ph Structure and Hirshfeld surface analysis of the salt N,N,N-trimethyl-1-(4-vinylphenyl)methanaminium 4-vinylbenzenesulfonate By scripts.iucr.org Published On :: 2019-06-04 In the title compound, the asymmetric unit comprises an N,N,N-trimethyl-1-(4-vinylphenyl)methanaminium cation and a 4-vinylbenzenesulfonate anion, C12H18N+·C8H7O3S−. The salt has a polymerizable vinyl group attached to both the cation and the anion. The methanaminium and vinyl substituents on the benzene ring of the cation subtend angles of 86.6 (3) and 10.5 (9)° to the ring plane, while the anion is planar excluding the sulfonate O atoms. The vinyl substituent on the benzene ring of the cation is disordered over two sites with a refined occupancy ratio of 0.542 (11):0.458 (11). In the crystal, C—H⋯O hydrogen bonds dominate the packing and combine with a C—H⋯π(ring) contact to stack the cations and anions along the a-axis direction. Hirshfeld surface analysis of the salt and of the individual cation and anion components is also reported. Full Article text
ph Crystal structure and Hirshfeld surface analysis of (2E)-3-(4-chloro-3-fluorophenyl)-1-(3,4-dimethoxyphenyl)prop-2-en-1-one By scripts.iucr.org Published On :: 2019-06-04 The molecular structure of the title compound, C17H14ClFO3, consists of a 4-chloro-3-fluorophenyl ring and a 3,4-dimethoxyphenyl ring linked via a prop-2-en-1-one spacer. The molecule has an E configuration about the C=C bond and the carbonyl group is syn with respect to the C=C bond. The F and H atoms at the meta positions of the 4-chloro-3-fluorophenyl ring are disordered over two orientations, with an occupancy ratio of 0.785 (3):0.215 (3). In the crystal, molecules are linked via pairs of C—H⋯O interactions with an R22(14) ring motif, forming inversion dimers. The dimers are linked into a tape structure running along [10overline{1}] by a C—H⋯π interaction. The intermolecular contacts in the crystal were further analysed using Hirshfield surface analysis, which indicates that the most significant contacts are H⋯H (25.0%), followed by C⋯H/H⋯C (20.6%), O⋯H/H⋯O (15.6%), Cl⋯H/H⋯Cl (10.7%), F⋯H/H⋯F (10.4%), F⋯C/C⋯F (7.2%) and C⋯C (3.0%). Full Article text
ph Crystal structure of N,N'-bis[3-(methylsulfanyl)propyl]-1,8:4,5-naphthalenetetracarboxylic diimide By scripts.iucr.org Published On :: 2019-05-31 The title compound, C22H22N2O4S2, was synthesized by the reaction of 1,4,5,8-naphthalenetetracarboxylic dianhydride with 3-(methylsulfanyl)propylamine. The whole molecule is generated by an inversion operation of the asymmetric unit. This molecule has an anti form with the terminal methylthiopropyl groups above and below the aromatic diimide plane, where four intramolecular C—H⋯O and C—H⋯S hydrogen bonds are present and the O⋯H⋯S angle is 100.8°. DFT calculations revealed slight differences between the solid state and gas phase structures. In the crystal, C—H⋯O and C—H⋯S hydrogen bonds link the molecules into chains along the [2overline20] direction. adjacent chains are interconnected by π–π interactions, forming a two-dimensional network parallel to the (001) plane. Each two-dimensional layer is further packed in an ABAB sequence along the c-axis direction. Hirshfeld surface analysis shows that van der Waals interactions make important contributions to the intermolecular contacts. The most important contacts found in the Hirshfeld surface analysis are H⋯H (44.2%), H⋯O/O⋯H (18.2%), H⋯C/C⋯H (14.4%), and H⋯S/S⋯H (10.2%). Full Article text
ph Crystal structure, Hirshfeld surface analysis and interaction energy and DFT studies of 5,5-diphenyl-1,3-bis(prop-2-yn-1-yl)imidazolidine-2,4-dione By scripts.iucr.org Published On :: 2019-06-04 The title compound, C21H16N2O2, consists of an imidazolidine unit linked to two phenyl rings and two prop-2-yn-1-yl moieties. The imidazolidine ring is oriented at dihedral angles of 79.10 (5) and 82.61 (5)° with respect to the phenyl rings, while the dihedral angle between the two phenyl rings is 62.06 (5)°. In the crystal, intermolecular C—HProp⋯OImdzln (Prop = prop-2-yn-1-yl and Imdzln = imidazolidine) hydrogen bonds link the molecules into infinite chains along the b-axis direction. Two weak C—HPhen⋯π interactions are also observed. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (43.3%), H⋯C/C⋯H (37.8%) and H⋯O/O⋯H (18.0%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that the C—HProp⋯OImdzln hydrogen-bond energy in the crystal is −40.7 kJ mol−1. Density functional theory (DFT) optimized structures at the B3LYP/6–311G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Full Article text
ph Crystal structures of two bis-carbamoylmethylphosphine oxide (CMPO) compounds By scripts.iucr.org Published On :: 2019-06-14 Two bis-carbamoylmethylphosphine oxide compounds, namely {[(3-{[2-(diphenylphosphinoyl)ethanamido]methyl}benzyl)carbamoyl]methyl}diphenylphosphine oxide, C36H34N2O4P2, (I), and diethyl [({2-[2-(diethoxyphosphinoyl)ethanamido]ethyl}carbamoyl)methyl]phosphonate, C14H30N2O8P2, (II), were synthesized via nucleophilic acyl substitution reactions between an ester and a primary amine. Hydrogen-bonding interactions are present in both crystals, but these interactions are intramolecular in the case of compound (I) and intermolecular in compound (II). Intramolecular π–π stacking interactions are also present in the crystal of compound (I) with a centroid–centroid distance of 3.9479 (12) Å and a dihedral angle of 9.56 (12)°. Intermolecular C—H⋯π interactions [C⋯centroid distance of 3.622 (2) Å, C—H⋯centroid angle of 146°] give rise to supramolecular sheets that lie in the ab plane. Key geometric features for compound (I) involve a nearly planar, trans-amide group with a C—N—C—C torsion angle of 169.12 (17)°, and a torsion angle of −108.39 (15)° between the phosphine oxide phosphorus atom and the amide nitrogen atom. For compound (II), the electron density corresponding to the phosphoryl group was disordered, and was modeled as two parts with a 0.7387 (19):0.2613 (19) occupancy ratio. Compound (II) also boasts a trans-amide group that approaches planarity with a C—N—C—C torsion angle of −176.50 (16)°. The hydrogen bonds in this structure are intermolecular, with a D⋯A distance of 2.883 (2) Å and a D—H⋯A angle of 175.0 (18)° between the amide hydrogen atom and the P=O oxygen atom. These non-covalent interactions create ribbons that run along the b-axis direction. Full Article text
ph Synthesis and crystal structure of calcium hydrogen phosphite, CaHPO3 By scripts.iucr.org Published On :: 2019-06-14 The hydrothermal synthesis and crystal structure of the simple inorganic compound CaHPO3, which crystallizes in the chiral space group P43212, are reported. The structure is built up from distorted CaO7 capped trigonal prisms and HPO3 pseudo pyramids, which share corners and edges to generate a three-dimensional network. Full Article text
ph Crystal structures of trans-diaqua(3-R-1,3,5,8,12-pentaazacyclotetradecane)copper(II) isophthalate hydrates (R = benzyl or pyridin-3-ylmethyl) By scripts.iucr.org Published On :: 2019-06-21 The asymmetric units of the title compounds, trans-diaqua(3-benzyl-1,3,5,8,12-pentaazacyclotetradecane-κ4N1,N5,N8,N12)copper(II) isophthalate monohydrate, [Cu(C16H29N5)(H2O)2](C8H4O4)·H2O, (I), and trans-diaqua[3-(pyridin-3-ylmethyl)-1,3,5,8,12-pentaazacyclotetradecane-κ4N1,N5,N8,N12]copper(II) isophthalate 0.9-hydrate, [Cu(C15H28N6)(H2O)2](C8H4O4)·0.9H2O, (II) consist of one diaqua macrocyclic cation, one dicarboxylate anion and uncoordinated water molecule(s). In each compound, the metal ion is coordinated by the four secondary N atoms of the macrocyclic ligand and the mutually trans O atoms of the water molecules in a tetragonally distorted octahedral geometry. The average equatorial Cu—N bond lengths are significantly shorter than the average axial Cu—O bond lengths [2.020 (9) versus 2.495 (12) Å and 2.015 (4) versus 2.507 (7) Å for (I) and (II), respectively]. The coordinated macrocyclic ligand in the cations of both compounds adopts the most energetically favorable trans-III conformation. In the crystals, the complex cations and counter-anions are connected via hydrogen-bonding interactions between the N—H groups of the macrocycles and the O—H groups of coordinated water molecules as the proton donors and the O atoms of the carboxylate as the proton acceptors. Additionally, as a result of O—H⋯O hydrogen bonding with the coordinated and water molecules of crystallization, the isophthalate dianions form layers lying parallel to the (overline{1}01) and (100) planes in (I) and (II), respectively. Full Article text
ph Crystal structure and the DFT and MEP study of 4-benzyl-2-[2-(4-fluorophenyl)-2-oxoethyl]-6-phenylpyridazin-3(2H)-one By scripts.iucr.org Published On :: 2019-06-21 The title pyridazin-3(2H)-one derivative, C25H19FN2O2, crystallizes with two independent molecules (A and B) in the asymmetric unit. In molecule A, the 4-fluorophenyl ring, the benzyl ring and the phenyl ring are inclined to the central pyridazine ring by 86.54 (11), 3.70 (9) and 84.857 (13)°, respectively. In molecule B, the corresponding dihedral angles are 86.80 (9), 10.47 (8) and 82.01 (10)°, respectively. In the crystal, the A molecules are linked by pairs of C—H⋯F hydrogen bonds, forming inversion dimers with an R22(28) ring motif. The dimers are linked by C—H⋯O hydrogen bonds and a C—H⋯π interaction, forming columns stacking along the a-axis direction. The B molecules are linked to each other in a similar manner and form columns separating the columns of A molecules. Full Article text
ph Crystal structure and Hirshfeld surface analysis of N-(2-chlorophenylcarbamothioyl)-4-fluorobenzamide and N-(4-bromophenylcarbamothioyl)-4-fluorobenzamide By scripts.iucr.org Published On :: 2019-06-21 The title compounds, C14H10ClFN2OS (1) and C14H10BrFN2OS (2), were synthesized by two-step reactions. The dihedral angles between the aromatic rings are 31.99 (3) and 9.17 (5)° for 1 and 2, respectively. Compound 1 features an intramolecular bifurcated N—H⋯(O,Cl) link due to the presence of the ortho-Cl atom on the benzene ring, whereas 2 features an intramolecular N—H⋯O hydrogen bond. In the crystal of 1, inversion dimers linked by pairs of N—H⋯S hydrogen bonds generate R22(8) loops. The extended structure of 2 features the same motif but an additional weak C—H⋯S interaction links the inversion dimers into [100] double columns. Hirshfeld surface analyses indicate that the most important contributors towards the crystal packing are H⋯H (26.6%), S⋯H/H.·S (13.8%) and Cl⋯H/H⋯Cl (9.5%) contacts for 1 and H⋯H (19.7%), C⋯H/H⋯C (14.8%) and Br⋯H/H⋯Br (12.4%) contacts for 2. Full Article text
ph (1R,2S,4r)-1,2,4-Triphenylcyclopentane-1,2-diol and (1R,2S,4r)-4-(2-methoxyphenyl)-1,2-diphenylcyclopentane-1,2-diol: application as initiators for ring-opening polymerization of ∊-caprolactone By scripts.iucr.org Published On :: 2019-06-21 Reductive cyclization of 1,3,5-triphenyl- and 3-(2-methoxyphenyl)-1,5-diphenylpentane-1,5-diones by zinc in acetic acid medium leads to the formation of 1,2,4-triphenylcyclopentane-1,2-diol [1,2,4-Ph3C5H5-1,2-(OH)2, C23H22O2, (I)] and 4-(2-methoxyphenyl)-1,2-diphenylcyclopentane-1,2-diol [4-(2-MeOC6H4)-1,2-Ph2C5H5-1,2-(OH)2, C24H24O3, (II)]. Their single crystals have been obtained by crystallization from a THF/hexane solvent mixture. Diols (I) and (II) crystallize in orthorhombic (Pbca) and triclinic (Poverline{1}) space groups, respectively, at 150 K. Their asymmetric units comprise one [in the case of (I)] and three [in the case of (II)] crystallographically independent molecules of the achiral (1R,2S,4r)-diol isomer. Each hydroxyl group is involved in one intramolecular and one intermolecular O—H⋯O hydrogen bond, forming one-dimensional chains. Compounds (I) and (II) have been used successfully as precatalyst activators for the ring-opening polymerization of ∊-caprolactone. Full Article text
ph Crystal structure of two N'-(1-phenylbenzylidene)-2-(thiophen-3-yl)acetohydrazides By scripts.iucr.org Published On :: 2019-07-02 The synthesis, spectroscopic data, crystal and molecular structures of two N'-(1-phenylbenzylidene)-2-(thiophen-3-yl)acetohydrazides, namely N'-[1-(4-hydroxyphenyl)benzylidene]-2-(thiophen-3-yl)acetohydrazide, C13H10N2O2S, (3a), and N'-[1-(4-methoxyphenyl)benzylidene]-2-(thiophen-3-yl)acetohydrazide, C14H14N2O2S, (3b), are described. Both compounds differ in the substituent at the para position of the phenyl ring: –OH for (3a) and –OCH3 for (3b). In (3a), the thiophene ring is disordered over two orientations with occupancies of 0.762 (3) and 0.238 (3). The configuration about the C=N bond is E. The thiophene and phenyl rings are inclined by 84.0 (3) and 87.0 (9)° for the major- and minor-occupancy disorder components in (3a), and by 85.89 (12)° in (3b). Although these dihedral angles are similar, the conformation of the linker between the two rings is different [the C—C—C—N torsion angle is −ac for (3a) and −sc for (3b), while the C6—C7—N9—N10 torsion angle is +ap for (3a) and −sp for (3b)]. A common feature in the crystal packing of (3a) and (3b) is the presence of N—H⋯O hydrogen bonds, resulting in the formation of chains of molecules running along the b-axis direction in the case of (3a), or inversion dimers for (3b). The most prominent contributions to the surface contacts are those in which H atoms are involved, as confirmed by an analysis of the Hirshfeld surface. Full Article text
ph Crystal structure and Hirshfeld surface analysis of diiodido{N'-[(E)-(phenyl)(pyridin-2-yl-κN)methylidene]pyridine-2-carbohydrazide-κ2N',O}cadmium(II) By scripts.iucr.org Published On :: 2019-06-25 In each of the two independent molecules in the asymmetric unit of the title compound, [CdI2(C18H14N4O)], the N,O,N'-tridentate N'-[(E)-(phenyl)(pyridin-2-yl-κN)methylidene]pyridine-2-carbohydrazide ligand and two iodide anions form an I2N2O pentacoordination sphere, with a distorted square-pyramidal geometry, with an I atom in the apical position. Both molecules feature an intramolecular N—H⋯N hydrogen bond. In the crystal, weak aromatic π–π stacking interactions [centroid–centroid separation = 3.830 (2) Å] link the molecules into dimers. Full Article text
ph 5-Methyl-1,3-phenylene bis[5-(dimethylamino)naphthalene-1-sulfonate]: crystal structure and DFT calculations By scripts.iucr.org Published On :: 2019-06-28 The title compound, C31H30N2S2O6, possesses crystallographically imposed twofold symmetry with the two C atoms of the central benzene ring and the C atom of its methyl substituent lying on the twofold rotation axis. The two dansyl groups are twisted away from the plane of methylphenyl bridging unit in opposite directions. The three-dimensional arrangement in the crystal is mainly stabilized by weak hydrogen bonds between the sulfonyl oxygen atoms and the hydrogen atoms from the N-methyl groups. Stacking of the dansyl group is not observed. From the DFT calculations, the HOMO–LUMO energy gap was found to be 2.99 eV and indicates n→π* and π→π* transitions within the molecule. Full Article text
ph Crystal structure of bis[dihydrobis(pyrazol-1-yl)borato-κ2N2,N2'](1,10-phenanthroline-κ2N,N')zinc(II) By scripts.iucr.org Published On :: 2019-07-04 The asymmetric unit of the title compound, [Zn(C6H8N4B)2(C12H8N2)], comprises one half of a ZnII cation (site symmetry 2), one dihydrobis(pyrazol-1-yl)borate ligand in a general position, and one half of a phenanthroline ligand, the other half being completed by twofold rotation symmetry. The ZnII cation is coordinated in form of a slightly distorted octahedron by the N atoms of a phenanthroline ligand and by two pairs of N atoms of symmetry-related dihydrobis(pyrazol-1-yl)borate ligands. The discrete complexes are arranged into columns that elongate in the c-axis direction with a parallel alignment of the phenanthroline ligands, indicating weak π–π interactions. Full Article text
ph Crystal structures of two new isocoumarin derivatives: 8-amino-6-methyl-3,4-diphenyl-1H-isochromen-1-one and 8-amino-3,4-diethyl-6-methyl-1H-isochromen-1-one By scripts.iucr.org Published On :: 2019-07-09 The title compounds, 8-amino-6-methyl-3,4-diphenyl-1H-isochromen-1-one, C22H17NO2, (I), and 8-amino-3,4-diethyl-6-methyl-1H-isochromen-1-one, C14H17NO2, (II), are new isocoumarin derivatives in which the isochromene ring systems are planar. Compound II crystallizes with two independent molecules (A and B) in the asymmetric unit. In I, the two phenyl rings are inclined to each other by 56.41 (7)° and to the mean plane of the 1H-isochromene ring system by 67.64 (6) and 44.92 (6)°. In both compounds, there is an intramolecular N—H⋯O hydrogen bond present forming an S(6) ring motif. In the crystal of I, molecules are linked by N—H⋯π interactions, forming chains along the b-axis direction. A C—H⋯π interaction links the chains to form layers parallel to (100). The layers are then linked by a second C—H⋯π interaction, forming a three-dimensional structure. In the crystal of II, the two independent molecules (A and B) are linked by N—H⋯O hydrogen bonds, forming –A–B–A–B– chains along the [101] direction. The chains are linked into ribbons by C—H⋯π interactions involving inversion-related A molecules. The latter are linked by offset π–π interactions [intercentroid distances vary from 3.506 (1) to 3.870 (2) Å], forming a three-dimensional structure. Full Article text
ph (E)-6,6'-(Diazene-1,2-diyl)bis(1,10-phenanthrolin-5-ol) trichloromethane disolvate: a superconjugated ligand By scripts.iucr.org Published On :: 2019-07-23 Phenanthroline ligands are important metal-binding molecules which have been extensively researched for applications in both material science and medicinal chemistry. Azobenzene and its derivatives have received significant attention because of their ability to be reversibly switched between the E and Z forms and so could have applications in optical memory and logic devices or as molecular machines. Herein we report the formation and crystal structure of a highly unusual novel diazo-diphenanthroline compound, C24H14N6O2·2CHCl3. Full Article text
ph Crystal structure and Hirshfeld surface analysis of (E)-4-{[2,2-dichloro-1-(4-methoxyphenyl)ethenyl]diazenyl}benzonitrile By scripts.iucr.org Published On :: 2019-07-16 In the title compound, C16H11Cl2N3O, the 4-methoxy-substituted benzene ring makes a dihedral angle of 41.86 (9)° with the benzene ring of the benzonitrile group. In the crystal, molecules are linked into layers parallel to (020) by C—H⋯O contacts and face-to-face π–π stacking interactions [centroid–centroid distances = 3.9116 (14) and 3.9118 (14) Å] between symmetry-related aromatic rings along the a-axis direction. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from Cl⋯H/H⋯Cl (22.8%), H⋯H (21.4%), N⋯H/H⋯N (16.1%), C⋯H/H⋯C (14.7%) and C⋯C (9.1%) interactions. Full Article text
ph Crystal structure of catena-poly[[gold(I)-μ-cyanido-[diaquabis(2-phenylpyrazine)iron(II)]-μ-cyanido] dicyanidogold(I)] By scripts.iucr.org Published On :: 2019-07-12 In the title polymeric complex, {[Fe(CN)2(C10H8N2)2(H2O)2][Au(CN)2]}n, the FeII ion, which is located on a twofold rotation axis, has a slightly distorted FeN4O2 octahedral geometry. It is coordinated by two phenylpyrazine molecules, two water molecules and two dicyanoaurate anions, the Au atom also being located on a second twofold rotation axis. In the crystal, the coordinated dicyanoaurate anions bridge the FeII ions to form polymeric chains propagating along the b-axis direction. In the crystal, the chains are linked by Owater—H⋯Ndicyanoaurate anions hydrogen bonds and aurophillic interactions [Au⋯Au = 3.5661 (3) Å], forming layers parallel to the bc plane. The layers are linked by offset π–π stacking interactions [intercentroid distance = 3.643 (3) Å], forming a supramolecular metal–organic framework. Full Article text
ph Crystal structure of (15,20-bis(2,3,4,5,6-pentafluorophenyl)-5,10-{(pyridine-3,5-diyl)bis[(sulfanediylmethylene)[1,1'-biphenyl]-4',2-diyl]}porphyrinato)nickel(II) dichloro By scripts.iucr.org Published On :: 2019-07-12 The crystal structure of the title compound, [Ni(C63H31F10N5S2)]·xCH2Cl2 (x > 1/2), consists of Ni–porphyrin complexes that are located in general positions and dichloromethane solvent molecules that are disordered around centers of inversion. The NiII ions are in a square-pyramidal (CN5) coordination, with four porphyrin N atoms in the equatorial and a pyridine N atom in the apical position and are shifted out of the porphyrine N4 plane towards the coordinating pyridine N atom. The pyridine substituent is not exactly perpendicular to the N4 plane with an angle of intersection between the planes planes of 80.48 (6)°. The dichloromethane solvent molecules are hydrogen bonded to one of the four porphyrine N atoms. Two complexes are linked into dimers by two symmetry-equivalent C—H⋯S hydrogen bonds. These dimers are closely packed, leading to cavities in which additional dichloromethane solvent molecules are embedded. These solvent molecules are disordered and because no reasonable split model was found, the data were corrected for disordered solvent using the PLATON SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9–18]. Full Article text
ph Crystal structure and Hirshfeld surface analysis of (E)-3-[(4-chlorobenzylidene)amino]-5-phenylthiazolidin-2-iminium bromide By scripts.iucr.org Published On :: 2019-07-12 The title salt, C16H15ClN3S+·Br−, is isotypic with (E)-3-[(4-fluorobenzylidene)amino]-5-phenylthiazolidin-2-iminium bromide [Khalilov et al. (2019). Acta Cryst. E75, 662–666]. In the cation of the title salt, the atoms of the phenyl ring attached to the central thiazolidine ring and the atom joining the thiazolidine ring to the benzene ring are disordered over two sets of sites with occupancies of 0.570 (3) and 0.430 (3). The major and minor components of the disordered thiazolidine ring adopt slightly distorted envelope conformations, with the C atom bearing the phenyl ring as the flap atom. In the crystal, centrosymmetrically related cations and anions are linked into dimeric units via N—H⋯Br hydrogen bonds, which are further connected by weak C—H⋯Br contacts into chains parallel to the a axis. Furthermore, not existing in the earlier report of (E)-3-[(4-fluorobenzylidene)amino]-5-phenylthiazolidin-2-iminium bromide, C—H⋯π interactions and π–π stacking interactions [centroid-to-centroid distance = 3.897 (2) Å] between the major components of the disordered phenyl ring contribute to the stabilization of the molecular packing. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions for the crystal packing are from H⋯H (30.5%), Br⋯H/H⋯Br (21.2%), C⋯H/H⋯C (19.2%), Cl⋯H/H⋯Cl (13.0%) and S⋯H/H⋯S (5.0%) interactions. Full Article text
ph Crystal structure of 4,4'-bis(4-bromophenyl)-1,1',3,3'-tetrathiafulvalene By scripts.iucr.org Published On :: 2019-07-16 The molecule of the title compound, C18H10Br2S4, has a C-shape, with Cs molecular symmetry. The dihedral angle between the planes of the dithiol and phenyl rings is 8.35 (9)°. In the crystal, molecules form helical chains along [001], the shortest interactions being π⋯S contacts within the helices. The intermolecular interactions were investigated by Hirshfeld surface analysis. Density functional theory (DFT) was used to calculate HOMO–LUMO energy levels of the title compound and its trans isomer. Full Article text
ph Crystal structures and Hirshfeld surface analyses of the two isotypic compounds (E)-1-(4-bromophenyl)-2-[2,2-dichloro-1-(4-nitrophenyl)ethenyl]diazene and (E)-1-(4-chlorophenyl)-2-[2,2-dichloro-1-(4-ni By scripts.iucr.org Published On :: 2019-07-19 In the two isotypic title compounds, C14H8BrCl2N3O2, (I), and C14H8Cl3N3O2, (II), the substitution of one of the phenyl rings is different [Br for (I) and Cl for (II)]. Aromatic rings form dihedral angles of 60.9 (2) and 64.1 (2)°, respectively. Molecules are linked through weak X⋯Cl contacts [X = Br for (I) and Cl for (II)], C—H⋯Cl and C—Cl⋯π interactions into sheets parallel to the ab plane. Additional van der Waals interactions consolidate the three-dimensional packing. Hirshfeld surface analysis of the crystal structures indicates that the most important contributions for the crystal packing for (I) are from C⋯H/H⋯C (16.1%), O⋯H/H⋯O (13.1%), Cl⋯H/H⋯Cl (12.7%), H⋯H (11.4%), Br⋯H/H⋯Br (8.9%), N⋯H/H⋯N (6.9%) and Cl⋯C/C⋯Cl (6.6%) interactions, and for (II), from Cl⋯H / H⋯Cl (21.9%), C⋯H/H⋯C (15.3%), O⋯H/H⋯O (13.4%), H⋯H (11.5%), Cl⋯C/C⋯Cl (8.3%), N⋯H/H⋯N (7.0%) and Cl⋯Cl (5.9%) interactions. The crystal of (I) studied was refined as an inversion twin, the ratio of components being 0.9917 (12):0.0083 (12). Full Article text
ph Crystal structure and Hirshfeld surface analysis of 2,5-dibromoterephthalic acid ethylene glycol monosolvate By scripts.iucr.org Published On :: 2019-07-23 The title compound, C8H4Br2O4·C2H6O2, crystallizes with one-half of a 2,5-dibromoterephthalic acid (H2Br2tp) molecule and one-half of an ethylene glycol (EG) molecule in the the asymmetric unit. The whole molecules are generated by application of inversion symmetry. The H2Br2tp molecule is not planar, with the dibromobenzene ring system inclined by a dihedral angle of 18.62 (3)° to the carboxylic group. In the crystal, the H2Br2tp and EG molecules are linked into sheets propagating parallel to (overline{1}01) through O—H⋯O hydrogen bonds, thereby forming R44 (12) and R44 (28) graph-set motifs. Br⋯O and weak π–π stacking interactions are also observed. Hirshfeld surface analysis was used to confirm the existence of these interactions. Full Article text
ph 2-Methyl-4-(4-nitrophenyl)but-3-yn-2-ol: crystal structure, Hirshfeld surface analysis and computational chemistry study By scripts.iucr.org Published On :: 2019-07-23 The di-substituted acetylene residue in the title compound, C11H11NO3, is capped at either end by di-methylhydroxy and 4-nitrobenzene groups; the nitro substituent is close to co-planar with the ring to which it is attached [dihedral angle = 9.4 (3)°]. The most prominent feature of the molecular packing is the formation, via hydroxy-O—H⋯O(hydroxy) hydrogen bonds, of hexameric clusters about a site of symmetry overline{3}. The aggregates are sustained by 12-membered {⋯OH}6 synthons and have the shape of a flattened chair. The clusters are connected into a three-dimensional architecture by benzene-C—H⋯O(nitro) interactions, involving both nitro-O atoms. The aforementioned interactions are readily identified in the calculated Hirshfeld surface. Computational chemistry indicates there is a significant energy, primarily electrostatic in nature, associated with the hydroxy-O—H⋯O(hydroxy) hydrogen bonds. Dispersion forces are more important in the other identified but, weaker intermolecular contacts. Full Article text
ph Palladium(II) complexes of a bridging amine bis(phenolate) ligand featuring κ2 and κ3 coordination modes By scripts.iucr.org Published On :: 2019-07-26 Bidentate and tridentate coordination of a 2,4-di-tert-butyl-substituted bridging amine bis(phenolate) ligand to a palladium(II) center are observed within the same crystal structure, namely dichlorido({6,6'-[(ethane-1,2-diylbis(methylazanediyl)]bis(methylene)}bis(2,4-di-tert-butylphenol))palladium(II) chlorido(2,4-di-tert-butyl-6-{[(2-{[(3,5-di-tert-butyl-2-hydroxyphenyl)methyl](methyl)amino}ethyl)(methyl)amino]methyl}phenolato)palladium(II) methanol 1.685-solvate 0.315-hydrate, [PdCl2(C34H56N2O2)][PdCl(C34H55N2O2)]·1.685CH3OH·0.315H2O. Both complexes exhibit a square-planar geometry, with unbound phenol moieties participating in intermolecular hydrogen bonding with co-crystallized water and methanol. The presence of both κ2 and κ3 coordination modes arising from the same solution suggest a dynamic process in which phenol donors may coordinate or dissociate from the metal center, and offers insight into catalyst speciation throughout Pd-mediated processes. The unit cell contains dichlorido({6,6'-[(ethane-1,2-diylbis(methylazanediyl)]bis(methylene)}bis(2,4-di-tert-butylphenol))palladium(II), {(L2)PdCl2}, and chlorido(2,4-di-tert-butyl-6-{[(2-{[(3,5-di-tert-butyl-2-hydroxyphenyl)methyl](methyl)amino}ethyl)(methyl)amino]methyl}phenolato)palladium(II), {(L2X)PdCl}, molecules as well as fractional water and methanol solvent molecules. Full Article text
ph Crystal structures of two isomeric 2-aryl-3-phenyl-1,3-thiazepan-4-ones By scripts.iucr.org Published On :: 2019-07-26 The crystal of 6-(3-nitrophenyl)-7-phenyl-5-thia-7-azaspiro[2.6]nonan-8-one (1), C19H18N2O3S, has monoclinic (P21/n) symmetry while that of its isomer 6-(4-nitrophenyl)-7-phenyl-5-thia-7-azaspiro[2.6]nonan-8-one (2), has orthorhombic (Pca21) symmetry: compound 1 has two molecules, A and B, in the asymmetric unit while 2 has one. In all three molecules, the seven-membered thiazepan ring exhibits a chair conformation with Q2 and Q3 values (Å) of 0.521 (3), 0.735 (3) and 0.485 (3), 0.749 (3) in 1 and 0.517 (5), 0.699 (5) in 2. In each structure, the phenyl rings attached to adjacent atoms of the thiazepan ring have interplanar angles ranging between 41 and 47°. Except for the nitro groups, the three molecules have similar conformations when overlayed in pairs. Both crystal structures are consolidated by C—H⋯O hydrogen bonds. Full Article text
ph Six 1-aroyl-4-(4-methoxyphenyl)piperazines: similar molecular structures but different patterns of supramolecular assembly By scripts.iucr.org Published On :: 2019-07-26 Six new 1-aroyl-4-(4-methoxyphenyl)piperazines have been prepared, using coupling reactions between benzoic acids and N-(4-methoxyphenyl)piperazine. There are no significant hydrogen bonds in the structure of 1-benzoyl-4-(4-methoxyphenyl)piperazine, C18H20N2O2, (I). The molecules of 1-(2-fluorobenzoyl)-4-(4-methoxyphenyl)piperazine, C18H19FN2O2, (II), are linked by two C—H⋯O hydrogen bonds to form chains of rings, which are linked into sheets by an aromatic π–π stacking interaction. 1-(2-Chlorobenzoyl)-4-(4-methoxyphenyl)piperazine, C18H19ClN2O2, (III), 1-(2-bromobenzoyl)-4-(4-methoxyphenyl)piperazine, C18H19BrN2O2, (IV), and 1-(2-iodobenzoyl)-4-(4-methoxyphenyl)piperazine, C18H19IN2O2, (V), are isomorphous, but in (III) the aroyl ring is disordered over two sets of atomic sites having occupancies of 0.942 (2) and 0.058 (2). In each of (III)–(V), a combination of two C—H⋯π(arene) hydrogen bonds links the molecules into sheets. A single O—H⋯O hydrogen bond links the molecules of 1-(2-hydroxybenzoyl)-4-(4-methoxyphenyl)piperazine, C18H20N2O3, (VI), into simple chains. Comparisons are made with the structures of some related compounds. Full Article text
ph Crystal structure and Hirshfeld surface analysis of a new dithioglycoluril: 1,4-bis(4-methoxyphenyl)-3a-methyltetrahydroimidazo[4,5-d]imidazole-2,5(1H,3H)-dithione By scripts.iucr.org Published On :: 2019-08-06 In the title dithioglycoluril derivative, C19H20N4O3S2, there is a difference in the torsion angles between the thioimidazole moiety and the methoxyphenyl groups on either side of the molecule [C—N—Car—Car = 116.9 (2) and −86.1 (3)°, respectively]. The N—C—N bond angle on one side of the dithioglycoluril moiety is slightly smaller compared to that on the opposite side, [110.9 (2)° cf. 112.0 (2)°], probably as a result of the steric effect of the methyl group. In the crystal, N—H⋯S hydrogen bonds link adjacent molecules to form chains propagating along the c-axis direction. The chains are linked by C—H⋯S hydrogen bonds, forming layers parallel to the bc plane. The layers are then linked by C—H⋯π interactions, leading to the formation of a three-dimensional supramolecular network. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to investigate the molecular interactions in the crystal. Full Article text
ph Synthesis and crystal structure of 1,3-bis(4-hydroxyphenyl)-1H-imidazol-3-ium chloride By scripts.iucr.org Published On :: 2019-08-16 Imidazolium salts are common building blocks for functional materials and in the synthesis of N-heterocyclic carbene (NHC) as σ-donor ligands for stable metal complexes. The title salt, 1,3-bis(4-hydroxyphenyl)-1H-imidazol-3-ium chloride (IOH·Cl), C15H13N2O2+·Cl−, is a new imidazolium salt with a hydroxy functionality. The synthesis of IOH·Cl was achieved in high yield via a two-step procedure involving a diazabutadiene precursor followed by ring closure using trimethylchlorosilane and paraformaldehyde. The structure of IOH·Cl consists of a central planar imidazolium ring (r.m.s. deviation = 0.0015 Å), with out-of-plane phenolic side arms. The dihedral angles between the 4-hydroxyphenyl substituents and the imidazole ring are 55.27 (7) and 48.85 (11)°. In the crystal, O—H⋯Cl hydrogen bonds connect the distal hydroxy groups and Cl− anions in adjacent asymmetric units, one related by inversion (−x + 1, −y + 1, −z + 1) and one by the n-glide (x − {1over 2}, −y + {1over 2}, z − {1over 2}), with donor–acceptor distances of 2.977 (2) and 3.0130 (18) Å, respectively. The phenolic rings are each π–π stacked with their respective inversion-related [(−x + 1, −y + 1, −z + 1) and (−x, −y + 1, −z + 1)] counterparts, with interplanar distances of 3.560 (3) and 3.778 (3) Å. The only other noteworthy intermolecular interaction is an O⋯O (not hydrogen bonded) close contact of 2.999 (3) Å between crystallographically different hydroxy O atoms on translationally adjacent molecules (x + 1, y, x + 1). Full Article text
ph Syntheses and crystal structures of 2-methyl-1,1,2,3,3-pentaphenyl-2-silapropane and 2-methyl-1,1,3,3-tetraphenyl-2-silapropan-2-ol By scripts.iucr.org Published On :: 2019-08-23 The sterically hindered silicon compound 2-methyl-1,1,2,3,3-pentaphenyl-2-silapropane, C33H30Si (I), was prepared via the reaction of two equivalents of diphenylmethyllithium (benzhydryllithium) and dichloromethylphenylsilane. This bisbenzhydryl-substituted silicon compound was then reacted with trifluoromethanesulfonic acid, followed by hydrolysis with water to give the silanol 2-methyl-1,1,3,3-tetraphenyl-2-silapropan-2-ol, C27H26OSi (II). Key geometric features for I are the Si—C bond lengths that range from 1.867 (2) to 1.914 (2) Å and a τ4 descriptor for fourfold coordination around the Si atom of 0.97 (indicating a nearly perfect tetrahedron). Key geometric features for compound II include Si—C bond lengths that range from 1.835 (4) to 1.905 (3) Å, a Si—O bond length of 1.665 (3) Å, and a τ4 descriptor for fourfold coordination around the Si atom of 0.96. In compound II, there is an intramolecular C—H⋯O hydrogen bond present. In the crystal of I, molecules are linked by two pairs of C—H⋯π interactions, forming dimers that are linked into ribbons propagating along the b-axis direction. In the crystal of II, molecules are linked by C—H⋯π and O—H⋯π interactions that result in the formation of ribbons that run along the a-axis direction. Full Article text
ph Crystal structure of (E)-3-(2-hydroxy-4-methylphenyl)-1-(2,4,6-trimethoxyphenyl)prop-2-en-1-one By scripts.iucr.org Published On :: 2019-08-30 The title chalcone derivative, C19H20O5, adopts a trans configuration with respect to the olefinic C=C double bond. The 2-hydroxy-4-methylphenyl ring is coplanar with the attached enone bridge [torsion angle = −179.96 (14)°], where this plane is nearly perpendicular to the 2,4,6-trimethoxyphenyl ring [dihedral angle = 75.81 (8)°]. In the crystal, molecules are linked into chains propagating along [010] by an O—H⋯O hydrogen bond. These chains are further connected into centrosymmetric dimer chains via weak C—H⋯O interactions. The conformations of related chalcone derivatives are surveyed and all of these structures adopt a skeleton with two almost orthogonal aromatic rings. Full Article text
ph Synthesis, characterization, crystal structure and supramolecularity of ethyl (E)-2-cyano-3-(3-methylthiophen-2-yl)acrylate and a new polymorph of ethyl (E)-2-cyano-3-(thiophen-2-yl)acrylate By scripts.iucr.org Published On :: 2019-08-23 The synthesis, crystal structure and structural motif of two thiophene-based cyanoacrylate derivatives, namely, ethyl (E)-2-cyano-3-(3-methylthiophen-2-yl)acrylate (1), C11H11NO2S, and ethyl (E)-2-cyano-3-(thiophen-2-yl)acrylate (2), C10H9NO2S, are reported. Derivative 1 crystallized with two independent molecules in the asymmetric unit, and derivative 2 represents a new monoclinic (C2/m) polymorph. The molecular conformations of 1 and the two polymorphs of 2 are very similar, as all non-H atoms are planar except for the methyl of the ethyl groups. The intermolecular interactions and crystal packing of 1 and 2 are described and compared with that of the reported monoclinic (C2/m) polymorph of derivative 2 [Castro Agudelo et al. (2017). Acta Cryst. E73, 1287–1289]. Full Article text
ph Crystal structure, Hirshfeld surface analysis and computational studies of 5-[(prop-2-en-1-yl)sulfanyl]-1-[2-(trifluoromethyl)phenyl]-1H-tetrazole By scripts.iucr.org Published On :: 2019-08-23 The title compound, C11H9F3N4S, was synthesized from 2-(trifluoromethyl)aniline by a multi-step reaction. It crystallizes in the non-centrosymmetric space group Pna21, with one molecule in the asymmetric unit, and is constructed from a pair of aromatic rings [2-(trifluoromethyl)phenyl and tetrazole], which are twisted by 76.8 (1)° relative to each other because of significant steric hindrance of the trifluoromethyl group at the ortho position of the benzene ring. In the crystal, very weak C—H⋯N and C—H⋯F hydrogen bonds and aromatic π–π stacking interactions link the molecules into a three-dimensional network. To further analyse the intermolecular interactions, a Hirshfeld surface analysis, as well as interaction energy calculations, were performed. Full Article text
ph Crystal structure of a binuclear mixed-valence ytterbium complex containing a 2-anthracene-substituted phenoxide ligand By scripts.iucr.org Published On :: 2019-08-23 Reaction of 2-(anthracen-9-yl)phenol (HOPhAn, 1) with divalent Yb[N(SiMe3)2]2·2THF in THF–toluene mixtures affords the mixed-valence YbII–YbIII dimer {[2-(anthracen-9-yl)phenolato-κO]bis(tetrahydrofuran)ytterbium(III)}-tris[μ-2-(anthracen-9-yl)phenolato]-κ4O:O;κO:1,2-η,κO-{[2-(anthracen-9-yl)phenolato-κO]ytterbium(II)} toluene trisolvate, [Yb2(C20H13O)5(C4H8O)2]·3C7H7 or [YbIII(THF)2(OPhAn)](μ-OPhAn)3[YbII(OPhAn)]·3C7H7 (2), as the major product. It crystallized as a toluene trisolvate. The Yb—O bond lengths in the crystal structure of this dimer clearly identify the YbII and YbIII centres. Interestingly, the formally four-coordinate YbII centre shows a close contact with one anthracene C—C bond of a bridging OPhAn ligand, bringing the formal coordination number to five. Full Article text
ph Crystal structure and Hirshfeld surface analysis of 4-(4-methylbenzyl)-6-phenylpyridazin-3(2H)-one By scripts.iucr.org Published On :: 2019-08-23 In this paper, we describe the synthesis of a new dihydro-2H-pyridazin-3-one derivative. The molecule, C18H16N2O, is not planar; the benzene and pyridazine rings are twisted with respect to each other, making a dihedral angle of 11.47 (2)°, and the toluene ring is nearly perpendicular to the pyridazine ring, with a dihedral angle of 89.624 (1)°. The molecular conformation is stabilized by weak intramolecular C—H⋯N contacts. In the crystal, pairs of N—H⋯O hydrogen bonds link the molecules into inversion dimers with an R22(8) ring motif. The intermolecular interactions were investigated using Hirshfeld surface analysis and two-dimensional (2D) fingerprint plots, revealing that the most important contributions for the crystal packing are from H⋯H (56.6%), H⋯C/C⋯H (22.6%), O⋯H/H⋯O (10.0%) and N⋯C/C⋯N (3.5%) interactions. Full Article text
ph The synthesis and crystal structure of bis[3,3-diethyl-1-(phenylimino-κN)thiourea-κS]silver hexafluoridophosphate By scripts.iucr.org Published On :: 2019-08-30 The structure of the title complex, [Ag(C11H15N3S)2]PF6, has monoclinic (P21/c) symmetry, and the silver atom has a distorted square-planar geometry. The coordination complex crystallized from mixing silver hexafluoridophosphate with a concentrated tetrahydrofuran solution of N,N-diethylphenylazothioformamide [ATF; systematic name: 3,3-diethyl-1-(phenylimino)thiourea] under ambient conditions. The resultant coordination complex exhibits a 2:1 ligand-to-metal ratio, with the silver(I) atom having a fourfold AgN2S2 coordination sphere, with a single PF6 counter-ion. In the crystal, however, one sulfur atom from an ATF ligand of a neighboring complex coordinates to the silver atom, with a bond distance of 2.9884 (14) Å. This creates a polymeric zigzag chain propagating along the c-axis direction. The chains are linked by C—H⋯F hydrogen bonds, forming slabs parallel to the ac plane. Full Article text
ph Synthesis and redetermination of the crystal structure of salicylaldehyde N(4)-morpholinothiosemicarbazone By scripts.iucr.org Published On :: 2019-08-30 The structure of the title compound (systematic name: N-{[(2-hydroxyphenyl)methylidene]amino}morpholine-4-carbothioamide), C12H15N3O2S, was previously determined (Koo et al., 1977) using multiple-film equi-inclination Weissenberg data, but has been redetermined with higher precision to explore its conformation and the hydrogen-bonding patterns and supramolecular interactions. The molecular structure shows intramolecular O—H⋯N and C—H⋯S interactions. The configuration of the C=N bond is E. The molecule is slightly twisted about the central N—N bond. The best planes through the phenyl ring and the morpholino ring make an angle of 43.44 (17)°. In the crystal, the molecules are connected into chains by N—H⋯O and C—H⋯O hydrogen bonds, which combine to generate sheets lying parallel to (002). The most prominent contribution to the surface contacts are H⋯H contacts (51.6%), as concluded from a Hirshfeld surface analysis. Full Article text
ph Crystal structure of (1S,2R)-2-[(3R,4S)-3-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinolin-2-yl]-1,2-diphenylethanol By scripts.iucr.org Published On :: 2019-09-03 The synthesis and crystal structure of the title compound, C30H29NO, are described. This compound is a member of the chiral dihydroisoquinoline-derived family, used as building blocks for functional materials and as source of chirality in asymmetric synthesis, and was isolated as one of two diastereomeric β-amino alcohols, the title molecule being found to be the (S,R) diastereoisomer. In the crystal, molecules are packed in a herringbone manner parallel to (103) and (10overline{3}) via weak C—H⋯O and C—H⋯π(ring) interactions. Hirshfeld surface analysis showed that the surface contacts are predominantly H⋯H interactions (ca 75%). The crystal studied was refined as a two-component inversion twin. Full Article text
ph Crystal structure and Hirshfeld surface analysis of 2-hydroxy-7-methoxy-1,8-bis(2,4,6-trichlorobenzoyl)naphthalene By scripts.iucr.org Published On :: 2019-09-10 In the title compound, C25H12Cl6O4, the two carbonyl groups are oriented in a same direction with respect to the naphthalene ring system and are situated roughly parallel to each other, while the two 2,4,6-trichlorobenzene rings are orientated in opposite directions with respect to the naphthalene ring system: the carbonyl C—(C=O)—C planes subtend dihedral angles of 45.54 (15) and 30.02 (15)° to the naphthalene ring system are. The dihedral angles formed by the carbonyl groups and the benzene rings show larger differences, the C=O vectors being inclined to the benzene rings by 46.39 (16) and 79.78 (16)°. An intramolecular O—H⋯O=C hydrogen bond forms an S(6) ring motif. In the crystal, no effective intermolecular hydrogen bonds are found; instead, O⋯Cl and C⋯Cl close contacts are observed along the 21 helical-axis direction. The Hirshfeld surface analysis reveals several weak interactions, the major contributor being Cl⋯H/H⋯Cl contacts. Full Article text
ph 2-{(1E)-[(E)-2-(2,6-Dichlorobenzylidene)hydrazin-1-ylidene]methyl}phenol: crystal structure, Hirshfeld surface analysis and computational study By scripts.iucr.org Published On :: 2019-09-10 The title Schiff base compound, C14H10Cl2N2O, features an E configuration about each of the C=N imine bonds. Overall, the molecule is approximately planar with the dihedral angle between the central C2N2 residue (r.m.s. deviation = 0.0371 Å) and the peripheral hydroxybenzene and chlorobenzene rings being 4.9 (3) and 7.5 (3)°, respectively. Nevertheless, a small twist is evident about the central N—N bond [the C—N—N—C torsion angle = −172.7 (2)°]. An intramolecular hydroxy-O—H⋯N(imine) hydrogen bond closes an S(6) loop. In the crystal, π–π stacking interactions between hydroxy- and chlorobenzene rings [inter-centroid separation = 3.6939 (13) Å] lead to a helical supramolecular chain propagating along the b-axis direction; the chains pack without directional interactions between them. The calculated Hirshfeld surfaces point to the importance of H⋯H and Cl⋯H/H⋯Cl contacts to the overall surface, each contributing approximately 29% of all contacts. However, of these only Cl⋯H contacts occur at separations less than the sum of the van der Waals radii. The aforementioned π–π stacking interactions contribute 12.0% to the overall surface contacts. The calculation of the interaction energies in the crystal indicates significant contributions from the dispersion term. Full Article text
ph Crystal structure of catena-poly[[[bis(3-oxo-1,3-diphenylprop-1-enolato-κ2O,O')zinc(II)]-μ2-tris[4-(pyridin-3-yl)phenyl]amine-κ2N:N'] tetrahydrofuran monosolvate] By scripts.iucr.org Published On :: 2019-09-10 The reaction of bis(3-oxo-1,3-diphenylprop-1-enolato-κ2O,O')zinc(II), [Zn(dbm)2], with tris[4-(pyridin-3-yl)phenyl]amine (T3PyA) in tetrahydrofuran (THF) afforded the title crystalline coordination polymer, {[Zn(C15H11O2)2(C33H24N4)]·C4H8O}n. The asymmetric unit contains two independent halves of Zn(dbm)2, one T3PyA and one THF. Each ZnII atom is located on an inversion centre and adopts an elongated octahedral coordination geometry, ligated by four O atoms of two dbm ligands in equatorial positions and by two N atoms of pyridine moieties from two different bridging T3PyA ligands in axial positions. The crystal packing shows a one-dimensional polymer chain in which the two pyridyl groups of the T3PyA ligand bridge two independent Zn atoms of Zn(dbm)2. In the crystal, the coordination polymer chains are linked via C—H⋯π interactions into a sheet structure parallel to (010). The sheets are cross-linked via further C—H⋯π interactions into a three-dimensional network. The solvate THF molecule shows disorder over two sets of atomic sites having occupancies of 0.631 (7) and 0.369 (7). Full Article text
ph Crystal structure and molecular Hirshfeld surface analysis of acenaphthene derivatives obeying the chlorine–methyl exchange rule By scripts.iucr.org Published On :: 2019-09-12 Instances of crystal structures that remain isomorphous in spite of some minor changes in their respective molecules, such as change in a substituent atom/group, can provide insights into the factors that govern crystal packing. In this context, an accurate description of the crystal structures of an isomorphous pair that differ from each other only by a chlorine–methyl substituent, viz. 5''-(2-chlorobenzylidene)-4'-(2-chlorophenyl)-1'-methyldispiro[acenaphthene-1,2'-pyrrolidine-3',3''-piperidine]-2,4''-dione, C34H28Cl2N2O2, (I), and its analogue 1'-methyl-5''-(2-methylbenzylidene)-4'-(2-methylphenyl)dispiro[acenaphthene-1,2'-pyrrolidine-3',3''-piperidine]-2,4''-dione, C36H34N2O2, (II), is presented. While there are two C—H⋯O weak intermolecular interactions present in both (I) and (II), the change of substituent from chlorine to methyl has given rise to an additional weak C—H⋯O intermolecular interaction that is relatively stronger than the other two. However, the presence of the stronger C—H⋯O interaction in (II) has not disrupted the validity of the chloro-methyl exchange rule. Details of the crystal structures and Hirshfeld analyses of the two compounds are presented. Full Article text
ph Crystal structure of (15,20-bis(2,3,4,5,6-pentafluorophenyl)-5,10-{(4-methylpyridine-3,5-diyl)bis[(sulfanediylmethylene)[1,1'-biphenyl]-4',2-diyl]}porphyrinato)nickel(II) dichloro By scripts.iucr.org Published On :: 2019-09-27 The title compound, [Ni(C64H33F10N5S2)]·xCH2Cl2, consists of discrete NiII porphyrin complexes, in which the five-coordinate NiII cations are in a distorted square-pyramidal coordination geometry. The four porphyrin nitrogen atoms are located in the basal plane of the pyramid, whereas the pyridine N atom is in the apical position. The porphyrin plane is strongly distorted and the NiII cation is located above this plane by 0.241 (3) Å and shifted in the direction of the coordinating pyridine nitrogen atom. The pyridine ring is not perpendicular to the N4 plane of the porphyrin moiety, as observed for related compounds. In the crystal, the complexes are linked via weak C—H⋯F hydrogen bonds into zigzag chains propagating in the [001] direction. Within this arrangement cavities are formed, in which highly disordered dichloromethane solvate molecules are located. No reasonable structural model could be found to describe this disorder and therefore the contribution of the solvent to the electron density was removed using the SQUEEZE option in PLATON [Spek (2015). Acta Cryst. C71, 9–18]. Full Article text
ph Crystal structure and Hirshfeld surface analysis of 5-(3,5-di-tert-butyl-4-hydroxyphenyl)-3-phenyl-4,5-dihydro-1H-pyrazole-1-carboxamide By scripts.iucr.org Published On :: 2019-09-12 In the title compound, C24H31N3O2, the mean plane of the central pyrazole ring [r.m.s. deviation = 0.095 Å] makes dihedral angles of 11.93 (9) and 84.53 (8)°, respectively, with the phenyl and benzene rings. There is a short intramolecular N—H⋯N contact, which generates an S(5) ring motif. In the crystal, pairs of N—H⋯O hydrogen bonds link inversion-related molecules into dimers, generating an R22(8) ring motif. The Hirshfeld surface analysis indicates that the most significant contribution involves H⋯H contacts of 68.6% Full Article text
ph (N,N-Diisopropyldithiocarbamato)triphenyltin(IV): crystal structure, Hirshfeld surface analysis and computational study By scripts.iucr.org Published On :: 2019-09-12 The crystal and molecular structures of the title triorganotin dithiocarbamate, [Sn(C6H5)3(C7H14NS2)], are described. The molecular geometry about the metal atom is highly distorted being based on a C3S tetrahedron as the dithiocarbamate ligand is asymmetrically chelating to the tin centre. The close approach of the second thione-S atom [Sn⋯S = 2.9264 (4) Å] is largely responsible for the distortion. The molecular packing is almost devoid of directional interactions with only weak phenyl-C—H⋯C(phenyl) interactions, leading to centrosymmetric dimeric aggregates, being noted. An analysis of the calculated Hirshfeld surface points to the significance of H⋯H contacts, which contribute 66.6% of all contacts to the surface, with C⋯H/H⋯C [26.8%] and S⋯H/H⋯H [6.6%] contacts making up the balance. Full Article text
ph The crystal structure of the zwitterionic co-crystal of 2,4-dichloro-6-{[(3-hydroxypropyl)azaniumyl]methyl}phenolate and 2,4-dichlorophenol By scripts.iucr.org Published On :: 2019-09-10 The title compound, C10H13Cl2NO2·C6H4Cl2O, was formed from the incomplete Mannich condensation reaction of 3-aminopropan-1-ol, formaldehyde and 2,4-dichlorophenol in methanol. This resulted in the formation of a co-crystal of the zwitterionic Mannich base, 2,4-dichloro-6-{[(3-hydroxypropyl)azaniumyl]methyl}phenolate and the unreacted 2,4-dichlorophenol. The compound crystallizes in the monoclinic crystal system (in space group Cc) and the asymmetric unit contains a molecule each of the 2,4-dichlorophenol and 2,4-dichloro-6-{[(3-hydroxypropyl)azaniumyl]methyl}phenolate. Examination of the crystal structure shows that the two components are clearly linked together by hydrogen bonds. The packing patterns are most interesting along the b and the c axes, where the co-crystal in the unit cell packs in a manner that shows alternating aromatic dichlorophenol fragments and polar hydrogen-bonded channels. The 2,4-dichlorophenol rings stack on top of one another, and these are held together by π–π interactions. The crystal studied was refined as an inversion twin. Full Article text
ph Twelve 4-(4-methoxyphenyl)piperazin-1-ium salts containing organic anions: supramolecular assembly in one, two and three dimensions By scripts.iucr.org Published On :: 2019-09-20 Twelve 4-(4-methoxyphenyl)piperazin-1-ium salts containing organic anions have been prepared and structurally characterized. The monohydrated benzoate, 4-fluorobenzoate, 4-chlorobenzoate and 4-bromobenzoate salts, C11H17N2O+·C7H5O2−·H2O (I), C11H17N2O+·C7H4FO2−·H2O (II), C11H17N2O+·C7H4ClO2−·H2O (III), and C11H17N2O+·C7H4BrO2−·H2O (IV), respectively, are isomorphous and all exhibit disorder in the 4-methoxyphenyl unit: the components are linked by N—H⋯O and O—H⋯O hydrogen bond to form chains of rings. The unsolvated 2-hydroxybenzoate, pyridine-3-carboxylate and 2-hydroxy-3,5-dinitrobenzoate salts, C11H17N2O+·C7H5O3− (V), C11H17N2O+·C6H4NO2− (VI) and C11H17N2O+·C7H3N2O7− (VII), respectively, are all fully ordered: the components of (V) are linked by multiple N—H⋯O hydrogen bonds to form a chain of rings; those of (VI) are linked into a three-dimensional framework by a combination of N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds and those of (VII), where the anion has a structure reminiscent of the picrate anion, are linked into a three-dimensional array by N—H⋯O and C—H⋯O hydrogen bonds. The hydrogensuccinate and hydrogenfumarate salts, C11H17N2O+·C4H5O4− (VIII) and C11H17N2O+·C4H3O3− (IX), respectively, are isomorphous, and both exhibit disorder in the anionic component: N—H⋯O and O—H⋯O hydrogen bonds link the ions into sheets, which are further linked by C—H⋯π(arene) interactions. The anion of the hydrogenmaleate salt, C11H17N2O+·C4H3O3− (X), contains a very short and nearly symmetrical O⋯H⋯O hydrogen bond, and N—H⋯O hydrogen bonds link the anions into chains of rings. The ions in the trichloroacetate salt, C11H17N2O+·C2Cl3O2− (XI), are linked into simple chains by N—H⋯O hydrogen bonds. In the hydrated chloranilate salt, 2C11H17N2O+·C6Cl2O42−·2H2O (XII), which crystallizes as a non-merohedral twin, the anion lies across a centre of inversion in space group P21/n, and a combination of N—H⋯O and O—H⋯O hydrogen bonds generates complex sheets. Comparisons are made with the structures of some related compounds. Full Article text
ph Crystal structure and Hirshfeld surface analysis of N-(tert-butyl)-2-(phenylethynyl)imidazo[1,2-a]pyridin-3-amine By scripts.iucr.org Published On :: 2019-09-27 The bicyclic imidazo[1,2-a]pyridine core of the title compound, C19H19N3, is relatively planar with an r.m.s. deviation of 0.040 Å. The phenyl ring is inclined to the mean plane of the imidazo[1,2-a]pyridine unit by 18.2 (1)°. In the crystal, molecules are linked by N—H⋯H hydrogen bonds, forming chains along the c-axis direction. The chains are linked by C—H⋯π interactions, forming slabs parallel to the ac plane. The Hirshfeld surface analysis and fingerprint plots reveal that the crystal structure is dominated by H⋯H (54%) and C⋯H/H⋯C (35.6%) contacts. The crystal studied was refined as an inversion twin Full Article text
ph The crystal structures and Hirshfeld surface analysis of 6-(naphthalen-1-yl)-6a-nitro-6,6a,6b,7,9,11a-hexahydrospiro[chromeno[3',4':3,4]pyrrolo[1,2-c]thiazole-11,11'-indeno[1,2-b]quinoxaline] and 6'-(naphthalen-1-yl)-6a By scripts.iucr.org Published On :: 2019-09-27 The title compounds, 6-(naphthalen-1-yl)-6a-nitro-6,6a,6 b,7,9,11a-hexahydrospiro[chromeno[3',4':3,4]pyrrolo[1,2-c]thiazole-11,11'-indeno[1,2-b]quinoxaline], C37H26N4O3S, (I), and 6'-(naphthalen-1-yl)-6a'-nitro-6',6a',6b',7',8',9',10',12a'-octahydro-2H-spiro[acenaphthylene-1,12'-chromeno[3,4-a]indolizin]-2-one, C36H28N2O4, (II), are new spiro derivatives, in which both the pyrrolidine rings adopt twisted conformations. In (I), the five-membered thiazole ring adopts an envelope conformation, while the eight-membered pyrrolidine-thiazole ring adopts a boat conformation. An intramolecular C—H⋯N hydrogen bond occurs, involving a C atom of the pyran ring and an N atom of the pyrazine ring. In (II), the six-membered piperidine ring adopts a chair conformation. An intramolecular C—H⋯O hydrogen bond occurs, involving a C atom of the pyrrolidine ring and the keto O atom. For both compounds, the crystal structure is stabilized by intermolecular C—H⋯O hydrogen bonds. In (I), the C—H⋯O hydrogen bonds link adjacent molecules, forming R22(16) loops propagating along the b-axis direction, while in (II) they form zigzag chains along the b-axis direction. In both compounds, C—H⋯π interactions help to consolidate the structure, but no significant π–π interactions with centroid–centroid distances of less than 4 Å are observed. Full Article text
ph Crystal structure and Hirshfeld surface analysis of 2-[(1,3-benzoxazol-2-yl)sulfanyl]-N-(2-methoxyphenyl)acetamide By scripts.iucr.org Published On :: 2019-09-27 In the title compound, C16H14N2O3S, the 1,3-benzoxazole ring system is essentially planar (r.m.s deviation = 0.004 Å) and makes a dihedral angle of 66.16 (17)° with the benzene ring of the methoxyphenyl group. Two intramolecular N—H⋯O and N—H⋯N hydrogen bonds occur, forming S(5) and S(7) ring motifs, respectively. In the crystal, pairs of C—H⋯O hydrogen bonds link the molecules into inversion dimers with R22(14) ring motifs, stacked along the b-axis direction. The inversion dimers are linked by C—H⋯π and π–π-stacking interactions [centroid-to-centroid distances = 3.631 (2) and 3.631 (2) Å], forming a three-dimensional network. Two-dimensional fingerprint plots associated with the Hirshfeld surface show that the largest contributions to the crystal packing come from H⋯H (39.3%), C⋯H/H⋯C (18.0%), O⋯H/H⋯O (15.6) and S⋯H/H⋯S (10.2%) interactions. Full Article text