association testings in both multiple phenotype and SNP-set settings. The multiple phenotype setting refers to the case when one is interested in studying the association between a single SNP and multiple phenotypes as outcomes. The SNP-set setting refers to the case when one is interested in studying the association between multiple SNPs in a SNP set and a single phenotype as the outcome. We demonstrate analytically that the properties of the PC-based analysis in these two regression settings are substantially different. We show that the lower order PCs, that is, PCs with large eigenvalues, are generally preferred and lead to a higher power in the SNP-set setting, while the higher-order PCs, that is, PCs with small eigenvalues, are generally preferred in the multiple phenotype setting. We also investigate the power of three other popular statistical methods, the Wald test, the variance component test and the minimum $p$-value test, in both multiple phenotype and SNP-set settings. We use theoretical power, simulation studies, and two real data analyses to validate our findings.




met

Estimating the health effects of environmental mixtures using Bayesian semiparametric regression and sparsity inducing priors

Joseph Antonelli, Maitreyi Mazumdar, David Bellinger, David Christiani, Robert Wright, Brent Coull.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 257--275.

Abstract:
Humans are routinely exposed to mixtures of chemical and other environmental factors, making the quantification of health effects associated with environmental mixtures a critical goal for establishing environmental policy sufficiently protective of human health. The quantification of the effects of exposure to an environmental mixture poses several statistical challenges. It is often the case that exposure to multiple pollutants interact with each other to affect an outcome. Further, the exposure-response relationship between an outcome and some exposures, such as some metals, can exhibit complex, nonlinear forms, since some exposures can be beneficial and detrimental at different ranges of exposure. To estimate the health effects of complex mixtures, we propose a flexible Bayesian approach that allows exposures to interact with each other and have nonlinear relationships with the outcome. We induce sparsity using multivariate spike and slab priors to determine which exposures are associated with the outcome and which exposures interact with each other. The proposed approach is interpretable, as we can use the posterior probabilities of inclusion into the model to identify pollutants that interact with each other. We utilize our approach to study the impact of exposure to metals on child neurodevelopment in Bangladesh and find a nonlinear, interactive relationship between arsenic and manganese.




met

Scalable high-resolution forecasting of sparse spatiotemporal events with kernel methods: A winning solution to the NIJ “Real-Time Crime Forecasting Challenge”

Seth Flaxman, Michael Chirico, Pau Pereira, Charles Loeffler.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2564--2585.

Abstract:
We propose a generic spatiotemporal event forecasting method which we developed for the National Institute of Justice’s (NIJ) Real-Time Crime Forecasting Challenge (National Institute of Justice (2017)). Our method is a spatiotemporal forecasting model combining scalable randomized Reproducing Kernel Hilbert Space (RKHS) methods for approximating Gaussian processes with autoregressive smoothing kernels in a regularized supervised learning framework. While the smoothing kernels capture the two main approaches in current use in the field of crime forecasting, kernel density estimation (KDE) and self-exciting point process (SEPP) models, the RKHS component of the model can be understood as an approximation to the popular log-Gaussian Cox Process model. For inference, we discretize the spatiotemporal point pattern and learn a log-intensity function using the Poisson likelihood and highly efficient gradient-based optimization methods. Model hyperparameters including quality of RKHS approximation, spatial and temporal kernel lengthscales, number of autoregressive lags and bandwidths for smoothing kernels as well as cell shape, size and rotation, were learned using cross validation. Resulting predictions significantly exceeded baseline KDE estimates and SEPP models for sparse events.




met

A nonparametric spatial test to identify factors that shape a microbiome

Susheela P. Singh, Ana-Maria Staicu, Robert R. Dunn, Noah Fierer, Brian J. Reich.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2341--2362.

Abstract:
The advent of high-throughput sequencing technologies has made data from DNA material readily available, leading to a surge of microbiome-related research establishing links between markers of microbiome health and specific outcomes. However, to harness the power of microbial communities we must understand not only how they affect us, but also how they can be influenced to improve outcomes. This area has been dominated by methods that reduce community composition to summary metrics, which can fail to fully exploit the complexity of community data. Recently, methods have been developed to model the abundance of taxa in a community, but they can be computationally intensive and do not account for spatial effects underlying microbial settlement. These spatial effects are particularly relevant in the microbiome setting because we expect communities that are close together to be more similar than those that are far apart. In this paper, we propose a flexible Bayesian spike-and-slab variable selection model for presence-absence indicators that accounts for spatial dependence and cross-dependence between taxa while reducing dimensionality in both directions. We show by simulation that in the presence of spatial dependence, popular distance-based hypothesis testing methods fail to preserve their advertised size, and the proposed method improves variable selection. Finally, we present an application of our method to an indoor fungal community found within homes across the contiguous United States.




met

A semiparametric modeling approach using Bayesian Additive Regression Trees with an application to evaluate heterogeneous treatment effects

Bret Zeldow, Vincent Lo Re III, Jason Roy.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1989--2010.

Abstract:
Bayesian Additive Regression Trees (BART) is a flexible machine learning algorithm capable of capturing nonlinearities between an outcome and covariates and interactions among covariates. We extend BART to a semiparametric regression framework in which the conditional expectation of an outcome is a function of treatment, its effect modifiers, and confounders. The confounders are allowed to have unspecified functional form, while treatment and effect modifiers that are directly related to the research question are given a linear form. The result is a Bayesian semiparametric linear regression model where the posterior distribution of the parameters of the linear part can be interpreted as in parametric Bayesian regression. This is useful in situations where a subset of the variables are of substantive interest and the others are nuisance variables that we would like to control for. An example of this occurs in causal modeling with the structural mean model (SMM). Under certain causal assumptions, our method can be used as a Bayesian SMM. Our methods are demonstrated with simulation studies and an application to dataset involving adults with HIV/Hepatitis C coinfection who newly initiate antiretroviral therapy. The methods are available in an R package called semibart.




met

Bayesian methods for multiple mediators: Relating principal stratification and causal mediation in the analysis of power plant emission controls

Chanmin Kim, Michael J. Daniels, Joseph W. Hogan, Christine Choirat, Corwin M. Zigler.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1927--1956.

Abstract:
Emission control technologies installed on power plants are a key feature of many air pollution regulations in the US. While such regulations are predicated on the presumed relationships between emissions, ambient air pollution and human health, many of these relationships have never been empirically verified. The goal of this paper is to develop new statistical methods to quantify these relationships. We frame this problem as one of mediation analysis to evaluate the extent to which the effect of a particular control technology on ambient pollution is mediated through causal effects on power plant emissions. Since power plants emit various compounds that contribute to ambient pollution, we develop new methods for multiple intermediate variables that are measured contemporaneously, may interact with one another, and may exhibit joint mediating effects. Specifically, we propose new methods leveraging two related frameworks for causal inference in the presence of mediating variables: principal stratification and causal mediation analysis. We define principal effects based on multiple mediators, and also introduce a new decomposition of the total effect of an intervention on ambient pollution into the natural direct effect and natural indirect effects for all combinations of mediators. Both approaches are anchored to the same observed-data models, which we specify with Bayesian nonparametric techniques. We provide assumptions for estimating principal causal effects, then augment these with an additional assumption required for causal mediation analysis. The two analyses, interpreted in tandem, provide the first empirical investigation of the presumed causal pathways that motivate important air quality regulatory policies.




met

Fast dynamic nonparametric distribution tracking in electron microscopic data

Yanjun Qian, Jianhua Z. Huang, Chiwoo Park, Yu Ding.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1537--1563.

Abstract:
In situ transmission electron microscope (TEM) adds a promising instrument to the exploration of the nanoscale world, allowing motion pictures to be taken while nano objects are initiating, crystalizing and morphing into different sizes and shapes. To enable in-process control of nanocrystal production, this technology innovation hinges upon a solution addressing a statistical problem, which is the capability of online tracking a dynamic, time-varying probability distribution reflecting the nanocrystal growth. Because no known parametric density functions can adequately describe the evolving distribution, a nonparametric approach is inevitable. Towards this objective, we propose to incorporate the dynamic evolution of the normalized particle size distribution into a state space model, in which the density function is represented by a linear combination of B-splines and the spline coefficients are treated as states. The closed-form algorithm runs online updates faster than the frame rate of the in situ TEM video, making it suitable for in-process control purpose. Imposing the constraints of curve smoothness and temporal continuity improves the accuracy and robustness while tracking the probability distribution. We test our method on three published TEM videos. For all of them, the proposed method is able to outperform several alternative approaches.




met

Spatio-temporal short-term wind forecast: A calibrated regime-switching method

Ahmed Aziz Ezzat, Mikyoung Jun, Yu Ding.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1484--1510.

Abstract:
Accurate short-term forecasts are indispensable for the integration of wind energy in power grids. On a wind farm, local wind conditions exhibit sizeable variations at a fine temporal resolution. Existing statistical models may capture the in-sample variations in wind behavior, but are often shortsighted to those occurring in the near future, that is, in the forecast horizon. The calibrated regime-switching method proposed in this paper introduces an action of regime dependent calibration on the predictand (here the wind speed variable), which helps correct the bias resulting from out-of-sample variations in wind behavior. This is achieved by modeling the calibration as a function of two elements: the wind regime at the time of the forecast (and the calibration is therefore regime dependent), and the runlength, which is the time elapsed since the last observed regime change. In addition to regime-switching dynamics, the proposed model also accounts for other features of wind fields: spatio-temporal dependencies, transport effect of wind and nonstationarity. Using one year of turbine-specific wind data, we show that the calibrated regime-switching method can offer a wide margin of improvement over existing forecasting methods in terms of both wind speed and power.




met

Stratonovich type integration with respect to fractional Brownian motion with Hurst parameter less than $1/2$

Jorge A. León.

Source: Bernoulli, Volume 26, Number 3, 2436--2462.

Abstract:
Let $B^{H}$ be a fractional Brownian motion with Hurst parameter $Hin (0,1/2)$ and $p:mathbb{R} ightarrow mathbb{R}$ a polynomial function. The main purpose of this paper is to introduce a Stratonovich type stochastic integral with respect to $B^{H}$, whose domain includes the process $p(B^{H})$. That is, an integral that allows us to integrate $p(B^{H})$ with respect to $B^{H}$, which does not happen with the symmetric integral given by Russo and Vallois ( Probab. Theory Related Fields 97 (1993) 403–421) in general. Towards this end, we combine the approaches utilized by León and Nualart ( Stochastic Process. Appl. 115 (2005) 481–492), and Russo and Vallois ( Probab. Theory Related Fields 97 (1993) 403–421), whose aims are to extend the domain of the divergence operator for Gaussian processes and to define some stochastic integrals, respectively. Then, we study the relation between this Stratonovich integral and the extension of the divergence operator (see León and Nualart ( Stochastic Process. Appl. 115 (2005) 481–492)), an Itô formula and the existence of a unique solution of some Stratonovich stochastic differential equations. These last results have been analyzed by Alòs, León and Nualart ( Taiwanese J. Math. 5 (2001) 609–632), where the Hurst paramert $H$ belongs to the interval $(1/4,1/2)$.




met

Exponential integrability and exit times of diffusions on sub-Riemannian and metric measure spaces

Anton Thalmaier, James Thompson.

Source: Bernoulli, Volume 26, Number 3, 2202--2225.

Abstract:
In this article, we derive moment estimates, exponential integrability, concentration inequalities and exit times estimates for canonical diffusions firstly on sub-Riemannian limits of Riemannian foliations and secondly in the nonsmooth setting of $operatorname{RCD}^{*}(K,N)$ spaces. In each case, the necessary ingredients are Itô’s formula and a comparison theorem for the Laplacian, for which we refer to the recent literature. As an application, we derive pointwise Carmona-type estimates on eigenfunctions of Schrödinger operators.




met

First-order covariance inequalities via Stein’s method

Marie Ernst, Gesine Reinert, Yvik Swan.

Source: Bernoulli, Volume 26, Number 3, 2051--2081.

Abstract:
We propose probabilistic representations for inverse Stein operators (i.e., solutions to Stein equations) under general conditions; in particular, we deduce new simple expressions for the Stein kernel. These representations allow to deduce uniform and nonuniform Stein factors (i.e., bounds on solutions to Stein equations) and lead to new covariance identities expressing the covariance between arbitrary functionals of an arbitrary univariate target in terms of a weighted covariance of the derivatives of the functionals. Our weights are explicit, easily computable in most cases and expressed in terms of objects familiar within the context of Stein’s method. Applications of the Cauchy–Schwarz inequality to these weighted covariance identities lead to sharp upper and lower covariance bounds and, in particular, weighted Poincaré inequalities. Many examples are given and, in particular, classical variance bounds due to Klaassen, Brascamp and Lieb or Otto and Menz are corollaries. Connections with more recent literature are also detailed.




met

Kernel and wavelet density estimators on manifolds and more general metric spaces

Galatia Cleanthous, Athanasios G. Georgiadis, Gerard Kerkyacharian, Pencho Petrushev, Dominique Picard.

Source: Bernoulli, Volume 26, Number 3, 1832--1862.

Abstract:
We consider the problem of estimating the density of observations taking values in classical or nonclassical spaces such as manifolds and more general metric spaces. Our setting is quite general but also sufficiently rich in allowing the development of smooth functional calculus with well localized spectral kernels, Besov regularity spaces, and wavelet type systems. Kernel and both linear and nonlinear wavelet density estimators are introduced and studied. Convergence rates for these estimators are established and discussed.




met

A Bayesian nonparametric approach to log-concave density estimation

Ester Mariucci, Kolyan Ray, Botond Szabó.

Source: Bernoulli, Volume 26, Number 2, 1070--1097.

Abstract:
The estimation of a log-concave density on $mathbb{R}$ is a canonical problem in the area of shape-constrained nonparametric inference. We present a Bayesian nonparametric approach to this problem based on an exponentiated Dirichlet process mixture prior and show that the posterior distribution converges to the log-concave truth at the (near-) minimax rate in Hellinger distance. Our proof proceeds by establishing a general contraction result based on the log-concave maximum likelihood estimator that prevents the need for further metric entropy calculations. We further present computationally more feasible approximations and both an empirical and hierarchical Bayes approach. All priors are illustrated numerically via simulations.




met

Consistent semiparametric estimators for recurrent event times models with application to virtual age models

Eric Beutner, Laurent Bordes, Laurent Doyen.

Source: Bernoulli, Volume 26, Number 1, 557--586.

Abstract:
Virtual age models are very useful to analyse recurrent events. Among the strengths of these models is their ability to account for treatment (or intervention) effects after an event occurrence. Despite their flexibility for modeling recurrent events, the number of applications is limited. This seems to be a result of the fact that in the semiparametric setting all the existing results assume the virtual age function that describes the treatment (or intervention) effects to be known. This shortcoming can be overcome by considering semiparametric virtual age models with parametrically specified virtual age functions. Yet, fitting such a model is a difficult task. Indeed, it has recently been shown that for these models the standard profile likelihood method fails to lead to consistent estimators. Here we show that consistent estimators can be constructed by smoothing the profile log-likelihood function appropriately. We show that our general result can be applied to most of the relevant virtual age models of the literature. Our approach shows that empirical process techniques may be a worthwhile alternative to martingale methods for studying asymptotic properties of these inference methods. A simulation study is provided to illustrate our consistency results together with an application to real data.




met

A new method for obtaining sharp compound Poisson approximation error estimates for sums of locally dependent random variables

Michael V. Boutsikas, Eutichia Vaggelatou

Source: Bernoulli, Volume 16, Number 2, 301--330.

Abstract:
Let X 1 , X 2 , …, X n be a sequence of independent or locally dependent random variables taking values in ℤ + . In this paper, we derive sharp bounds, via a new probabilistic method, for the total variation distance between the distribution of the sum ∑ i =1 n X i and an appropriate Poisson or compound Poisson distribution. These bounds include a factor which depends on the smoothness of the approximating Poisson or compound Poisson distribution. This “smoothness factor” is of order O( σ −2 ), according to a heuristic argument, where σ 2 denotes the variance of the approximating distribution. In this way, we offer sharp error estimates for a large range of values of the parameters. Finally, specific examples concerning appearances of rare runs in sequences of Bernoulli trials are presented by way of illustration.




met

Bayesian Sparse Multivariate Regression with Asymmetric Nonlocal Priors for Microbiome Data Analysis

Kurtis Shuler, Marilou Sison-Mangus, Juhee Lee.

Source: Bayesian Analysis, Volume 15, Number 2, 559--578.

Abstract:
We propose a Bayesian sparse multivariate regression method to model the relationship between microbe abundance and environmental factors for microbiome data. We model abundance counts of operational taxonomic units (OTUs) with a negative binomial distribution and relate covariates to the counts through regression. Extending conventional nonlocal priors, we construct asymmetric nonlocal priors for regression coefficients to efficiently identify relevant covariates and their effect directions. We build a hierarchical model to facilitate pooling of information across OTUs that produces parsimonious results with improved accuracy. We present simulation studies that compare variable selection performance under the proposed model to those under Bayesian sparse regression models with asymmetric and symmetric local priors and two frequentist models. The simulations show the proposed model identifies important covariates and yields coefficient estimates with favorable accuracy compared with the alternatives. The proposed model is applied to analyze an ocean microbiome dataset collected over time to study the association of harmful algal bloom conditions with microbial communities.




met

A Loss-Based Prior for Variable Selection in Linear Regression Methods

Cristiano Villa, Jeong Eun Lee.

Source: Bayesian Analysis, Volume 15, Number 2, 533--558.

Abstract:
In this work we propose a novel model prior for variable selection in linear regression. The idea is to determine the prior mass by considering the worth of each of the regression models, given the number of possible covariates under consideration. The worth of a model consists of the information loss and the loss due to model complexity. While the information loss is determined objectively, the loss expression due to model complexity is flexible and, the penalty on model size can be even customized to include some prior knowledge. Some versions of the loss-based prior are proposed and compared empirically. Through simulation studies and real data analyses, we compare the proposed prior to the Scott and Berger prior, for noninformative scenarios, and with the Beta-Binomial prior, for informative scenarios.




met

Learning Semiparametric Regression with Missing Covariates Using Gaussian Process Models

Abhishek Bishoyi, Xiaojing Wang, Dipak K. Dey.

Source: Bayesian Analysis, Volume 15, Number 1, 215--239.

Abstract:
Missing data often appear as a practical problem while applying classical models in the statistical analysis. In this paper, we consider a semiparametric regression model in the presence of missing covariates for nonparametric components under a Bayesian framework. As it is known that Gaussian processes are a popular tool in nonparametric regression because of their flexibility and the fact that much of the ensuing computation is parametric Gaussian computation. However, in the absence of covariates, the most frequently used covariance functions of a Gaussian process will not be well defined. We propose an imputation method to solve this issue and perform our analysis using Bayesian inference, where we specify the objective priors on the parameters of Gaussian process models. Several simulations are conducted to illustrate effectiveness of our proposed method and further, our method is exemplified via two real datasets, one through Langmuir equation, commonly used in pharmacokinetic models, and another through Auto-mpg data taken from the StatLib library.




met

Adaptive Bayesian Nonparametric Regression Using a Kernel Mixture of Polynomials with Application to Partial Linear Models

Fangzheng Xie, Yanxun Xu.

Source: Bayesian Analysis, Volume 15, Number 1, 159--186.

Abstract:
We propose a kernel mixture of polynomials prior for Bayesian nonparametric regression. The regression function is modeled by local averages of polynomials with kernel mixture weights. We obtain the minimax-optimal contraction rate of the full posterior distribution up to a logarithmic factor by estimating metric entropies of certain function classes. Under the assumption that the degree of the polynomials is larger than the unknown smoothness level of the true function, the posterior contraction behavior can adapt to this smoothness level provided an upper bound is known. We also provide a frequentist sieve maximum likelihood estimator with a near-optimal convergence rate. We further investigate the application of the kernel mixture of polynomials to partial linear models and obtain both the near-optimal rate of contraction for the nonparametric component and the Bernstein-von Mises limit (i.e., asymptotic normality) of the parametric component. The proposed method is illustrated with numerical examples and shows superior performance in terms of computational efficiency, accuracy, and uncertainty quantification compared to the local polynomial regression, DiceKriging, and the robust Gaussian stochastic process.




met

Latent Nested Nonparametric Priors (with Discussion)

Federico Camerlenghi, David B. Dunson, Antonio Lijoi, Igor Prünster, Abel Rodríguez.

Source: Bayesian Analysis, Volume 14, Number 4, 1303--1356.

Abstract:
Discrete random structures are important tools in Bayesian nonparametrics and the resulting models have proven effective in density estimation, clustering, topic modeling and prediction, among others. In this paper, we consider nested processes and study the dependence structures they induce. Dependence ranges between homogeneity, corresponding to full exchangeability, and maximum heterogeneity, corresponding to (unconditional) independence across samples. The popular nested Dirichlet process is shown to degenerate to the fully exchangeable case when there are ties across samples at the observed or latent level. To overcome this drawback, inherent to nesting general discrete random measures, we introduce a novel class of latent nested processes. These are obtained by adding common and group-specific completely random measures and, then, normalizing to yield dependent random probability measures. We provide results on the partition distributions induced by latent nested processes, and develop a Markov Chain Monte Carlo sampler for Bayesian inferences. A test for distributional homogeneity across groups is obtained as a by-product. The results and their inferential implications are showcased on synthetic and real data.




met

Beyond Whittle: Nonparametric Correction of a Parametric Likelihood with a Focus on Bayesian Time Series Analysis

Claudia Kirch, Matthew C. Edwards, Alexander Meier, Renate Meyer.

Source: Bayesian Analysis, Volume 14, Number 4, 1037--1073.

Abstract:
Nonparametric Bayesian inference has seen a rapid growth over the last decade but only few nonparametric Bayesian approaches to time series analysis have been developed. Most existing approaches use Whittle’s likelihood for Bayesian modelling of the spectral density as the main nonparametric characteristic of stationary time series. It is known that the loss of efficiency using Whittle’s likelihood can be substantial. On the other hand, parametric methods are more powerful than nonparametric methods if the observed time series is close to the considered model class but fail if the model is misspecified. Therefore, we suggest a nonparametric correction of a parametric likelihood that takes advantage of the efficiency of parametric models while mitigating sensitivities through a nonparametric amendment. We use a nonparametric Bernstein polynomial prior on the spectral density with weights induced by a Dirichlet process and prove posterior consistency for Gaussian stationary time series. Bayesian posterior computations are implemented via an MH-within-Gibbs sampler and the performance of the nonparametrically corrected likelihood for Gaussian time series is illustrated in a simulation study and in three astronomy applications, including estimating the spectral density of gravitational wave data from the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO).




met

On the Geometry of Bayesian Inference

Miguel de Carvalho, Garritt L. Page, Bradley J. Barney.

Source: Bayesian Analysis, Volume 14, Number 4, 1013--1036.

Abstract:
We provide a geometric interpretation to Bayesian inference that allows us to introduce a natural measure of the level of agreement between priors, likelihoods, and posteriors. The starting point for the construction of our geometry is the observation that the marginal likelihood can be regarded as an inner product between the prior and the likelihood. A key concept in our geometry is that of compatibility, a measure which is based on the same construction principles as Pearson correlation, but which can be used to assess how much the prior agrees with the likelihood, to gauge the sensitivity of the posterior to the prior, and to quantify the coherency of the opinions of two experts. Estimators for all the quantities involved in our geometric setup are discussed, which can be directly computed from the posterior simulation output. Some examples are used to illustrate our methods, including data related to on-the-job drug usage, midge wing length, and prostate cancer.




met

A Bayesian Conjugate Gradient Method (with Discussion)

Jon Cockayne, Chris J. Oates, Ilse C.F. Ipsen, Mark Girolami.

Source: Bayesian Analysis, Volume 14, Number 3, 937--1012.

Abstract:
A fundamental task in numerical computation is the solution of large linear systems. The conjugate gradient method is an iterative method which offers rapid convergence to the solution, particularly when an effective preconditioner is employed. However, for more challenging systems a substantial error can be present even after many iterations have been performed. The estimates obtained in this case are of little value unless further information can be provided about, for example, the magnitude of the error. In this paper we propose a novel statistical model for this error, set in a Bayesian framework. Our approach is a strict generalisation of the conjugate gradient method, which is recovered as the posterior mean for a particular choice of prior. The estimates obtained are analysed with Krylov subspace methods and a contraction result for the posterior is presented. The method is then analysed in a simulation study as well as being applied to a challenging problem in medical imaging.




met

Semiparametric Multivariate and Multiple Change-Point Modeling

Stefano Peluso, Siddhartha Chib, Antonietta Mira.

Source: Bayesian Analysis, Volume 14, Number 3, 727--751.

Abstract:
We develop a general Bayesian semiparametric change-point model in which separate groups of structural parameters (for example, location and dispersion parameters) can each follow a separate multiple change-point process, driven by time-dependent transition matrices among the latent regimes. The distribution of the observations within regimes is unknown and given by a Dirichlet process mixture prior. The properties of the proposed model are studied theoretically through the analysis of inter-arrival times and of the number of change-points in a given time interval. The prior-posterior analysis by Markov chain Monte Carlo techniques is developed on a forward-backward algorithm for sampling the various regime indicators. Analysis with simulated data under various scenarios and an application to short-term interest rates are used to show the generality and usefulness of the proposed model.




met

A Bayesian Nonparametric Multiple Testing Procedure for Comparing Several Treatments Against a Control

Luis Gutiérrez, Andrés F. Barrientos, Jorge González, Daniel Taylor-Rodríguez.

Source: Bayesian Analysis, Volume 14, Number 2, 649--675.

Abstract:
We propose a Bayesian nonparametric strategy to test for differences between a control group and several treatment regimes. Most of the existing tests for this type of comparison are based on the differences between location parameters. In contrast, our approach identifies differences across the entire distribution, avoids strong modeling assumptions over the distributions for each treatment, and accounts for multiple testing through the prior distribution on the space of hypotheses. The proposal is compared to other commonly used hypothesis testing procedures under simulated scenarios. Two real applications are also analyzed with the proposed methodology.




met

A Bayesian Nonparametric Spiked Process Prior for Dynamic Model Selection

Alberto Cassese, Weixuan Zhu, Michele Guindani, Marina Vannucci.

Source: Bayesian Analysis, Volume 14, Number 2, 553--572.

Abstract:
In many applications, investigators monitor processes that vary in space and time, with the goal of identifying temporally persistent and spatially localized departures from a baseline or “normal” behavior. In this manuscript, we consider the monitoring of pneumonia and influenza (P&I) mortality, to detect influenza outbreaks in the continental United States, and propose a Bayesian nonparametric model selection approach to take into account the spatio-temporal dependence of outbreaks. More specifically, we introduce a zero-inflated conditionally identically distributed species sampling prior which allows borrowing information across time and to assign data to clusters associated to either a null or an alternate process. Spatial dependences are accounted for by means of a Markov random field prior, which allows to inform the selection based on inferences conducted at nearby locations. We show how the proposed modeling framework performs in an application to the P&I mortality data and in a simulation study, and compare with common threshold methods for detecting outbreaks over time, with more recent Markov switching based models, and with spike-and-slab Bayesian nonparametric priors that do not take into account spatio-temporal dependence.




met

Statistical Methodology in Single-Molecule Experiments

Chao Du, S. C. Kou.

Source: Statistical Science, Volume 35, Number 1, 75--91.

Abstract:
Toward the last quarter of the 20th century, the emergence of single-molecule experiments enabled scientists to track and study individual molecules’ dynamic properties in real time. Unlike macroscopic systems’ dynamics, those of single molecules can only be properly described by stochastic models even in the absence of external noise. Consequently, statistical methods have played a key role in extracting hidden information about molecular dynamics from data obtained through single-molecule experiments. In this article, we survey the major statistical methodologies used to analyze single-molecule experimental data. Our discussion is organized according to the types of stochastic models used to describe single-molecule systems as well as major experimental data collection techniques. We also highlight challenges and future directions in the application of statistical methodologies to single-molecule experiments.




met

Larry Brown’s Contributions to Parametric Inference, Decision Theory and Foundations: A Survey

James O. Berger, Anirban DasGupta.

Source: Statistical Science, Volume 34, Number 4, 621--634.

Abstract:
This article gives a panoramic survey of the general area of parametric statistical inference, decision theory and foundations of statistics for the period 1965–2010 through the lens of Larry Brown’s contributions to varied aspects of this massive area. The article goes over sufficiency, shrinkage estimation, admissibility, minimaxity, complete class theorems, estimated confidence, conditional confidence procedures, Edgeworth and higher order asymptotic expansions, variational Bayes, Stein’s SURE, differential inequalities, geometrization of convergence rates, asymptotic equivalence, aspects of empirical process theory, inference after model selection, unified frequentist and Bayesian testing, and Wald’s sequential theory. A reasonably comprehensive bibliography is provided.




met

Models as Approximations II: A Model-Free Theory of Parametric Regression

Andreas Buja, Lawrence Brown, Arun Kumar Kuchibhotla, Richard Berk, Edward George, Linda Zhao.

Source: Statistical Science, Volume 34, Number 4, 545--565.

Abstract:
We develop a model-free theory of general types of parametric regression for i.i.d. observations. The theory replaces the parameters of parametric models with statistical functionals, to be called “regression functionals,” defined on large nonparametric classes of joint ${x extrm{-}y}$ distributions, without assuming a correct model. Parametric models are reduced to heuristics to suggest plausible objective functions. An example of a regression functional is the vector of slopes of linear equations fitted by OLS to largely arbitrary ${x extrm{-}y}$ distributions, without assuming a linear model (see Part I). More generally, regression functionals can be defined by minimizing objective functions, solving estimating equations, or with ad hoc constructions. In this framework, it is possible to achieve the following: (1) define a notion of “well-specification” for regression functionals that replaces the notion of correct specification of models, (2) propose a well-specification diagnostic for regression functionals based on reweighting distributions and data, (3) decompose sampling variability of regression functionals into two sources, one due to the conditional response distribution and another due to the regressor distribution interacting with misspecification, both of order $N^{-1/2}$, (4) exhibit plug-in/sandwich estimators of standard error as limit cases of ${x extrm{-}y}$ bootstrap estimators, and (5) provide theoretical heuristics to indicate that ${x extrm{-}y}$ bootstrap standard errors may generally be preferred over sandwich estimators.




met

The Geometry of Continuous Latent Space Models for Network Data

Anna L. Smith, Dena M. Asta, Catherine A. Calder.

Source: Statistical Science, Volume 34, Number 3, 428--453.

Abstract:
We review the class of continuous latent space (statistical) models for network data, paying particular attention to the role of the geometry of the latent space. In these models, the presence/absence of network dyadic ties are assumed to be conditionally independent given the dyads’ unobserved positions in a latent space. In this way, these models provide a probabilistic framework for embedding network nodes in a continuous space equipped with a geometry that facilitates the description of dependence between random dyadic ties. Specifically, these models naturally capture homophilous tendencies and triadic clustering, among other common properties of observed networks. In addition to reviewing the literature on continuous latent space models from a geometric perspective, we highlight the important role the geometry of the latent space plays on properties of networks arising from these models via intuition and simulation. Finally, we discuss results from spectral graph theory that allow us to explore the role of the geometry of the latent space, independent of network size. We conclude with conjectures about how these results might be used to infer the appropriate latent space geometry from observed networks.




met

An Overview of Semiparametric Extensions of Finite Mixture Models

Sijia Xiang, Weixin Yao, Guangren Yang.

Source: Statistical Science, Volume 34, Number 3, 391--404.

Abstract:
Finite mixture models have offered a very important tool for exploring complex data structures in many scientific areas, such as economics, epidemiology and finance. Semiparametric mixture models, which were introduced into traditional finite mixture models in the past decade, have brought forth exciting developments in their methodologies, theories, and applications. In this article, we not only provide a selective overview of the newly-developed semiparametric mixture models, but also discuss their estimation methodologies, theoretical properties if applicable, and some open questions. Recent developments are also discussed.




met

Comment on “Automated Versus Do-It-Yourself Methods for Causal Inference: Lessons Learned from a Data Analysis Competition”

Susan Gruber, Mark J. van der Laan.

Source: Statistical Science, Volume 34, Number 1, 82--85.

Abstract:
Dorie and co-authors (DHSSC) are to be congratulated for initiating the ACIC Data Challenge. Their project engaged the community and accelerated research by providing a level playing field for comparing the performance of a priori specified algorithms. DHSSC identified themes concerning characteristics of the DGP, properties of the estimators, and inference. We discuss these themes in the context of targeted learning.




met

Matching Methods for Causal Inference: A Review and a Look Forward

Elizabeth A. Stuart

Source: Statist. Sci., Volume 25, Number 1, 1--21.

Abstract:
When estimating causal effects using observational data, it is desirable to replicate a randomized experiment as closely as possible by obtaining treated and control groups with similar covariate distributions. This goal can often be achieved by choosing well-matched samples of the original treated and control groups, thereby reducing bias due to the covariates. Since the 1970s, work on matching methods has examined how to best choose treated and control subjects for comparison. Matching methods are gaining popularity in fields such as economics, epidemiology, medicine and political science. However, until now the literature and related advice has been scattered across disciplines. Researchers who are interested in using matching methods—or developing methods related to matching—do not have a single place to turn to learn about past and current research. This paper provides a structure for thinking about matching methods and guidance on their use, coalescing the existing research (both old and new) and providing a summary of where the literature on matching methods is now and where it should be headed.




met

Allometric Analysis Detects Brain Size-Independent Effects of Sex and Sex Chromosome Complement on Human Cerebellar Organization

Catherine Mankiw
May 24, 2017; 37:5221-5231
Development Plasticity Repair




met

Metacognitive Mechanisms Underlying Lucid Dreaming

Elisa Filevich
Jan 21, 2015; 35:1082-1088
BehavioralSystemsCognitive




met

Daily Marijuana Use Is Not Associated with Brain Morphometric Measures in Adolescents or Adults

Barbara J. Weiland
Jan 28, 2015; 35:1505-1512
Neurobiology of Disease




met

Mice Deficient in Cellular Glutathione Peroxidase Show Increased Vulnerability to Malonate, 3-Nitropropionic Acid, and 1-Methyl-4-Phenyl-1,2,5,6-Tetrahydropyridine

Peter Klivenyi
Jan 1, 2000; 20:1-7
Cellular




met

Le Communiqué de Bâle finalise les principes relatifs aux tests de résistance, passe en revue les moyens pour mettre fin aux comportements d'arbitrage réglementaire, s'accorde sur la liste annuelle des G-SIB et discute du ratio

French translation of press release - the Basel Committee on Banking Supervision is finalising stress-testing principles, reviews ways to stop regulatory arbitrage behaviour, agrees on annual G-SIB list, discusses leverage ratio, crypto-assets, market risk framework and implementation, 20 September 2018.