function Scalar-on-function regression for predicting distal outcomes from intensively gathered longitudinal data: Interpretability for applied scientists By projecteuclid.org Published On :: Tue, 05 Nov 2019 22:03 EST John J. Dziak, Donna L. Coffman, Matthew Reimherr, Justin Petrovich, Runze Li, Saul Shiffman, Mariya P. Shiyko. Source: Statistics Surveys, Volume 13, 150--180.Abstract: Researchers are sometimes interested in predicting a distal or external outcome (such as smoking cessation at follow-up) from the trajectory of an intensively recorded longitudinal variable (such as urge to smoke). This can be done in a semiparametric way via scalar-on-function regression. However, the resulting fitted coefficient regression function requires special care for correct interpretation, as it represents the joint relationship of time points to the outcome, rather than a marginal or cross-sectional relationship. We provide practical guidelines, based on experience with scientific applications, for helping practitioners interpret their results and illustrate these ideas using data from a smoking cessation study. Full Article
function $M$-functionals of multivariate scatter By projecteuclid.org Published On :: Fri, 20 Mar 2015 09:11 EDT Lutz Dümbgen, Markus Pauly, Thomas Schweizer. Source: Statistics Surveys, Volume 9, 32--105.Abstract: This survey provides a self-contained account of $M$-estimation of multivariate scatter. In particular, we present new proofs for existence of the underlying $M$-functionals and discuss their weak continuity and differentiability. This is done in a rather general framework with matrix-valued random variables. By doing so we reveal a connection between Tyler’s (1987a) $M$-functional of scatter and the estimation of proportional covariance matrices. Moreover, this general framework allows us to treat a new class of scatter estimators, based on symmetrizations of arbitrary order. Finally these results are applied to $M$-estimation of multivariate location and scatter via multivariate $t$-distributions. Full Article
function Analyzing complex functional brain networks: Fusing statistics and network science to understand the brain By projecteuclid.org Published On :: Mon, 28 Oct 2013 09:06 EDT Sean L. Simpson, F. DuBois Bowman, Paul J. LaurientiSource: Statist. Surv., Volume 7, 1--36.Abstract: Complex functional brain network analyses have exploded over the last decade, gaining traction due to their profound clinical implications. The application of network science (an interdisciplinary offshoot of graph theory) has facilitated these analyses and enabled examining the brain as an integrated system that produces complex behaviors. While the field of statistics has been integral in advancing activation analyses and some connectivity analyses in functional neuroimaging research, it has yet to play a commensurate role in complex network analyses. Fusing novel statistical methods with network-based functional neuroimage analysis will engender powerful analytical tools that will aid in our understanding of normal brain function as well as alterations due to various brain disorders. Here we survey widely used statistical and network science tools for analyzing fMRI network data and discuss the challenges faced in filling some of the remaining methodological gaps. When applied and interpreted correctly, the fusion of network scientific and statistical methods has a chance to revolutionize the understanding of brain function. Full Article
function Curse of dimensionality and related issues in nonparametric functional regression By projecteuclid.org Published On :: Thu, 14 Apr 2011 08:17 EDT Gery GeenensSource: Statist. Surv., Volume 5, 30--43.Abstract: Recently, some nonparametric regression ideas have been extended to the case of functional regression. Within that framework, the main concern arises from the infinite dimensional nature of the explanatory objects. Specifically, in the classical multivariate regression context, it is well-known that any nonparametric method is affected by the so-called “curse of dimensionality”, caused by the sparsity of data in high-dimensional spaces, resulting in a decrease in fastest achievable rates of convergence of regression function estimators toward their target curve as the dimension of the regressor vector increases. Therefore, it is not surprising to find dramatically bad theoretical properties for the nonparametric functional regression estimators, leading many authors to condemn the methodology. Nevertheless, a closer look at the meaning of the functional data under study and on the conclusions that the statistician would like to draw from it allows to consider the problem from another point-of-view, and to justify the use of slightly modified estimators. In most cases, it can be entirely legitimate to measure the proximity between two elements of the infinite dimensional functional space via a semi-metric, which could prevent those estimators suffering from what we will call the “curse of infinite dimensionality”. References:[1] Ait-Saïdi, A., Ferraty, F., Kassa, K. and Vieu, P. (2008). Cross-validated estimations in the single-functional index model, Statistics, 42, 475–494.[2] Aneiros-Perez, G. and Vieu, P. (2008). Nonparametric time series prediction: A semi-functional partial linear modeling, J. Multivariate Anal., 99, 834–857.[3] Baillo, A. and Grané, A. (2009). Local linear regression for functional predictor and scalar response, J. Multivariate Anal., 100, 102–111.[4] Burba, F., Ferraty, F. and Vieu, P. (2009). k-Nearest Neighbour method in functional nonparametric regression, J. Nonparam. Stat., 21, 453–469.[5] Cardot, H., Ferraty, F. and Sarda, P. (1999). Functional linear model, Stat. Probabil. Lett., 45, 11–22.[6] Crambes, C., Kneip, A. and Sarda, P. (2009). Smoothing splines estimators for functional linear regression, Ann. Statist., 37, 35–72.[7] Delsol, L. (2009). Advances on asymptotic normality in nonparametric functional time series analysis, Statistics, 43, 13–33.[8] Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its Applications, Chapman and Hall, London.[9] Fan, J. and Zhang, J.-T. (2000). Two-step estimation of functional linear models with application to longitudinal data, J. Roy. Stat. Soc. B, 62, 303–322.[10] Ferraty, F. and Vieu, P. (2006). Nonparametric Functional Data Analysis, Springer-Verlag, New York.[11] Ferraty, F., Laksaci, A. and Vieu, P. (2006). Estimating Some Characteristics of the Conditional Distribution in Nonparametric Functional Models, Statist. Inf. Stoch. Proc., 9, 47–76.[12] Ferraty, F., Mas, A. and Vieu, P. (2007). Nonparametric regression on functional data: inference and practical aspects, Aust. NZ. J. Stat., 49, 267–286.[13] Ferraty, F., Van Keilegom, I. and Vieu, P. (2010). On the validity of the bootstrap in nonparametric functional regression, Scand. J. Stat., 37, 286–306.[14] Ferraty, F., Laksaci, A., Tadj, A. and Vieu, P. (2010). Rate of uniform consistency for nonparametric estimates with functional variables, J. Stat. Plan. Inf., 140, 335–352.[15] Ferraty, F. and Romain, Y. (2011). Oxford handbook on functional data analysis (Eds), Oxford University Press.[16] Gasser, T., Hall, P. and Presnell, B. (1998). Nonparametric estimation of the mode of a distribution of random curves, J. Roy. Stat. Soc. B, 60, 681–691.[17] Geenens, G. (2011). A nonparametric functional method for signature recognition, Manuscript.[18] Härdle, W., Müller, M., Sperlich, S. and Werwatz, A. (2004). Nonparametric and semiparametric models, Springer-Verlag, Berlin.[19] James, G.M. (2002). Generalized linear models with functional predictors, J. Roy. Stat. Soc. B, 64, 411–432.[20] Masry, E. (2005). Nonparametric regression estimation for dependent functional data: asymptotic normality, Stochastic Process. Appl., 115, 155–177.[21] Nadaraya, E.A. (1964). On estimating regression, Theory Probab. Applic., 9, 141–142.[22] Quintela-Del-Rio, A. (2008). Hazard function given a functional variable: nonparametric estimation under strong mixing conditions, J. Nonparam. Stat., 20, 413–430.[23] Rachdi, M. and Vieu, P. (2007). Nonparametric regression for functional data: automatic smoothing parameter selection, J. Stat. Plan. Inf., 137, 2784–2801.[24] Ramsay, J. and Silverman, B.W. (1997). Functional Data Analysis, Springer-Verlag, New York.[25] Ramsay, J. and Silverman, B.W. (2002). Applied functional data analysis; methods and case study, Springer-Verlag, New York.[26] Ramsay, J. and Silverman, B.W. (2005). Functional Data Analysis, 2nd Edition, Springer-Verlag, New York.[27] Stone, C.J. (1982). Optimal global rates of convergence for nonparametric regression, Ann. Stat., 10, 1040–1053.[28] Watson, G.S. (1964). Smooth regression analysis, Sankhya A, 26, 359–372.[29] Yeung, D.T., Chang, H., Xiong, Y., George, S., Kashi, R., Matsumoto, T. and Rigoll, G. (2004). SVC2004: First International Signature Verification Competition, Proceedings of the International Conference on Biometric Authentication (ICBA), Hong Kong, July 2004. Full Article
function Fast multivariate empirical cumulative distribution function with connection to kernel density estimation. (arXiv:2005.03246v1 [cs.DS]) By arxiv.org Published On :: This paper revisits the problem of computing empirical cumulative distribution functions (ECDF) efficiently on large, multivariate datasets. Computing an ECDF at one evaluation point requires $mathcal{O}(N)$ operations on a dataset composed of $N$ data points. Therefore, a direct evaluation of ECDFs at $N$ evaluation points requires a quadratic $mathcal{O}(N^2)$ operations, which is prohibitive for large-scale problems. Two fast and exact methods are proposed and compared. The first one is based on fast summation in lexicographical order, with a $mathcal{O}(N{log}N)$ complexity and requires the evaluation points to lie on a regular grid. The second one is based on the divide-and-conquer principle, with a $mathcal{O}(Nlog(N)^{(d-1){vee}1})$ complexity and requires the evaluation points to coincide with the input points. The two fast algorithms are described and detailed in the general $d$-dimensional case, and numerical experiments validate their speed and accuracy. Secondly, the paper establishes a direct connection between cumulative distribution functions and kernel density estimation (KDE) for a large class of kernels. This connection paves the way for fast exact algorithms for multivariate kernel density estimation and kernel regression. Numerical tests with the Laplacian kernel validate the speed and accuracy of the proposed algorithms. A broad range of large-scale multivariate density estimation, cumulative distribution estimation, survival function estimation and regression problems can benefit from the proposed numerical methods. Full Article
function Classification of pediatric pneumonia using chest X-rays by functional regression. (arXiv:2005.03243v1 [stat.AP]) By arxiv.org Published On :: An accurate and prompt diagnosis of pediatric pneumonia is imperative for successful treatment intervention. One approach to diagnose pneumonia cases is using radiographic data. In this article, we propose a novel parsimonious scalar-on-image classification model adopting the ideas of functional data analysis. Our main idea is to treat images as functional measurements and exploit underlying covariance structures to select basis functions; these bases are then used in approximating both image profiles and corresponding regression coefficient. We re-express the regression model into a standard generalized linear model where the functional principal component scores are treated as covariates. We apply the method to (1) classify pneumonia against healthy and viral against bacterial pneumonia patients, and (2) test the null effect about the association between images and responses. Extensive simulation studies show excellent numerical performance in terms of classification, hypothesis testing, and efficient computation. Full Article
function Collective Loss Function for Positive and Unlabeled Learning. (arXiv:2005.03228v1 [cs.LG]) By arxiv.org Published On :: People learn to discriminate between classes without explicit exposure to negative examples. On the contrary, traditional machine learning algorithms often rely on negative examples, otherwise the model would be prone to collapse and always-true predictions. Therefore, it is crucial to design the learning objective which leads the model to converge and to perform predictions unbiasedly without explicit negative signals. In this paper, we propose a Collectively loss function to learn from only Positive and Unlabeled data (cPU). We theoretically elicit the loss function from the setting of PU learning. We perform intensive experiments on the benchmark and real-world datasets. The results show that cPU consistently outperforms the current state-of-the-art PU learning methods. Full Article
function Object-Oriented Software for Functional Data By www.jstatsoft.org Published On :: Mon, 27 Apr 2020 00:00:00 +0000 This paper introduces the funData R package as an object-oriented implementation of functional data. It implements a unified framework for dense univariate and multivariate functional data on one- and higher dimensional domains as well as for irregular functional data. The aim of this package is to provide a user-friendly, self-contained core toolbox for functional data, including important functionalities for creating, accessing and modifying functional data objects, that can serve as a basis for other packages. The package further contains a full simulation toolbox, which is a useful feature when implementing and testing new methodological developments. Based on the theory of object-oriented data analysis, it is shown why it is natural to implement functional data in an object-oriented manner. The classes and methods provided by funData are illustrated in many examples using two freely available datasets. The MFPCA package, which implements multivariate functional principal component analysis, is presented as an example for an advanced methodological package that uses the funData package as a basis, including a case study with real data. Both packages are publicly available on GitHub and the Comprehensive R Archive Network. Full Article
function Milk and dairy foods : their functionality in human health and disease By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9780128156049 (electronic bk.) Full Article
function Microbial endophytes : functional biology and applications By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9780128196540 (print) Full Article
function Functional foods in cancer prevention and therapy By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9780128165386 (electronic bk.) Full Article
function Functional and preservative properties of phytochemicals By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9780128196861 (electronic bk.) Full Article
function Efficient estimation of linear functionals of principal components By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Vladimir Koltchinskii, Matthias Löffler, Richard Nickl. Source: The Annals of Statistics, Volume 48, Number 1, 464--490.Abstract: We study principal component analysis (PCA) for mean zero i.i.d. Gaussian observations $X_{1},dots,X_{n}$ in a separable Hilbert space $mathbb{H}$ with unknown covariance operator $Sigma $. The complexity of the problem is characterized by its effective rank $mathbf{r}(Sigma):=frac{operatorname{tr}(Sigma)}{|Sigma |}$, where $mathrm{tr}(Sigma)$ denotes the trace of $Sigma $ and $|Sigma|$ denotes its operator norm. We develop a method of bias reduction in the problem of estimation of linear functionals of eigenvectors of $Sigma $. Under the assumption that $mathbf{r}(Sigma)=o(n)$, we establish the asymptotic normality and asymptotic properties of the risk of the resulting estimators and prove matching minimax lower bounds, showing their semiparametric optimality. Full Article
function Intrinsic Riemannian functional data analysis By projecteuclid.org Published On :: Wed, 30 Oct 2019 22:03 EDT Zhenhua Lin, Fang Yao. Source: The Annals of Statistics, Volume 47, Number 6, 3533--3577.Abstract: In this work we develop a novel and foundational framework for analyzing general Riemannian functional data, in particular a new development of tensor Hilbert spaces along curves on a manifold. Such spaces enable us to derive Karhunen–Loève expansion for Riemannian random processes. This framework also features an approach to compare objects from different tensor Hilbert spaces, which paves the way for asymptotic analysis in Riemannian functional data analysis. Built upon intrinsic geometric concepts such as vector field, Levi-Civita connection and parallel transport on Riemannian manifolds, the developed framework applies to not only Euclidean submanifolds but also manifolds without a natural ambient space. As applications of this framework, we develop intrinsic Riemannian functional principal component analysis (iRFPCA) and intrinsic Riemannian functional linear regression (iRFLR) that are distinct from their traditional and ambient counterparts. We also provide estimation procedures for iRFPCA and iRFLR, and investigate their asymptotic properties within the intrinsic geometry. Numerical performance is illustrated by simulated and real examples. Full Article
function Projected spline estimation of the nonparametric function in high-dimensional partially linear models for massive data By projecteuclid.org Published On :: Fri, 02 Aug 2019 22:04 EDT Heng Lian, Kaifeng Zhao, Shaogao Lv. Source: The Annals of Statistics, Volume 47, Number 5, 2922--2949.Abstract: In this paper, we consider the local asymptotics of the nonparametric function in a partially linear model, within the framework of the divide-and-conquer estimation. Unlike the fixed-dimensional setting in which the parametric part does not affect the nonparametric part, the high-dimensional setting makes the issue more complicated. In particular, when a sparsity-inducing penalty such as lasso is used to make the estimation of the linear part feasible, the bias introduced will propagate to the nonparametric part. We propose a novel approach for estimation of the nonparametric function and establish the local asymptotics of the estimator. The result is useful for massive data with possibly different linear coefficients in each subpopulation but common nonparametric function. Some numerical illustrations are also presented. Full Article
function Estimating causal effects in studies of human brain function: New models, methods and estimands By projecteuclid.org Published On :: Wed, 15 Apr 2020 22:05 EDT Michael E. Sobel, Martin A. Lindquist. Source: The Annals of Applied Statistics, Volume 14, Number 1, 452--472.Abstract: Neuroscientists often use functional magnetic resonance imaging (fMRI) to infer effects of treatments on neural activity in brain regions. In a typical fMRI experiment, each subject is observed at several hundred time points. At each point, the blood oxygenation level dependent (BOLD) response is measured at 100,000 or more locations (voxels). Typically, these responses are modeled treating each voxel separately, and no rationale for interpreting associations as effects is given. Building on Sobel and Lindquist ( J. Amer. Statist. Assoc. 109 (2014) 967–976), who used potential outcomes to define unit and average effects at each voxel and time point, we define and estimate both “point” and “cumulated” effects for brain regions. Second, we construct a multisubject, multivoxel, multirun whole brain causal model with explicit parameters for regions. We justify estimation using BOLD responses averaged over voxels within regions, making feasible estimation for all regions simultaneously, thereby also facilitating inferences about association between effects in different regions. We apply the model to a study of pain, finding effects in standard pain regions. We also observe more cerebellar activity than observed in previous studies using prevailing methods. Full Article
function Surface temperature monitoring in liver procurement via functional variance change-point analysis By projecteuclid.org Published On :: Wed, 15 Apr 2020 22:05 EDT Zhenguo Gao, Pang Du, Ran Jin, John L. Robertson. Source: The Annals of Applied Statistics, Volume 14, Number 1, 143--159.Abstract: Liver procurement experiments with surface-temperature monitoring motivated Gao et al. ( J. Amer. Statist. Assoc. 114 (2019) 773–781) to develop a variance change-point detection method under a smoothly-changing mean trend. However, the spotwise change points yielded from their method do not offer immediate information to surgeons since an organ is often transplanted as a whole or in part. We develop a new practical method that can analyze a defined portion of the organ surface at a time. It also provides a novel addition to the developing field of functional data monitoring. Furthermore, numerical challenge emerges for simultaneously modeling the variance functions of 2D locations and the mean function of location and time. The respective sample sizes in the scales of 10,000 and 1,000,000 for modeling these functions make standard spline estimation too costly to be useful. We introduce a multistage subsampling strategy with steps educated by quickly-computable preliminary statistical measures. Extensive simulations show that the new method can efficiently reduce the computational cost and provide reasonable parameter estimates. Application of the new method to our liver surface temperature monitoring data shows its effectiveness in providing accurate status change information for a selected portion of the organ in the experiment. Full Article
function Modeling seasonality and serial dependence of electricity price curves with warping functional autoregressive dynamics By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Ying Chen, J. S. Marron, Jiejie Zhang. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1590--1616.Abstract: Electricity prices are high dimensional, serially dependent and have seasonal variations. We propose a Warping Functional AutoRegressive (WFAR) model that simultaneously accounts for the cross time-dependence and seasonal variations of the large dimensional data. In particular, electricity price curves are obtained by smoothing over the $24$ discrete hourly prices on each day. In the functional domain, seasonal phase variations are separated from level amplitude changes in a warping process with the Fisher–Rao distance metric, and the aligned (season-adjusted) electricity price curves are modeled in the functional autoregression framework. In a real application, the WFAR model provides superior out-of-sample forecast accuracy in both a normal functioning market, Nord Pool, and an extreme situation, the California market. The forecast performance as well as the relative accuracy improvement are stable for different markets and different time periods. Full Article
function Identifying multiple changes for a functional data sequence with application to freeway traffic segmentation By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Jeng-Min Chiou, Yu-Ting Chen, Tailen Hsing. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1430--1463.Abstract: Motivated by the study of road segmentation partitioned by shifts in traffic conditions along a freeway, we introduce a two-stage procedure, Dynamic Segmentation and Backward Elimination (DSBE), for identifying multiple changes in the mean functions for a sequence of functional data. The Dynamic Segmentation procedure searches for all possible changepoints using the derived global optimality criterion coupled with the local strategy of at-most-one-changepoint by dividing the entire sequence into individual subsequences that are recursively adjusted until convergence. Then, the Backward Elimination procedure verifies these changepoints by iteratively testing the unlikely changes to ensure their significance until no more changepoints can be removed. By combining the local strategy with the global optimal changepoint criterion, the DSBE algorithm is conceptually simple and easy to implement and performs better than the binary segmentation-based approach at detecting small multiple changes. The consistency property of the changepoint estimators and the convergence of the algorithm are proved. We apply DSBE to detect changes in traffic streams through real freeway traffic data. The practical performance of DSBE is also investigated through intensive simulation studies for various scenarios. Full Article
function Frequency domain theory for functional time series: Variance decomposition and an invariance principle By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Piotr Kokoszka, Neda Mohammadi Jouzdani. Source: Bernoulli, Volume 26, Number 3, 2383--2399.Abstract: This paper is concerned with frequency domain theory for functional time series, which are temporally dependent sequences of functions in a Hilbert space. We consider a variance decomposition, which is more suitable for such a data structure than the variance decomposition based on the Karhunen–Loéve expansion. The decomposition we study uses eigenvalues of spectral density operators, which are functional analogs of the spectral density of a stationary scalar time series. We propose estimators of the variance components and derive convergence rates for their mean square error as well as their asymptotic normality. The latter is derived from a frequency domain invariance principle for the estimators of the spectral density operators. This principle is established for a broad class of linear time series models. It is a main contribution of the paper. Full Article
function Directional differentiability for supremum-type functionals: Statistical applications By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Javier Cárcamo, Antonio Cuevas, Luis-Alberto Rodríguez. Source: Bernoulli, Volume 26, Number 3, 2143--2175.Abstract: We show that various functionals related to the supremum of a real function defined on an arbitrary set or a measure space are Hadamard directionally differentiable. We specifically consider the supremum norm, the supremum, the infimum, and the amplitude of a function. The (usually non-linear) derivatives of these maps adopt simple expressions under suitable assumptions on the underlying space. As an application, we improve and extend to the multidimensional case the results in Raghavachari ( Ann. Statist. 1 (1973) 67–73) regarding the limiting distributions of Kolmogorov–Smirnov type statistics under the alternative hypothesis. Similar results are obtained for analogous statistics associated with copulas. We additionally solve an open problem about the Berk–Jones statistic proposed by Jager and Wellner (In A Festschrift for Herman Rubin (2004) 319–331 IMS). Finally, the asymptotic distribution of maximum mean discrepancies over Donsker classes of functions is derived. Full Article
function On estimation of nonsmooth functionals of sparse normal means By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT O. Collier, L. Comminges, A.B. Tsybakov. Source: Bernoulli, Volume 26, Number 3, 1989--2020.Abstract: We study the problem of estimation of $N_{gamma }( heta )=sum_{i=1}^{d}| heta _{i}|^{gamma }$ for $gamma >0$ and of the $ell _{gamma }$-norm of $ heta $ for $gamma ge 1$ based on the observations $y_{i}= heta _{i}+varepsilon xi _{i}$, $i=1,ldots,d$, where $ heta =( heta _{1},dots , heta _{d})$ are unknown parameters, $varepsilon >0$ is known, and $xi _{i}$ are i.i.d. standard normal random variables. We find the non-asymptotic minimax rate for estimation of these functionals on the class of $s$-sparse vectors $ heta $ and we propose estimators achieving this rate. Full Article
function Busemann functions and semi-infinite O’Connell–Yor polymers By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Tom Alberts, Firas Rassoul-Agha, Mackenzie Simper. Source: Bernoulli, Volume 26, Number 3, 1927--1955.Abstract: We prove that given any fixed asymptotic velocity, the finite length O’Connell–Yor polymer has an infinite length limit satisfying the law of large numbers with this velocity. By a Markovian property of the quenched polymer this reduces to showing the existence of Busemann functions : almost sure limits of ratios of random point-to-point partition functions. The key ingredients are the Burke property of the O’Connell–Yor polymer and a comparison lemma for the ratios of partition functions. We also show the existence of infinite length limits in the Brownian last passage percolation model. Full Article
function Functional weak limit theorem for a local empirical process of non-stationary time series and its application By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Ulrike Mayer, Henryk Zähle, Zhou Zhou. Source: Bernoulli, Volume 26, Number 3, 1891--1911.Abstract: We derive a functional weak limit theorem for a local empirical process of a wide class of piece-wise locally stationary (PLS) time series. The latter result is applied to derive the asymptotics of weighted empirical quantiles and weighted V-statistics of non-stationary time series. The class of admissible underlying time series is illustrated by means of PLS linear processes and PLS ARCH processes. Full Article
function Optimal functional supervised classification with separation condition By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Sébastien Gadat, Sébastien Gerchinovitz, Clément Marteau. Source: Bernoulli, Volume 26, Number 3, 1797--1831.Abstract: We consider the binary supervised classification problem with the Gaussian functional model introduced in ( Math. Methods Statist. 22 (2013) 213–225). Taking advantage of the Gaussian structure, we design a natural plug-in classifier and derive a family of upper bounds on its worst-case excess risk over Sobolev spaces. These bounds are parametrized by a separation distance quantifying the difficulty of the problem, and are proved to be optimal (up to logarithmic factors) through matching minimax lower bounds. Using the recent works of (In Advances in Neural Information Processing Systems (2014) 3437–3445 Curran Associates) and ( Ann. Statist. 44 (2016) 982–1009), we also derive a logarithmic lower bound showing that the popular $k$-nearest neighbors classifier is far from optimality in this specific functional setting. Full Article
function Characterization of probability distribution convergence in Wasserstein distance by $L^{p}$-quantization error function By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Yating Liu, Gilles Pagès. Source: Bernoulli, Volume 26, Number 2, 1171--1204.Abstract: We establish conditions to characterize probability measures by their $L^{p}$-quantization error functions in both $mathbb{R}^{d}$ and Hilbert settings. This characterization is two-fold: static (identity of two distributions) and dynamic (convergence for the $L^{p}$-Wasserstein distance). We first propose a criterion on the quantization level $N$, valid for any norm on $mathbb{R}^{d}$ and any order $p$ based on a geometrical approach involving the Voronoï diagram. Then, we prove that in the $L^{2}$-case on a (separable) Hilbert space, the condition on the level $N$ can be reduced to $N=2$, which is optimal. More quantization based characterization cases in dimension 1 and a discussion of the completeness of a distance defined by the quantization error function can be found at the end of this paper. Full Article
function Degeneracy in sparse ERGMs with functions of degrees as sufficient statistics By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Sumit Mukherjee. Source: Bernoulli, Volume 26, Number 2, 1016--1043.Abstract: A sufficient criterion for “non-degeneracy” is given for Exponential Random Graph Models on sparse graphs with sufficient statistics which are functions of the degree sequence. This criterion explains why statistics such as alternating $k$-star are non-degenerate, whereas subgraph counts are degenerate. It is further shown that this criterion is “almost” tight. Existence of consistent estimates is then proved for non-degenerate Exponential Random Graph Models. Full Article
function Convergence and concentration of empirical measures under Wasserstein distance in unbounded functional spaces By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Jing Lei. Source: Bernoulli, Volume 26, Number 1, 767--798.Abstract: We provide upper bounds of the expected Wasserstein distance between a probability measure and its empirical version, generalizing recent results for finite dimensional Euclidean spaces and bounded functional spaces. Such a generalization can cover Euclidean spaces with large dimensionality, with the optimal dependence on the dimensionality. Our method also covers the important case of Gaussian processes in separable Hilbert spaces, with rate-optimal upper bounds for functional data distributions whose coordinates decay geometrically or polynomially. Moreover, our bounds of the expected value can be combined with mean-concentration results to yield improved exponential tail probability bounds for the Wasserstein error of empirical measures under Bernstein-type or log Sobolev-type conditions. Full Article
function Function-Specific Mixing Times and Concentration Away from Equilibrium By projecteuclid.org Published On :: Thu, 19 Mar 2020 22:02 EDT Maxim Rabinovich, Aaditya Ramdas, Michael I. Jordan, Martin J. Wainwright. Source: Bayesian Analysis, Volume 15, Number 2, 505--532.Abstract: Slow mixing is the central hurdle is applications of Markov chains, especially those used for Monte Carlo approximations (MCMC). In the setting of Bayesian inference, it is often only of interest to estimate the stationary expectations of a small set of functions, and so the usual definition of mixing based on total variation convergence may be too conservative. Accordingly, we introduce function-specific analogs of mixing times and spectral gaps, and use them to prove Hoeffding-like function-specific concentration inequalities. These results show that it is possible for empirical expectations of functions to concentrate long before the underlying chain has mixed in the classical sense, and we show that the concentration rates we achieve are optimal up to constants. We use our techniques to derive confidence intervals that are sharper than those implied by both classical Markov-chain Hoeffding bounds and Berry-Esseen-corrected central limit theorem (CLT) bounds. For applications that require testing, rather than point estimation, we show similar improvements over recent sequential testing results for MCMC. We conclude by applying our framework to real-data examples of MCMC, providing evidence that our theory is both accurate and relevant to practice. Full Article
function Bayesian Functional Forecasting with Locally-Autoregressive Dependent Processes By projecteuclid.org Published On :: Thu, 19 Dec 2019 22:10 EST Guillaume Kon Kam King, Antonio Canale, Matteo Ruggiero. Source: Bayesian Analysis, Volume 14, Number 4, 1121--1141.Abstract: Motivated by the problem of forecasting demand and offer curves, we introduce a class of nonparametric dynamic models with locally-autoregressive behaviour, and provide a full inferential strategy for forecasting time series of piecewise-constant non-decreasing functions over arbitrary time horizons. The model is induced by a non Markovian system of interacting particles whose evolution is governed by a resampling step and a drift mechanism. The former is based on a global interaction and accounts for the volatility of the functional time series, while the latter is determined by a neighbourhood-based interaction with the past curves and accounts for local trend behaviours, separating these from pure noise. We discuss the implementation of the model for functional forecasting by combining a population Monte Carlo and a semi-automatic learning approach to approximate Bayesian computation which require limited tuning. We validate the inference method with a simulation study, and carry out predictive inference on a real dataset on the Italian natural gas market. Full Article
function Gaussianization Machines for Non-Gaussian Function Estimation Models By projecteuclid.org Published On :: Wed, 08 Jan 2020 04:00 EST T. Tony Cai. Source: Statistical Science, Volume 34, Number 4, 635--656.Abstract: A wide range of nonparametric function estimation models have been studied individually in the literature. Among them the homoscedastic nonparametric Gaussian regression is arguably the best known and understood. Inspired by the asymptotic equivalence theory, Brown, Cai and Zhou ( Ann. Statist. 36 (2008) 2055–2084; Ann. Statist. 38 (2010) 2005–2046) and Brown et al. ( Probab. Theory Related Fields 146 (2010) 401–433) developed a unified approach to turn a collection of non-Gaussian function estimation models into a standard Gaussian regression and any good Gaussian nonparametric regression method can then be used. These Gaussianization Machines have two key components, binning and transformation. When combined with BlockJS, a wavelet thresholding procedure for Gaussian regression, the procedures are computationally efficient with strong theoretical guarantees. Technical analysis given in Brown, Cai and Zhou ( Ann. Statist. 36 (2008) 2055–2084; Ann. Statist. 38 (2010) 2005–2046) and Brown et al. ( Probab. Theory Related Fields 146 (2010) 401–433) shows that the estimators attain the optimal rate of convergence adaptively over a large set of Besov spaces and across a collection of non-Gaussian function estimation models, including robust nonparametric regression, density estimation, and nonparametric regression in exponential families. The estimators are also spatially adaptive. The Gaussianization Machines significantly extend the flexibility and scope of the theories and methodologies originally developed for the conventional nonparametric Gaussian regression. This article aims to provide a concise account of the Gaussianization Machines developed in Brown, Cai and Zhou ( Ann. Statist. 36 (2008) 2055–2084; Ann. Statist. 38 (2010) 2005–2046), Brown et al. ( Probab. Theory Related Fields 146 (2010) 401–433). Full Article
function A Transcriptome Database for Astrocytes, Neurons, and Oligodendrocytes: A New Resource for Understanding Brain Development and Function By www.jneurosci.org Published On :: 2008-01-02 John D. CahoyJan 2, 2008; 28:264-278Cellular Full Article
function Nasal Respiration Entrains Human Limbic Oscillations and Modulates Cognitive Function By www.jneurosci.org Published On :: 2016-12-07 Christina ZelanoDec 7, 2016; 36:12448-12467Systems/Circuits Full Article
function Effects of Attention on Orientation-Tuning Functions of Single Neurons in Macaque Cortical Area V4 By www.jneurosci.org Published On :: 1999-01-01 Carrie J. McAdamsJan 1, 1999; 19:431-441Articles Full Article
function Cortical Hubs Revealed by Intrinsic Functional Connectivity: Mapping, Assessment of Stability, and Relation to Alzheimer's Disease By www.jneurosci.org Published On :: 2009-02-11 Randy L. BucknerFeb 11, 2009; 29:1860-1873Neurobiology of Disease Full Article
function Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium By www.jneurosci.org Published On :: 1993-02-01 P SeguelaFeb 1, 1993; 13:596-604Articles Full Article
function Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1 By www.jneurosci.org Published On :: 1996-07-01 Geoffrey M. BoyntonJul 1, 1996; 16:4207-4221Articles Full Article
function A Transcriptome Database for Astrocytes, Neurons, and Oligodendrocytes: A New Resource for Understanding Brain Development and Function By www.jneurosci.org Published On :: 2008-01-02 John D. CahoyJan 2, 2008; 28:264-278Cellular Full Article
function Interneuron NMDA Receptor Ablation Induces Hippocampus-Prefrontal Cortex Functional Hypoconnectivity after Adolescence in a Mouse Model of Schizophrenia By www.jneurosci.org Published On :: 2020-04-15T09:30:18-07:00 Although the etiology of schizophrenia is still unknown, it is accepted to be a neurodevelopmental disorder that results from the interaction of genetic vulnerabilities and environmental insults. Although schizophrenia's pathophysiology is still unclear, postmortem studies point toward a dysfunction of cortical interneurons as a central element. It has been suggested that alterations in parvalbumin-positive interneurons in schizophrenia are the consequence of a deficient signaling through NMDARs. Animal studies demonstrated that early postnatal ablation of the NMDAR in corticolimbic interneurons induces neurobiochemical, physiological, behavioral, and epidemiological phenotypes related to schizophrenia. Notably, the behavioral abnormalities emerge only after animals complete their maturation during adolescence and are absent if the NMDAR is deleted during adulthood. This suggests that interneuron dysfunction must interact with development to impact on behavior. Here, we assess in vivo how an early NMDAR ablation in corticolimbic interneurons impacts on mPFC and ventral hippocampus functional connectivity before and after adolescence. In juvenile male mice, NMDAR ablation results in several pathophysiological traits, including increased cortical activity and decreased entrainment to local gamma and distal hippocampal theta rhythms. In addition, adult male KO mice showed reduced ventral hippocampus-mPFC-evoked potentials and an augmented low-frequency stimulation LTD of the pathway, suggesting that there is a functional disconnection between both structures in adult KO mice. Our results demonstrate that early genetic abnormalities in interneurons can interact with postnatal development during adolescence, triggering pathophysiological mechanisms related to schizophrenia that exceed those caused by NMDAR interneuron hypofunction alone. SIGNIFICANCE STATEMENT NMDAR hypofunction in cortical interneurons has been linked to schizophrenia pathophysiology. How a dysfunction of GABAergic cortical interneurons interacts with maturation during adolescence has not been clarified yet. Here, we demonstrate in vivo that early postnatal ablation of the NMDAR in corticolimbic interneurons results in an overactive but desynchronized PFC before adolescence. Final postnatal maturation during this stage outspreads the impact of the genetic manipulation toward a functional disconnection of the ventral hippocampal-prefrontal pathway, probably as a consequence of an exacerbated propensity toward hippocampal-evoked depotentiation plasticity. Our results demonstrate a complex interaction between genetic and developmental factors affecting cortical interneurons and PFC function. Full Article
function Coding of Navigational Distance and Functional Constraint of Boundaries in the Human Scene-Selective Cortex By www.jneurosci.org Published On :: 2020-04-29T09:30:19-07:00 For visually guided navigation, the use of environmental cues is essential. Particularly, detecting local boundaries that impose limits to locomotion and estimating their location is crucial. In a series of three fMRI experiments, we investigated whether there is a neural coding of navigational distance in the human visual cortex (both female and male). We used virtual reality software to systematically manipulate the distance from a viewer perspective to different types of a boundary. Using a multivoxel pattern classification employing a linear support vector machine, we found that the occipital place area (OPA) is sensitive to the navigational distance restricted by the transparent glass wall. Further, the OPA was sensitive to a non-crossable boundary only, suggesting an importance of the functional constraint of a boundary. Together, we propose the OPA as a perceptual source of external environmental features relevant for navigation. SIGNIFICANCE STATEMENT One of major goals in cognitive neuroscience has been to understand the nature of visual scene representation in human ventral visual cortex. An aspect of scene perception that has been overlooked despite its ecological importance is the analysis of space for navigation. One of critical computation necessary for navigation is coding of distance to environmental boundaries that impose limit on navigator's movements. This paper reports the first empirical evidence for coding of navigational distance in the human visual cortex and its striking sensitivity to functional constraint of environmental boundaries. Such finding links the paper to previous neurological and behavioral works that emphasized the distance to boundaries as a crucial geometric property for reorientation behavior of children and other animal species. Full Article
function A Torpedo Malfunction Threatens to Destroy a U.S. Submarine By www.smithsonianmag.com Published On :: Fri, 31 Aug 2018 12:00:00 +0000 The USS Silversides is patrolling the Pacific during WWII when it finds itself in a terrifying situation: one of its torpedoes has jammed Full Article
function Predictors of Cognitive Function and Recovery 10 Years After Traumatic Brain Injury in Young Children By pediatrics.aappublications.org Published On :: 2012-01-23T00:06:40-08:00 Previous research has demonstrated that young children with traumatic brain injury are at elevated risk of poor outcomes, particularly following severe injuries. These deficits persist until at least 5 years postinsult. Factors predicting outcomes in this age group have not been established.This study follows survivors of very early traumatic brain injury into adolescence. Results indicate that severe injury is associated with poorest outcome, but after 3 years, the gap between children with severe traumatic brain injury and peers stabilizes. (Read the full article) Full Article
function Association Between a Functional Polymorphism in the MAOA Gene and Sudden Infant Death Syndrome By pediatrics.aappublications.org Published On :: 2012-02-20T00:08:19-08:00 There is evidence of an impaired respiratory regulation in SIDS, in which serotonergic and noradrenergic neurons are involved. Monoamine oxidase A is the enzyme that degrades both neurotransmitters, and genetic variation of this gene might contribute to SIDS.Alleles with weak effect on the monoamine oxidase A gene activity (*2/*3) appear to be associated with sudden infant death syndrome in boys. This association is strongest in infants who died at the age with the highest SIDS prevalence. (Read the full article) Full Article
function Functional Difficulties and Health Conditions Among Children With Special Health Needs By pediatrics.aappublications.org Published On :: 2012-02-27T00:08:28-08:00 Children with special health care needs present clinically with varied functional difficulties across an array of health conditions. Little attention has been given to the interaction of these descriptors at a population level, thereby not addressing the complexity of functional difficulties and their impact on the health of CSHCN.The data demonstrate the relationships among functional difficulties and health conditions, which then improve our understanding of CSHCN and their needs. Functional difficulties contribute significantly to outcomes, such as emergency room visits, parental work patterns, and limitations in daily activities, and have implications for practice, training, policy, and research. (Read the full article) Full Article
function Antenatal Glucocorticoid Exposure and Long-Term Alterations in Aortic Function and Glucose Metabolism By pediatrics.aappublications.org Published On :: 2012-04-16T00:07:49-07:00 In utero exposure to glucocorticoids in animal models influences vascular development. Studies in young adults have shown that exposure to antenatal glucocorticoids alters glucose metabolism, but it is not known whether there are any cardiovascular effects.Glucocorticoid exposure is associated with a localized increase in aortic arch stiffness, similar in magnitude to term-born individuals a decade older. The change in stiffness does not relate to changes in glucose metabolism that were also evident in this cohort. (Read the full article) Full Article
function Abnormalities of Vascular Structure and Function in Children With Perthes Disease By pediatrics.aappublications.org Published On :: 2012-06-04T00:07:40-07:00 The causes of Perthes disease are unknown. There is considerable evidence that the disease has a vascular mechanism, although the nature of this is unknown. There is some suggestion that affected individuals may have a heightened cardiovascular risk in adulthood.Children with Perthes disease have reduced vascular caliber, which is independent of body height, and abnormal functional vascular measures. These findings may be important in the mechanism of disease and may have implications on long-term vascular morbidity. (Read the full article) Full Article
function Dental Composite Restorations and Psychosocial Function in Children By pediatrics.aappublications.org Published On :: 2012-07-16T00:07:03-07:00 Dental composites composed of bisphenol A (BPA) derivatives are common alternatives to amalgam, but may release BPA. Gestational BPA exposure has been associated with poorer behavior in children. A safety trial of amalgam found worse psychosocial outcomes for children randomized to composites.In the trial, greater exposure to bisphenol-A-glycidyl-methacrylate-based dental composite in children aged 6 to 10 years was associated with worse self-reported psychosocial functioning at 5-year follow-up. There were no such associations with exposure to dental amalgam or urethane-dimethacrylate-based polyacid-modified composite (compomer). (Read the full article) Full Article
function Long-term Differences in Language and Cognitive Function After Childhood Exposure to Anesthesia By pediatrics.aappublications.org Published On :: 2012-08-20T00:07:44-07:00 Immature animals exposed to anesthetics display apoptotic neurodegeneration and long-term cognitive deficiencies. In children, studies of cognitive deficits associated with anesthesia exposure have yielded mixed results. No studies to date have used directly administered neuropsychological assessments as outcome measures.This study examines the association between exposure to anesthesia in children under age 3 and deficits at age 10 by using a battery of directly administered neuropsychological assessments, with deficits found in language and abstract reasoning associated with exposure. (Read the full article) Full Article
function Obesity and Metabolic Syndrome and Functional and Structural Brain Impairments in Adolescence By pediatrics.aappublications.org Published On :: 2012-09-03T00:07:32-07:00 Despite the dramatic rise in prevalence of metabolic syndrome (MetS) among children and adolescents, and that MetS is associated with cognitive and brain impairments among adults, no data on the impact of MetS on the brain exist in children.It provides the first data on the impact of MetS on brain in adolescence. We show reductions in cognitive function and brain structural integrity in nondiabetic adolescents with MetS, thus suggesting that even pre-clinical metabolic illness may give rise to brain complications. (Read the full article) Full Article
function Functioning of 7-Year-Old Children Born at 32 to 35 Weeks' Gestational Age By pediatrics.aappublications.org Published On :: 2012-09-03T00:07:30-07:00 Approximately 80% of all preterm children are born moderately preterm (32–36 weeks’ gestation). Moderately preterm children are at increased risk for developmental delays, but the specific neuropsychological functions that may underlie these delays are unknown.Moderately preterm birth is associated with poorer performance in intelligence, attention, visuospatial reasoning, and executive functioning. Using gender-specific norms, our data suggest that preterm boys catch up, whereas preterm girls lag behind their peers at 7 years of age. (Read the full article) Full Article