edi

Information Technology Capabilities and SMEs Performance: An Understanding of a Multi-Mediation Model for the Manufacturing Sector

Aim/Purpose: Despite the fact that the plethora of studies demonstrate the positive impact of information technology (IT) capabilities on SMEs performance, the understanding of underlying mechanisms through which IT capabilities affect the firm performance is not yet clear. This study fills these gaps by explaining the roles of absorptive capacity and corporate entrepreneurship. The study also elaborates the effect of IT capability dimensions (IT integration and IT alignment) upon the SMEs performance outcomes through the mediating sequential process of absorptive capacity and corporate entrepreneurship. Methodology: This study empirically tests a theoretical model based on the Dynamic Capability View (DCV), by using the partial least square (PLS) technique with a sample of 489 manufacturing SMEs in Pakistan. A survey is employed for the data collection by following the cluster sampling approach. Contribution: This research contributes to the literature of IT by bifurcating the IT capability into two dimensions, IT integration and IT alignment, which allows us to distinguish between different sources of IT capabilities. Additionally, our findings shed the light on the dynamic capability view by theoretically and empirically demonstrating how absorptive capacity and corporate entrepreneurship sequentially affect the firms' performance outcomes. At last, this study contributes to the literature of SMEs by measuring the two levels of performance: innovation performance and firm performance. Findings: The results of the analysis show that the absorptive capacity and the corporate entrepreneurship significantly mediate the relationship between both dimensions of IT capability and performance outcomes.




edi

Reinforcing Innovation through Knowledge Management: Mediating Role of Organizational Learning

Aim/Purpose: The purpose of this study is to investigate the relationship between knowledge management (KM) and organizational innovation (OI). It also enriches our understanding of the mediating effect of organizational learning (OL) in this relationship. Background: KM’s relationship with OL and OI has been tackled extensively in developed countries’ literature. Nowadays, the challenges of developing countries lie in the process of knowledge application. This study attempts to develop a new managerial knowledgeable tool and present a theoretical model and empirical analysis of the relationship between KM and innovation in Jordan, a developing country. To the knowledge of the author, no attempt has been taken to investigate this relationship in any Jordanian sector. Methodology: The sample of this study consists of 457 managers representing strategic, tactical, and operational levels randomly selected from 56 manufacturing companies in Jordan. A questionnaire-based survey has been developed based on KM, OL and OI literature to collect data. A structural equation modeling (SEM) approach was applied to investigate the proposed research model. Contribution: This study contributes to the literature in different ways. First, it asserts that OL assists in improving OI in manufacturing organization of developing countries. Second, it highlights the substantial benefits of applying KM, OL and OI in manufacturing companies in Jordan. Furthermore, it enhances the relationship between KM and innovativeness’ literature by providing empirical evidence, suggesting that OL is as important as KM to advance organizational innovation. Most importantly, it identifies the problem of a developing economy which is not promoting OL or taking care of it as much as they attended to KM in their organizational practices. Findings: Study findings indicate that the relationship between KM and OI is significantly positive. Results also reveal that the relationship between KM and organizational learning is significantly positive. Empirical results emerging from this study indicate that there is partial mediation to support the relationship between OL and OI. Recommendations for Practitioners: This study suggests that managers ought to recognize that organizational learning is equally important to KM. This entails that OL should be utilized within organizations to achieve organizational innovation. Moreover, managers ought to comprehend their importance and encourage their employees to adopt knowledge from various sources; which, if implemented correctly, will enhance the OL environment. Recommendation for Researchers: The research model can be used or applied in different manufacturing and service sectors across the globe. The findings of the current study can serve as a foundation to perform different studies to understand KM processes and recognize its antecedence. Impact on Society: This study presents insights on how to apply KM, OL and OI methodologies in Jordanian manufacturing companies to achieve a competitive advantage; hence, positively influencing society. Future Research: Future research may include conducting a similar study in the context of developed countries and developing countries which allows for comparison. Also, future research may examine the impact of KM on organizational performance applying both OL and OI as mediating variables.




edi

Improving Webpage Access Predictions Based on Sequence Prediction and PageRank Algorithm

Aim/Purpose: In this article, we provide a better solution to Webpage access prediction. In particularly, our core proposed approach is to increase accuracy and efficiency by reducing the sequence space with integration of PageRank into CPT+. Background: The problem of predicting the next page on a web site has become significant because of the non-stop growth of Internet in terms of the volume of contents and the mass of users. The webpage prediction is complex because we should consider multiple kinds of information such as the webpage name, the contents of the webpage, the user profile, the time between webpage visits, differences among users, and the time spent on a page or on each part of the page. Therefore, webpage access prediction draws substantial effort of the web mining research community in order to obtain valuable information and improve user experience as well. Methodology: CPT+ is a complex prediction algorithm that dramatically offers more accurate predictions than other state-of-the-art models. The integration of the importance of every particular page on a website (i.e., the PageRank) regarding to its associations with other pages into CPT+ model can improve the performance of the existing model. Contribution: In this paper, we propose an approach to reduce prediction space while improving accuracy through combining CPT+ and PageRank algorithms. Experimental results on several real datasets indicate the space reduced by up to between 15% and 30%. As a result, the run-time is quicker. Furthermore, the prediction accuracy is improved. It is convenient that researchers go on using CPT+ to predict Webpage access. Findings: Our experimental results indicate that PageRank algorithm is a good solution to improve CPT+ prediction. An amount of though approximately 15 % to 30% of redundant data is removed from datasets while improving the accuracy. Recommendations for Practitioners: The result of the article could be used in developing relevant applications such as Webpage and product recommendation systems. Recommendation for Researchers: The paper provides a prediction model that integrates CPT+ and PageRank algorithms to tackle the problem of complexity and accuracy. The model has been experimented against several real datasets in order to show its performance. Impact on Society: Given an improving model to predict Webpage access using in several fields such as e-learning, product recommendation, link prediction, and user behavior prediction, the society can enjoy a better experience and more efficient environment while surfing the Web. Future Research: We intend to further improve the accuracy of webpage access prediction by using the combination of CPT+ and other algorithms.




edi

Enterprise Knowledge Generation Driven by Internet Integration Capability: A Mediated Moderation Model

Aim/Purpose: Drawing on theories of organizational learning, this study analyzes the mechanism of Internet integration capability affecting knowledge generation by 399 Chinese enterprises. This paper will further explore whether there is a moderating role of learning orientation in the mechanism of Internet integration capability affecting enterprise knowledge generation. Background: The Internet has gradually integrated into the enterprise innovation system and penetrated into all aspects of technological innovation, which has promoted the integration and optimization of resources inside and outside the organization. However, there is limited understanding of how the combination of the Internet and integration capability can drive enterprise knowledge generation. Methodology: The study uses survey data from 399 organizations in China. Through structural equation modeling, this study assesses the relationship between Internet integration capability, organizational learning, knowledge generation, and uses PROCESS macro program to test the mediated moderation effect of learning orientation. Contribution: First, this study provides empirical evidence for managers to better build Internet integration capability and ambidextrous learning to promote enterprise knowledge generation. Second, this study highlights the important moderating role of learning orientation in the mediating role of ambidextrous learning. Findings: First, the study confirms the mediating role of exploratory learning and exploitative learning in knowledge generation driven by Internet integration capability. Second, the results show that when organizations have a strong learning orientation, the indirect path of Internet integration capability influencing knowledge generation through exploratory learning will be enhanced. Recommendations for Practitioners: Enterprises should pay full attention to the improvement of internet integration capability and ambidextrous learning to promote knowledge generation. In addition, enterprises should establish a good learning atmosphere within the organization to strengthen the bridge role of exploratory learning between Internet integration capability and knowledge generation. Recommendation for Researchers: Researchers could collect data from countries with different levels of economic development to verify the universal applicability of the proposed theoretical model. Impact on Society: This study provides references for enterprises using Internet integration capability to promote their knowledge generation capability under the internet background. Future Research: Future research can compare the impact of Internet integration capability on knowledge generation in different industries.




edi

Social Media Use and Its Effect on Knowledge Sharing: Evidence from Public Organisations in Delta State, Nigeria

Aim/Purpose: This study investigates social media use and its effect on knowledge sharing. Based on the review of related literature, we hypothesised that social media use has a significant effect on outward and inward knowledge sharing. Background: While the notion of social media use in work organisations has been progressively developed, empirical studies linking social media to the context of knowledge sharing have only begun to emerge. Even so, literature on social media use and its impact on public organisation is still tentative and remains a developing area. Methodology: The partial least square method was utilised in testing of hypotheses with data collected from 103 employees, who by virtue of their position and job function(s) interface with the public for the purpose of sharing knowledge via the social media space. Contribution: The study made contributions to the social knowledge management literature in two ways. First, the study developed a research model that links social media use to the two distinct dimensions of knowledge sharing. Second, the study provides a quantitative approach, where statistical techniques were applied to validate the social media use and knowledge sharing link. Findings: Statistically, the public organisations utilise social media partly for knowledge sharing, with its effect being significant on outward knowledge sharing and insignificant on inward knowledge sharing. This indicates that social media were deployed mainly for information dissemination “outward knowledge sharing” and not for stakeholders’ feedback and interaction “inward knowledge sharing”. Recommendations for Practitioners: Public organisations should develop a policy framework and guidelines for social media use to encourage the full use of this technology to inform and interact with stakeholders. It is important for this policy document to adopt best practices regarding interactive spaces so that both knowledge sharing dimensions manifest themselves in social media communications. Second, it is necessary to carry out staff training for the professional use of this technology for knowledge sharing. Recommendation for Researchers: Future studies should extend to more populations in different contexts to validate findings Impact on Society: This paper intends to influence practices adopted by organisations in the public sector to improve the knowledge sharing dimensions via the social media space. Future Research: Future studies may extend to public organisations in other geographical locations around Nigeria. It will be useful for studies to provide an international perspective by sampling public organisations from different countries or by comparing and contrasting the findings of other studies, specifically those from other countries. A longitudinal study should be encouraged to detect advancement or development with regards to the subject matter over a period of time.




edi

Entrepreneurial Leadership and Organisational Performance of SMEs in Kuwait: The Intermediate Mechanisms of Innovation Management and Learning Orientation

Aim/Purpose: This study aimed to investigate the impact of innovation management and learning orientation as the mechanisms playing the role of an intermediate relationship between entrepreneurial leadership and organisational performance of small and medium enterprises (SMEs) in Kuwait. Background: SMEs are currently among the principal economic instruments in most industrialised and developing countries. The contribution of SMEs can be viewed from various perspectives primarily related to the crucial role they play in developing entrepreneurial activities, employment generation, and improving innovativeness. Developing countries, including Kuwait and other countries, in the Gulf Cooperation Council (GCC), have recognised the key role played by SMEs as a strong pillar of growth. Consequently, many governments have formulated policies and programmes to facilitate the growth and success of SMEs. Unfortunately, the organisational performance of SMEs in developing countries, particularly in Kuwait, remains below expectations. The lagged growth could be due to a lack of good managerial practices and increasing competition that negatively impact their performance. Numerous researchers discovered the positive effect of entrepreneurial leadership on SMEs’ performance. However, a lack of clarity remains regarding the direct impact of entrepreneurial leadership on SMEs’ performance, especially in developing countries. Therefore, the nexus between entrepreneurial leadership and organisational performance is still indecisive and requires further studies. Methodology: This study adopted a quantitative approach based on a cross-sectional survey and descriptive design to gather data within a specific period. The data were collected by distributing a survey questionnaire to Kuwaiti SMEs’ owners and Chief Executive Officers (CEOs) via online and on-hand instruments. A total of 384 useable questionnaires were obtained. Moreover, the partial least square-structural equation modelling (PLS-SEM) analysis was performed to test the hypotheses. Contribution: The current study contributed to the existing literature by developing a moderated mediation model integrating entrepreneurial leadership, innovation management, and learning orientation. The study also investigated their effect on the organisational performance of SMEs. The study findings also bridged the existing significant literature gap regarding the role of these variables on SMEs’ performance in developing countries, particularly in Kuwait, due to the dearth of studies linking these variables in this context. Furthermore, this study empirically confirmed the significant effect of innovation management and learning orientation as intermediate variables in strengthening the relationship between entrepreneurial leadership and organisational performance in the settings of Kuwait SMEs, which has not been verified previously. Findings: The study findings showed the beneficial and significant impact of entrepreneurial leadership and innovation management on SME’s organisational performance. The relationship between entrepreneurial leadership and SMEs’ organisational performance is fundamentally mediated by innovation management and moderated by learning orientation. Recommendations for Practitioners: The present study provides valuable insights and information regarding the factors considered by the government, policymakers, SMEs’ stakeholders, and other authorities in the effort to increase the organisational performance level and facilitate the growth of SMEs in Kuwait. SMEs’ owners or CEOs should improve their awareness and knowledge of the importance of entrepreneurial leadership, innovation management, and learning orientation. These variables will have beneficial effects on the performance and assets to achieve success and sustainability if adopted and managed systematically. This study also recommends that SMEs’ entrepreneurs and top management should facilitate supportive culture by creating and maintaining an organisational climate and structure that encourages learning behaviour and innovation mindset among individuals. The initiative will motivate them towards acquiring, sharing, and utilising knowledge and increasing their ability to manage innovation systemically in all production processes to adapt to new technologies, practices, methods, and different circumstances. Recommendation for Researchers: The study findings highlighted the mediating effect of innovation management on the relationship between entrepreneurial leadership (the independent variable) and SMEs’ organisational performance (the dependent variable) and the moderating effect of learning orientation in the same nexus. These relationships were not extensively addressed in SMEs of developing countries and require further validation. Impact on Society: This study aims to influence the management strategies and practices adopted by entrepreneurs and policymakers who work in SMEs in developing countries. The effect will be reflected in the development of their firms and the national economy in general. Future Research: Future research should investigate the conceptual research framework against the backdrop of other developing economies and in other business settings to generalise the results. Future investigation should seek to establish the effect of entrepreneurial leadership style on other mechanisms, such as knowledge management processes, which could function with entrepreneurial leadership to improve SMEs’ performance efficiently. In addition, future studies may include middle and lower-level managers and employees, leading to more positive outcomes.




edi

NOTICE OF RETRACTION: THE IMPACT OF KNOWLEDGE MANAGEMENT ON FIRM INNOVATIVENESS VIA MEDIATING ROLE OF INNOVATIVE CULTURE – THE CASE OF MNES IN MALAYSIA

Aim/Purpose: ******************************************************************************************** After its investigation, the Research Ethics, Integrity, and Governance team at RMIT University found that the primary author of this paper breached the Australian Code and/or RMIT Policy and requested that the article be retracted. ********************************************************************************************* This paper aimed to examine the impact of knowledge management on firm innovativeness of multinational enterprises (MNEs) via the mediating role of innovative culture in Malaysia. Background: Inadequate management practices and growing competition among MNEs operating in developing nations, notably in Malaysia, have hindered their organizational success. Although several studies have shown that knowledge management has a substantial impact on MNEs’ success, it is not apparent if innovation at the company level has a direct impact on their performance. Thus, there is no definitive evidence between knowledge management with business innovativeness and organizational success. Methodology: This study adopted a quantitative approach based on a cross-sectional survey and descriptive design to gather the data in a specific period. A convenient sampling approach was used to select 296 respondents from Malaysia-dependent MNEs of different industries. One of the advantages of this study methodology is that the sample targeted many fields. Afterward, SPSS AMOS 24.0 software package analysis was performed to test the hypotheses. Contribution: The study contributes to knowledge management and firm innovativeness literature through advancing innovative culture as a mediating factor that accounts for the link between these two constructs, especially from an emerging economy perspective. The research findings also offer managerial implications for organizations in their quest to improve firm innovativeness. Findings: The results support that innovative culture significantly affects MNEs’ performance. Innovative culture enhances the capability of MNEs to be innovative that finally leads to the superior performance of firm innovativeness. Recommendations for Practitioners: According to this research, companies that exhibit an innovative culture, the acquisition of new information, the conversion of tacit knowledge into explicit knowledge, the application of knowledge, and the safeguarding of knowledge, all have a positive effect on their innovativeness. This means that for organizations to run an innovative MNE in Malaysia, a creative culture must be fostered since the current study has shown how it is seen as a catalyst that facilitates learning, transformation, and implementation of relevant knowledge. Recommendation for Researchers: Future studies should be carried out in other sectors aside from the manufacturing sector using the same scales used to measure knowledge management. Furthermore, a comparative analysis of knowledge management and firm innovativeness using innovative culture as a mediator should be researched in other developing economies. Impact on Society: While the main aim of this study was to better understand how and why MNEs operate the way they do, it had an indirect impact on the business and political tactics taken by CEOs and managers working in MNEs in developing countries, as this research has shown. Future Research: Future research should employ the methodology presented in this study and pursue this in other sectors, such as emerging and developed nations’ major businesses, to validate the results and further generalize the conclusions. Other methods should also be incorporated to investigate the other dimensions of MNEs’ performance, including market orientation, technology orientation, and entrepreneurial orientation.




edi

Mediating Effect of Leaders’ Behaviour on Organisational Knowledge Sharing and Manufacturing Firms’ Competitiveness

Aim/Purpose: The need to explore leaders’ role as a mediating factor between knowledge sharing and firms’ competitiveness was the focus of this paper. Further, gaps related to knowledge sharing influence on firms’ competitiveness from an emerging economy perspective was a major driver of this study. Background: The relevance of knowledge sharing is today crucial for firms that seek to harness internal resource innovation towards ensuring increased competitiveness. The link between the actions of leaders and outcomes from sharing knowledge towards increased competitiveness would further advance theory on knowledge sharing and provide managerial implication that is instrumental for an improved organisational outcome. Methodology: The study sample was 282 participants and Partial least square structural equation model was used for the analysis of the data obtained through a questionnaire survey with the aid of SmartPLSv3.9. Contribution: The study contributes to knowledge management literature through advancing leadership as a mediating factor that accounts for the link between knowledge sharing and firms’ competitiveness, most especially from an emerging economy perspective. Findings: Knowledge sharing was found to have a positive effect on firms’ competitiveness. The study found that leadership behaviour mediates the relationship between knowledge sharing and a firm’s competitiveness. Recommendations for Practitioners: The study recommends that, when supported with the right attitude from leaders in the organisation, knowledge sharing will be beneficial towards the firm gaining competitiveness most especially. Future Research: Future studies should be carried out in other sectors aside from the manufacturing sector using the same measures used to measure knowledge sharing. Also, a comparative analysis of knowledge sharing and firms’ competitiveness using leaders’ behaviour as a mediator should be researched in other developing economies.




edi

Predicting Key Predictors of Project Desertion in Blockchain: Experts’ Verification Using One-Sample T-Test

Aim/Purpose: The aim of this study was to identify the critical predictors affecting project desertion in Blockchain projects. Background: Blockchain is one of the innovations that disrupt a broad range of industries and has attracted the interest of software developers. However, despite being an open-source software (OSS) project, the maintenance of the project ultimately relies on small core developers, and it is still uncertain whether the technology will continue to attract a sufficient number of developers. Methodology: The study utilized a systematic literature review (SLR) and an expert review method. The SLR identified 21 primary studies related to project desertion published in Scopus databases from the year 2010 to 2020. Then, Blockchain experts were asked to rank the importance of the identified predictors of project desertion in Blockchain. Contribution: A theoretical framework was constructed based on Social Cognitive Theory (SCT) constructs; personal, behavior, and environmental predictors and related theories. Findings: The findings indicate that the 12 predictors affecting Blockchain project desertion identified through SLR were important and significant. Recommendations for Practitioners: The framework proposed in this paper can be used by the Blockchain development community as a basis to identify developers who might have the tendency to abandon a Blockchain project. Recommendation for Researchers: The results show that some predictors, such as code testing tasks, contributed code decoupling, system integration and expert heterogeneity that are not covered in the existing developer turnover models can be integrated into future research efforts. Impact on Society: This study highlights how an individual’s design choices could determine the success or failure of IS projects. It could direct Blockchain crypto-currency investors and cyber-security managers to pay attention to the developer’s behavior while ensuring secure investments, especially for crypto-currencies projects. Future Research: Future research may employ additional methods, such as a meta-analysis, to provide a comprehensive picture of the main predictors that can predict project desertion in Blockchain.




edi

Towards a Framework on the Use of Infomediaries in Maternal mHealth in Rural Malawi

Aim/Purpose: The aim of the study is to explore factors that affect how healthcare clients in rural areas use infomediaries in maternal mHealth interventions. The study focuses on maternal healthcare clients who do not own mobile phones but use the mHealth intervention. Background: Maternal mHealth interventions in poor-resource settings are bedevilled by inequalities in mobile phone ownership. Clients who do not own mobile phones risk being excluded from benefiting from the interventions. Some maternal mHealth providers facilitate the access of mobile phones for those who do not own them using “infomediaries”. Infomediaries, in this case, refer to individuals who have custody of mobile phones that other potential beneficiaries may use. However, the use of infomediaries to offer access to the “have nots” may be influenced by a number of factors. Methodology: The study uses a case of a maternal mHealth intervention project in Malawi, as well as a qualitative research method and interpretive paradigm. Data was collected using secondary data from the implementing agency, semi-structured interviews, and focus group discussions. Empirical data was collected from maternal healthcare clients who do not own mobile phones and infomediaries. Data were analysed inductively using thematic analysis. Contribution: The study proposed a theoretical framework for studying infomediaries in ICT4D. The study may inform mHealth designers, implementers, and policymakers on how infomediaries could be implemented in a rural setting. Consequently, understanding the factors that affect the use of infomediaries may inform mHealth intervention implementers on how they could overcome the challenges by implementing mHealth interventions that reduce the challenges on the mHealth infomediaries side, and the maternal healthcare clients’ side. Findings: Characteristics of the maternal healthcare client, characteristics of the mHealth infomediary, perceived value of mHealth intervention, and socio-environmental factors affect maternal healthcare clients’ use of mHealth infomediaries. Recommendations for Practitioners: Implementers of interventions ought to manage the use of infomediaries to avoid volunteer fatigue and infomediaries who may not be compatible with the potential users of the intervention. Implementers could leverage traditional systems of identifying and using infomediaries instead of reinventing the wheel. Recommendation for Researchers: This research adopted a single case study to develop the theoretical framework for mHealth infomediary use. We recommend future studies are conducted in order to test and develop this framework further, not only in ICT4D, but also in other areas of application. Impact on Society: People still lack access. The lack of ownership of technology may still exclude them from participating in an information society. The use of infomediaries may help to provide access to technologies to those who do not have them thereby bridging the digital divide gap. Future Research: We propose herein that traditional systems may offer a good starting point for designing a system that would work for communities. We, therefore, recommend that future research may explore these possibilities.




edi

The Effect of Perceived Support on Repatriate Knowledge Transfer in MNCs: The Mediating Role of Repatriate Adjustment

Aim/Purpose: The present study examines the effect of perceived organisational and co-worker support on the adjustment of repatriates and its impact on their intention to transfer knowledge in multinational companies (MNCs). It also examines the relationship between perceived organisational support, co-worker support, and knowledge transfer through the mediating role of repatriate adjustment. Background: The ability of acquiring and utilising international knowledge is one of the core competitive advantages of MNCs. This knowledge is transferred by MNCs across their subsidiaries efficiently through repatriates, which will result in superior performance when compared to their local competitors. But in MNCs the expatriation process has been given more emphasis than the repatriation process; therefore, there is limited knowledge about repatriation knowledge transfer. Practically, the knowledge transferred by repatriates is not managed properly by the MNCs. Methodology: The proposed model was supported by Uncertainty Reduction Theory, Organisational Socialisation Theory, Organisational Support Theory, and Socialisation Resource Theory. The data were gathered from 246 repatriates working in Indian MNCs in the manufacturing and information technology sectors who had been on an international assignment for at least one year. The data obtained were analysed using Structural Equation Modeling (SEM) using AMOS 21 software. Contribution: The present study expands prior research on repatriate knowledge transfer by empirically investigating the mediating role of repatriate adjustment between perceived support and repatriate knowledge transfer in MNCs. The present study also highlights that organisational and co-worker support during repatriation is beneficial for repatriate knowledge transfer. It is important that MNCs initiate support practices during repatriation to motivate repatriates to transfer international knowledge. Findings: The results revealed that both perceived organisational and co-worker support had a significant role in predicting repatriate adjustment in MNCs. Furthermore, the results also revealed that perceived organisational and co-worker support increases repatriate knowledge transfer through repatriate adjustment in MNCs. Recommendations for Practitioners: This study indicates the role of management in motivating repatriates to transfer their knowledge to the organisation. The management of MNCs develop HR policies and strategies leading to high perceived organisational support, co-worker support, and repatriate adjustment. They need to pay particular attention to the factors that affect the repatriates’ intention to share knowledge with others in the organisation. Recommendation for Researchers: Researchers can use the validated measurement instrument which could be essential for the advancement of future empirical research on repatriate knowledge transfer. Impact on Society: The present study will assist MNCs in managing their repatriates during the repatriation process by developing an appropriate repatriation support system. This will help the repatriates to better adjust to their repatriation process which will motivate them to transfer the acquired knowledge. Future Research: Future research can adopt a longitudinal style to test the different levels of the adjustment process which will help in better understanding the repatriate adjustment process. Additionally, this model can be tested with the repatriates of other countries and in diverse cultures to confirm its external validity. Furthermore, future research can be done with the repatriates who go on an international assignment through their own initiative (self-initiated expatriates).




edi

NOTICE OF RETRACTION: The Influence of Ethical and Transformational Leadership on Employee Creativity in Malaysia's Private Higher Education Institutions: The Mediating Role of Organizational Citizenship Behaviour

Aim/Purpose: ************************************************************************ After its investigation, the Research Ethics, Integrity, and Governance team at RMIT University found that the primary author of this paper breached the Australian Code and/or RMIT Policy and requested that the article be retracted. ************************************************************************** This paper aimed to examine the influence of ethical and transformational leadership on employee creativity in Malaysia’s private higher education institutions (PHEIs) and the mediating role of organizational citizenship behavior. Background: To ensure their survival and success in today’s market, organizations need people who are creative and driven. Previous studies have demonstrated the importance of ethical leadership in fostering employee innovation and good corporate responsibility. Research on ethical leadership and transformational leadership, in particular, has played a significant role in elucidating the role of leadership in relation to organizational citizenship behavior (OCB). In this study, we have focused on ethical and transformational leadership as an antecedent for enhancing employee creativity. Despite an increase in leadership research, little is known about the underlying mechanisms that link ethical leadership and transformational leadership to OCB. Because it sheds light on factors other than ethical leadership and transformational leadership that influence employees’ extra-role activity, this research is relevant theoretically. OCB may have a mediating function between ethical leadership and transformational leadership style and employee creativity because it is associated with the greatest outcomes, but empirical research has yet to prove this. So, one of the study’s goals is to add to the hypotheses about how ethical leadership style and transformational leadership affect employee creativity by using an important mediating variable – OCB. Methodology: This study adopted a quantitative approach based on a cross-sectional survey and descriptive design to gather the data in a specific period. A convenient sampling approach was used to gauge 275 employees from Malaysia’s PHEIs. To test the hypotheses and obtain a conclusion, the acquired data was analyzed using the partial least square technique (PLS-SEM). Contribution: The study contributes to leadership literature by advancing OCB as a mediating factor that accounts for the link between ethical and transformational leadership and employee creativity in the higher education sector. Findings: According to the research, OCB has a substantial influence on the creativity of employees. Furthermore, ethical leadership boosted OCB and boosted employee creativity, according to the research. OCB and employee creativity have both been demonstrated to benefit greatly from transformational leadership. Further research revealed that OCB is a mediating factor in the link between leadership styles and creative thinking among employees. Recommendations for Practitioners: Higher education institutions should focus on developing leaders who value transparency and self-awareness in their interactions with followers and who demonstrate an inner moral perspective in addition to balanced information processing to ensure positive outcomes at the individual and organizational levels. Higher education institutions should place a priority on hiring leaders that exhibit ethical and transformational traits to raise awareness of these leadership styles among employees. Recommendation for Researchers: The new study also adds significantly to the body of knowledge by examining the relationship between ethical and transformational leadership and the creativity of the workforce. It aimed to identify the relationship between transformational leadership style and individual creativity in higher education by examining the mediating influence of OCB. Impact on Society: Higher education institutions should devise strategies for developing ethical and transformative leaders who will assist boost OCB and creativity within their workforce. Students and faculty in higher education can benefit from these leadership methods by learning to think in more diverse ways and by developing thought processes that lead to a larger pool of innovative ideas and solutions. As a consequence, employees who show creative behavior may be effectively managed by leaders who utilize ethical and transformational leadership styles and motivate them to show OCB that allow them to solve creative problems creatively. Future Research: A mixed-methods approach should be used in future research, and this should be done in public institutions in developing and developed nations to put the findings to use and generalize them even further. Future research will be able to examine other mediators to learn more about how and why ethical and transformational leadership styles affect PHEI employees’ creativity.




edi

Multiple Models in Predicting Acquisitions in the Indian Manufacturing Sector: A Performance Comparison

Aim/Purpose: Acquisitions play a pivotal role in the growth strategy of a firm. Extensive resources and time are dedicated by a firm toward the identification of prospective acquisition candidates. The Indian manufacturing sector is currently experiencing significant growth, organically and inorganically, through acquisitions. The principal aim of this study is to explore models that can predict acquisitions and compare their performance in the Indian manufacturing sector. Background: Mergers and Acquisitions (M&A) have been integral to a firm’s growth strategy. Over the years, academic research has investigated multiple models for predicting acquisitions. In the context of the Indian manufacturing industry, the research is limited to prediction models. This research paper explores three models, namely Logistic Regression, Decision Tree, and Multilayer Perceptron, to predict acquisitions. Methodology: The methodology includes defining the accounting variables to be used in the model which have been selected based on strong theoretical foundations. The Indian manufacturing industry was selected as the focus, specifically, data for firms listed in the Bombay Stock Exchange (BSE) between 2010 and 2022 from the Prowess database. There were multiple techniques, such as data transformation and data scrubbing, that were used to mitigate bias and enhance the data reliability. The dataset was split into 70% training and 30% test data. The performance of the three models was compared using standard metrics. Contribution: The research contributes to the existing body of knowledge in multiple dimensions. First, a prediction model customized to the Indian manufacturing sector has been developed. Second, there are accounting variables identified specific to the Indian manufacturing sector. Third, the paper contributes to prediction modeling in the Indian manufacturing sector where there is limited research. Findings: The study found significant supporting evidence for four of the proposed hypotheses indicating that accounting variables can be used to predict acquisitions. It has been ascertained that statistically significant variables influence acquisition likelihood: Quick Ratio, Equity Turnover, Pretax Margin, and Total Sales. These variables are intrinsically linked with the theories of liquidity, growth-resource mismatch, profitability, and firm size. Furthermore, comparing performance metrics reveals that the Decision Tree model exhibits the highest accuracy rate of 62.3%, specificity rate of 66.4%, and the lowest false positive ratio of 33.6%. In contrast, the Multilayer Perceptron model exhibits the highest precision rate of 61.4% and recall rate of 64.3%. Recommendations for Practitioners: The study findings can help practitioners build custom prediction models for their firms. The model can be developed as a live reference model, which is continually updated based on a firm’s results. In addition, there is an opportunity for industry practitioners to establish a benchmark score that provides a reference for acquisitions. Recommendation for Researchers: Researchers can expand the scope of research by including additional classification modeling techniques. The data quality can be enhanced by cross-validation with other databases. Textual commentary about the target firms, including management and analyst quotes, provides additional insight that can enhance the predictive power of the models. Impact on Society: The research provides insights into leveraging emerging technologies to predict acquisitions. The theoretical basis and modeling attributes provide a foundation that can be further expanded to suit specific industries and firms. Future Research: There are opportunities to expand the scope of research in various dimensions by comparing acquisition prediction models across industries and cross-border and domestic acquisitions. Additionally, it is plausible to explore further research by incorporating non-financial data, such as management commentary, to augment the acquisition prediction model.




edi

Predicting Software Change-Proneness From Software Evolution Using Machine Learning Methods

Aim/Purpose: To predict the change-proneness of software from the continuous evolution using machine learning methods. To identify when software changes become statistically significant and how metrics change. Background: Software evolution is the most time-consuming activity after a software release. Understanding evolution patterns aids in understanding post-release software activities. Many methodologies have been proposed to comprehend software evolution and growth. As a result, change prediction is critical for future software maintenance. Methodology: I propose using machine learning methods to predict change-prone classes. Classes that are expected to change in future releases were defined as change-prone. The previous release was only considered by the researchers to define change-proneness. In this study, I use the evolution of software to redefine change-proneness. Many snapshots of software were studied to determine when changes became statistically significant, and snapshots were taken biweekly. The research was validated by looking at the evolution of five large open-source systems. Contribution: In this study, I use the evolution of software to redefine change-proneness. The research was validated by looking at the evolution of five large open-source systems. Findings: Software metrics can measure the significance of evolution in software. In addition, metric values change within different periods and the significance of change should be considered for each metric separately. For five classifiers, change-proneness prediction models were trained on one snapshot and tested on the next. In most snapshots, the prediction performance was excellent. For example, for Eclipse, the F-measure values were between 80 and 94. For other systems, the F-measure values were higher than 75 for most snapshots. Recommendations for Practitioners: Software change happens frequently in the evolution of software; however, the significance of change happens over a considerable length of time and this time should be considered when evaluating the quality of software. Recommendation for Researchers: Researchers should consider the significance of change when studying software evolution. Software changes should be taken from different perspectives besides the size or length of the code. Impact on Society: Software quality management is affected by the continuous evolution of projects. Knowing the appropriate time for software maintenance reduces the costs and impacts of software changes. Future Research: Studying the significance of software evolution for software refactoring helps improve the internal quality of software code.




edi

Medicine Recommender System Based on Semantic and Multi-Criteria Filtering

Aim/Purpose: This study aims to devise a personalized solution for online healthcare platforms that can alleviate problems arising from information overload and data sparsity by providing personalized healthcare services to patients. The primary focus of this paper is to develop an effective medicine recommendation approach for recommending suitable medications to patients based on their specific medical conditions. Background: With a growing number of people becoming more conscious about their health, there has been a notable increase in the use of online healthcare platforms and e-services as a means of diagnosis. As the internet continues to evolve, these platforms and e-services are expected to play an even more significant role in the future of healthcare. For instance, WebMD and similar platforms offer valuable tools and information to help manage patients’ health, such as searching for medicines based on their medical conditions. Nonetheless, patients often find it arduous and time-consuming to sort through all the available medications to find the ones that match their specific medical conditions. To address this problem, personalized recommender systems have emerged as a practical solution for mitigating the burden of information overload and data sparsity-related issues that are frequently encountered on online healthcare platforms. Methodology: The study utilized a dataset of MC ratings obtained from WebMD, a popular healthcare website. Patients on this website can rate medications based on three criteria, including medication effectiveness, ease of use, and satisfaction, using a scale of 1 to 5. The WebMD MC rating dataset used in this study contains a total of 32,054 ratings provided by 2,136 patients for 845 different medicines. The proposed HSMCCF approach consists of two primary modules: a semantic filtering module and a multi-criteria filtering module. The semantic filtering module is designed to address the issues of data sparsity and new item problems by utilizing a medicine taxonomy that sorts medicines according to medical conditions and makes use of semantic relationships between them. This module identifies the medicines that are most likely to be relevant to patients based on their current medical conditions. The multi-criteria filtering module, on the other hand, enhances the approach’s ability to capture the complexity of patient preferences by considering multiple criteria and preferences through a unique similarity metric that incorporates both distance and structural similarities. This module ensures that patients receive more accurate and personalized medication recommendations. Moreover, a medicine reputation score is employed to ensure that the approach remains effective even when dealing with limited ratings or new items. Overall, the combination of these modules makes the proposed approach more robust and effective in providing personalized medicine recommendations for patients. Contribution: This study addresses the medicine recommendation problem by proposing a novel approach called Hybrid Semantic-based Multi-Criteria Collaborative Filtering (HSMCCF). This approach effectively recommends medications for patients based on their medical conditions and is specifically designed to overcome issues related to data sparsity and new item recommendations that are commonly encountered on online healthcare platforms. The proposed approach addresses data sparsity and new item issues by incorporating a semantic filtering module and a multi-criteria filtering module. The semantic filtering module sorts medicines based on medical conditions and uses semantic relationships to identify relevant ones. The multi-criteria filtering module accurately captures patient preferences and provides precise recommendations using a novel similarity metric. Additionally, a medicine reputation score is also employed to further expand potential neighbors, improving predictive accuracy and coverage, particularly in sparse datasets or new items with few ratings. With the HSMCCF approach, patients can receive more personalized recommendations that are tailored to their unique medical needs and conditions. By leveraging a combination of semantic-based and multi-criteria filtering techniques, the proposed approach can effectively address the challenges associated with medicine recommendations on online healthcare platforms. Findings: The proposed HSMCCF approach demonstrated superior effectiveness compared to benchmark recommendation methods in multi-criteria rating datasets in terms of enhancing both prediction accuracy and coverage while effectively addressing data sparsity and new item challenges. Recommendations for Practitioners: By applying the proposed medicine recommendation approach, practitioners can develop a medicine recommendation system that can be integrated into online healthcare platforms. Patients can then utilize this system to make better-informed decisions regarding the medications that are most suitable for their specific medical conditions. This personalized approach to medication recommendations can ultimately lead to improved patient satisfaction. Recommendation for Researchers: Integrating patient medicine reviews is a promising way for researchers to elevate the proposed medicine recommendation approach. By leveraging patient reviews, the approach can gain a more comprehensive understanding of how certain medications perform for specific medical conditions. Additionally, exploring the relationship between MC-based ratings using an improved aggregation function can potentially enhance the accuracy of medication predictions. This involves analyzing the relationship between different criteria, such as medication effectiveness, ease of use, and satisfaction of the patients, and determining the optimal weighting for each criterion based on patient feedback. A more holistic approach that incorporates patient reviews and an improved aggregation function can enable the proposed medicine recommendation approach to provide more personalized and accurate recommendations to patients. Impact on Society: To mitigate the risk of infection during the COVID-19 pandemic, the promotion of online healthcare services was actively encouraged. This allowed patients to continue accessing care and receiving treatment while adhering to physical distancing guidelines and shielding measures where necessary. As a result, the implementation of personalized healthcare services for patients is expected to be a major disruptive force in healthcare in the coming years. This study proposes a personalized medicine recommendation approach that can effectively address this issue and aid patients in making informed decisions about the medications that are most suitable for their specific medical conditions. Future Research: One way that may enhance the proposed medicine recommendation approach is to incorporate patient medicine reviews. Furthermore, the analysis of MC-based ratings using an improved aggregation function can also potentially enhance the accuracy of medication predictions.




edi

Factors Impacting the Behavioral Intention to Use Social Media for Knowledge Sharing: Insights from Disaster Relief Practitioners

Aim/Purpose: The primary purpose of this study is to investigate the factors that impact the behavioral intention to use social media (SM) for knowledge sharing (KS) in the disaster relief (DR) context. Background: With the continuing growth of SM for KS in the DR environment, disaster relief organizations across the globe have started to realize its importance in streamlining their processes in the post-implementation phase. However, SM-based KS depends on the willingness of members to share their knowledge with others, which is affected by several technological, social, and organizational factors. Methodology: A survey was conducted in Somalia to gather primary data from DR practitioners, using purposive sampling as the technique. The survey collected 214 valid responses, which were then analyzed with the PLS-SEM approach. Contribution: The study contributes to an understanding of the real-life hurdles faced by disaster relief organizations by expanding on the C-TAM-TPB model with the inclusion of top management support, organizational rewards, enjoyment in helping others, knowledge self-efficacy, and interpersonal trust factors. Additionally, it provides useful recommendations to managers of disaster relief organizations on the key factors to consider. Findings: The findings recorded that perceived usefulness, ease of use, top management support, enjoyment in helping others, knowledge self-efficacy, and interpersonal trust were critical factors in determining behavioral intention (BI) to use SM-based KS in the DR context. Furthermore, the mediator variables were attitude, subjective norms, and perceived behavioral control. Recommendations for Practitioners: Based on the research findings, it was determined that management should create different discussion forums among the disaster relief teams to ensure the long-term use of SM-based KS within DR organizations. They should also become involved in the discussions for disaster-related knowledge such as food supplies, shelter, or medical relief that disaster victims need. Disaster relief managers should consider effective and adequate training to enhance individual knowledge and self-efficacy since a lack of training may increase barriers and difficulties in using SM for KS during a DR process. Recommendation for Researchers: The conceptual model, further empirically investigated, can be employed by other developing countries in fostering acceptance of SM for KS during disaster relief operations. Impact on Society: Disaster relief operations can be facilitated using social media by considering the challenges DR practitioners face during emergencies. Future Research: In generalizing this study’s findings, other national or global disaster relief organizations should consider, when applying and testing, the research instruments and proposed model. The researchers may extend this study by collecting data from managers or administrators since they are different types of users of the SM-based KS system.




edi

A Model Predicting Student Engagement and Intention with Mobile Learning Management Systems

Aim/Purpose: The aim of this study is to develop and evaluate a comprehensive model that predicts students’ engagement with and intent to continue using mobile-Learning Management Systems (m-LMS). Background: m-LMS are increasingly popular tools for delivering course content in higher education. Understanding the factors that affect student engagement and continuance intention can help educational institutions to develop more effective and user-friendly m-LMS platforms. Methodology: Participants with prior experience with m-LMS were employed to develop and evaluate the proposed model that draws on the Technology Acceptance Model (TAM), Task-Technology Fit (TTF), and other related models. Partial Least Squares-Structural Equation Modeling (PLS-SEM) was used to evaluate the model. Contribution: The study provides a comprehensive model that takes into account a variety of factors affecting engagement and continuance intention and has a strong predictive capability. Findings: The results of the study provide evidence for the strong predictive capability of the proposed model and supports previous research. The model identifies perceived usefulness, perceived ease of use, interactivity, compatibility, enjoyment, and social influence as factors that significantly influence student engagement and continuance intention. Recommendations for Practitioners: The findings of this study can help educational institutions to effectively meet the needs of students for interactive, effective, and user-friendly m-LMS platforms. Recommendation for Researchers: This study highlights the importance of understanding the antecedents of students’ engagement with m-LMS. Future research should be conducted to test the proposed model in different contexts and with different populations to further validate its applicability. Impact on Society: The engagement model can help educational institutions to understand how to improve student engagement and continuance intention with m-LMS, ultimately leading to more effective and efficient mobile learning. Future Research: Additional research should be conducted to test the proposed model in different contexts and with different populations to further validate its applicability.




edi

Customer Churn Prediction in the Banking Sector Using Machine Learning-Based Classification Models

Aim/Purpose: Previous research has generally concentrated on identifying the variables that most significantly influence customer churn or has used customer segmentation to identify a subset of potential consumers, excluding its effects on forecast accuracy. Consequently, there are two primary research goals in this work. The initial goal was to examine the impact of customer segmentation on the accuracy of customer churn prediction in the banking sector using machine learning models. The second objective is to experiment, contrast, and assess which machine learning approaches are most effective in predicting customer churn. Background: This paper reviews the theoretical basis of customer churn, and customer segmentation, and suggests using supervised machine-learning techniques for customer attrition prediction. Methodology: In this study, we use different machine learning models such as k-means clustering to segment customers, k-nearest neighbors, logistic regression, decision tree, random forest, and support vector machine to apply to the dataset to predict customer churn. Contribution: The results demonstrate that the dataset performs well with the random forest model, with an accuracy of about 97%, and that, following customer segmentation, the mean accuracy of each model performed well, with logistic regression having the lowest accuracy (87.27%) and random forest having the best (97.25%). Findings: Customer segmentation does not have much impact on the precision of predictions. It is dependent on the dataset and the models we choose. Recommendations for Practitioners: The practitioners can apply the proposed solutions to build a predictive system or apply them in other fields such as education, tourism, marketing, and human resources. Recommendation for Researchers: The research paradigm is also applicable in other areas such as artificial intelligence, machine learning, and churn prediction. Impact on Society: Customer churn will cause the value flowing from customers to enterprises to decrease. If customer churn continues to occur, the enterprise will gradually lose its competitive advantage. Future Research: Build a real-time or near real-time application to provide close information to make good decisions. Furthermore, handle the imbalanced data using new techniques.




edi

A Learn-to-Rank Approach to Medicine Selection for Patient Treatments

Aim/Purpose: This research utilized a learn-to-rank algorithm to provide medical recommendations to prescribers. The algorithm has been utilized in other domains, such as information retrieval and recommender systems. Background: Ranking the possible medical treatments according to diagnoses of the medical cases is very beneficial for doctors, especially during the coding process. Methodology: We developed two deep learning pointwise learn-to-rank models within one prediction pipeline: one for predicting the top possible active ingredients from disease features, the other for ranking actual medicines codes from diseases and the ingredients features. Contribution: A new learn-to-rank deep learning model has been developed to rank medical procedures based on datasets collected from insurance companies. Findings: We ran 18 cross-validation trials on a confidential dataset from an insurance company. We obtained an average normalized discounted cumulative gain (NDCG@8) of 74% with a 5% standard deviation as a result of all 18 experiments. Our approach outperformed a known approach used in the information retrieval domain in which data is represented in LibSVM format. Then, we ran the same trials using three learn-to-rank models – pointwise, pairwise, and listwise – which yielded average NDCG@8 of 71%, 72%, and 72%, respectively. Recommendations for Practitioners: The proposed model provides an insightful approach to helping to manage the patient’s treatment process. Recommendation for Researchers: This research lays the groundwork for exploring various applications of data science techniques and machine learning algorithms in the medical field. Future studies should focus on the significant potential of learn-to-rank algorithms across different medical domains, including their use in cost-effectiveness models. Emphasizing these algorithms could enhance decision-making processes and optimize resource allocation in healthcare settings. Impact on Society: This will help insurance companies and end users reduce the cost associated with patient treatment. It also helps doctors to choose the best procedure and medicines for their patients. Future Research: Future research is required to investigate the impact of medicine data at a granular level.




edi

Modeling the Predictors of M-Payments Adoption for Indian Rural Transformation

Aim/Purpose: The last decade has witnessed a tremendous progression in mobile penetration across the world and, most importantly, in developing countries like India. This research aims to investigate and analyze the factors influencing the adoption of mobile payments (M-payments) in the Indian rural population. This, in turn, would bring about positive changes in the lives of people in these countries. Background: A conceptual framework was worked upon using UTAUT as a foundation, which included constructs, namely, facilitating conditions, social influences, performance expectancy, and effort expectancy. The model was further extended by incorporating the awareness construct of m-payments to make it more comprehensive and to understand behavioral intentions and usage behavior for m-payments in rural India. Methodology: A questionnaire-based study was conducted to collect primary data from 410 respondents residing in rural areas in the state of Punjab. Convenience sampling was conducted to collect the data. Structural equation modeling was used to conduct statistical analysis, including exploratory and confirmatory factor analyses. Contribution: A new conceptual model for M-payments adoption in rural India was developed based on the study’s findings. Using the findings of the study, marketers, policymakers, and academicians can gain insight into the factors that motivate the rural population to use M-payments. Findings: The study has found that M-payment Awareness (AW) is the strongest factor within the proposed model for deeper diffusion of M-payments in rural areas in the state of Punjab. Performance expectancy (PE), effort expectancy (EE), social influences (SI), and facilitating conditions (FC) are also positively and significantly related to behavioral intentions for using M-payments among the Indian rural population in the state of Punjab. Recommendations for Practitioners: M-payments are emerging as a new mode of transactions among the Indian masses. The government needs to play a pivotal role in advocating the benefits linked with the usage of M-payments by planning financial literacy and awareness campaigns, promoting transparency and accountability of the intermediaries, and reducing transaction costs of using M-payments. Mobile manufacturing companies should come up with devices that are easy to use and incorporate multilanguage mobile applications, especially for rural areas, as India is a multi-lingual country. A robust regulatory framework will not only shape consumer trust but also prevent privacy breaches. Recommendation for Researchers: It is recommended that a comparative study among different M-payment platforms be conducted by exploring constructs such as usefulness and ease of use. However, the vulnerability of data leakage may result in insecurity and skepticism about its adoption. Impact on Society: India’s rural areas have immense potential for adoption of M-payments. Appropriate policies, awareness drives, and necessary infrastructure will boost faster and smoother adoption of M-payments in rural India to thrive in the digital economy. Future Research: The adapted model can be further tested with moderating factors like age, gender, occupation, and education to understand better the complexities of M-payments, especially in rural areas of India. Additionally, cross-sectional studies could be conducted to evaluate the behavioral intentions of different sections of society.




edi

Unveiling the Secrets of Big Data Projects: Harnessing Machine Learning Algorithms and Maturity Domains to Predict Success

Aim/Purpose: While existing literature has extensively explored factors influencing the success of big data projects and proposed big data maturity models, no study has harnessed machine learning to predict project success and identify the critical features contributing significantly to that success. The purpose of this paper is to offer fresh insights into the realm of big data projects by leveraging machine-learning algorithms. Background: Previously, we introduced the Global Big Data Maturity Model (GBDMM), which encompassed various domains inspired by the success factors of big data projects. In this paper, we transformed these maturity domains into a survey and collected feedback from 90 big data experts across the Middle East, Gulf, Africa, and Turkey regions regarding their own projects. This approach aims to gather firsthand insights from practitioners and experts in the field. Methodology: To analyze the feedback obtained from the survey, we applied several algorithms suitable for small datasets and categorical features. Our approach included cross-validation and feature selection techniques to mitigate overfitting and enhance model performance. Notably, the best-performing algorithms in our study were the Decision Tree (achieving an F1 score of 67%) and the Cat Boost classifier (also achieving an F1 score of 67%). Contribution: This research makes a significant contribution to the field of big data projects. By utilizing machine-learning techniques, we predict the success or failure of such projects and identify the key features that significantly contribute to their success. This provides companies with a valuable model for predicting their own big data project outcomes. Findings: Our analysis revealed that the domains of strategy and data have the most influential impact on the success of big data projects. Therefore, companies should prioritize these domains when undertaking such projects. Furthermore, we now have an initial model capable of predicting project success or failure, which can be invaluable for companies. Recommendations for Practitioners: Based on our findings, we recommend that practitioners concentrate on developing robust strategies and prioritize data management to enhance the outcomes of their big data projects. Additionally, practitioners can leverage machine-learning techniques to predict the success rate of these projects. Recommendation for Researchers: For further research in this field, we suggest exploring additional algorithms and techniques and refining existing models to enhance the accuracy and reliability of predicting the success of big data projects. Researchers may also investigate further into the interplay between strategy, data, and the success of such projects. Impact on Society: By improving the success rate of big data projects, our findings enable organizations to create more efficient and impactful data-driven solutions across various sectors. This, in turn, facilitates informed decision-making, effective resource allocation, improved operational efficiency, and overall performance enhancement. Future Research: In the future, gathering additional feedback from a broader range of big data experts will be valuable and help refine the prediction algorithm. Conducting longitudinal studies to analyze the long-term success and outcomes of Big Data projects would be beneficial. Furthermore, exploring the applicability of our model across different regions and industries will provide further insights into the field.




edi

Workers’ Knowledge Sharing and Its Relationship with Their Colleague’s Political Publicity in Social Media

Aim/Purpose: This paper intends to answer the question regarding the extent to which political postings with value differences/similarities will influence the level of implicit knowledge sharing (KS) among work colleagues in organizations. More specifically, the study assesses contributors’ responses to a workmate’s publicity about politics on social media platforms (SMP) and their eagerness to implement implicit KS to the co-worker. Background: Previously published articles have confirmed an association between publicity about politics and the reactions from workfellows in the organization. Moreover, prior work confirmed that workers’ social media postings about politics may create unfavorable responses, such as being disliked and distrusted by workfellows. This may obstruct the KS because interpersonal relations are among the KS’s essential components. Therefore, it is imperative to assess whether the workfellows’ relationship affected by political publicity would impede the KS in the office. Methodology: Data was gathered using the vignette technique and online survey. A total of 510 online and offline questionnaires were distributed to respondents in Indonesian Halal firms who have implemented knowledge-sharing practices and have been at work for no less than twelve months in the present role. Next, the 317 completed questionnaires were examined with partial least squares structural equation modeling (PLS-SEM). Contribution: Postings about politics on SMP can either facilitate or impede the level of KS in organizations, and this research topic is relatively scarce in the knowledge management discipline. While previously published articles have concentrated on public organizations, this research centers on private firms. Moreover, this work empirically examines private companies in Indonesia, which is also understudied in the existing literature. Findings: The outcomes confirm that perceived political value similarity (PPV) in a co-worker’s social-media publicity has a significant and indirect influence on contributors’ eagerness to perform implicit/tacit KS. Further, colleague likability and trustworthiness significantly influence the level of KS among respondents. As PPV significantly forms colleague likability, likability strongly and positively shapes trustworthiness. Recommendations for Practitioners: The study shows that political publicity significantly affects implicit knowledge sharing (KS). As a result, managers and leaders, particularly those in private firms, are strengthened to instruct their staff about the ramifications of publicity embedded in employees’ SMP postings, particularly about political topics, as it may result in either negative or positive perceptions amongst the staff towards the workmate who posts. Recommendation for Researchers: As this study focuses on examining KS behavior in a large context, i.e., Indonesia Halal firms that dominate the Indonesian economy, and the fact that much polarization research focuses on society at large and less on specific sectors of life, it is important and interesting for researchers to conduct similar studies in a specific workplace as political agreements and disagreements become so important and consequential in everyday lives. Impact on Society: This article makes the implication that a person’s personality can influence how they react to political posts on SMP. It is difficult for the exposers to know the personality of each viewer of publicity in daily life. Workers’ newfound knowledge can motivate them to use SMP responsibly and lessen the probability that they will disclose information that might make their co-workers feel or perceive anything unfavorably. Future Research: There is a need for further studies to examine if the results can be applied to different locations and organizations, as individuals’ behaviors may vary according to the cultures of society and firms. Furthermore, future research can take into account the individual characteristics of workers, such as hospitability, self-confidence, and psychological strength, which may be well-matched with future work models. Future research may potentially employ a qualitative technique to offer deeper insights into the same topic.




edi

The Influence of Ads’ Perceived Intrusiveness in Geo-Fencing and Geo-Conquesting on Purchase Intention: The Mediating Role of Customers’ Attitudes

Aim/Purpose: This study focuses on two targeting strategies of out-store Location-Based Mobile Advertising (LBMA): the geo-fencing strategy (i.e., targeting customers who are near the focal store) and the geo-conquesting strategy (i.e., targeting those who are near competitors’ stores to visit the focal store). To the authors’ knowledge, no previous studies have compared the perceived intrusiveness of advertisements (ads) in geo-fencing and geo-conquesting settings, despite the accumulating literature on out-store LBMA. Hence, the aim of this study is to determine which targeting strategy is more effective in terms of reducing the perception of ads’ intrusiveness and increasing positive customers’ attitudes and purchase intention. Background: The intrusive nature of LBMA is perceived negatively by some customers, impacting their attitudes toward the ad, purchase intention, and even their perception of the brand. Therefore, identifying the targeting strategy under which ads are perceived as less intrusive is essential. Additionally, brick-and-mortar clothing stores in Jordan are facing challenges due to the rise of online shopping and increased competition from nearby stores. Thus, examining geo-fencing and geo-conquesting might tackle these challenges and encourage local clothing retailers to adopt these strategies. Methodology: A quantitative method was used in this study. A between-subjects experimental design was used to collect the data using a scenario-based survey distributed to Jordanians aged 18 to 45. A total of 531 responses were collected. After excluding those who do not belong to the targeted age group and those who did not pass the manipulation check, 406 responses were analyzed using the Statistical Package for the Social Sciences (SPSS) software version 28 and the Analysis of Moment Structures (AMOS) software version 26 to conduct Structural Equation Modeling (SEM). Contribution: This work offers valuable contributions by investigating the impact of the perceived intrusiveness of ads on purchase intention in the contexts of geo-fencing and geo-conquesting, which has not been studied before. Additionally, it fills a gap by examining this phenomenon in Jordan, a developing country in which attitudes toward LBMA have not been previously explored. Findings: The results revealed that location-based mobile ads sent under a geo-fencing strategy are perceived as less intrusive than those sent under a geo-conquesting strategy. In addition, customers’ attitudes fully mediate the relationship between intrusiveness and purchase intention only under the geo-fencing strategy. Ultimately, neither of the strategies is more effective in terms of increasing positive customer attitudes and purchase intentions in the context of clothing retail stores in Jordan. Recommendations for Practitioners: Clothing retailers in Jordan should consider adopting geo-fencing and geo-conquesting strategies to boost purchase intentions and tackle industry challenges. Additionally, to increase purchase intentions with geo-fencing, practitioners should focus on fostering positive customer attitudes toward ads, as simply perceiving them as less intrusive is not sufficient to drive purchase intention without the mediating effect of positive attitudes. Recommendation for Researchers: This research is crucial for academics and researchers as geolocation technology and LBMA are expected to advance significantly in the future. Researchers can investigate this topic through a randomized field experiment, followed by a research questionnaire to collect data from a real-world setting. Impact on Society: Utilizing LBMA is essential for local clothing retail stores that are trying to effectively reach and connect with their customers because searching the Internet for local goods and services is done primarily on mobile devices. Indeed, this study revealed that customers in both settings (i.e., geo-fencing and geo-conquesting) reported a high intention to visit the promoting store and to purchase from the advertised product category. Future Research: Future research can apply this topic to different industries and cultural contexts, as the results may vary across industries and regions. Moreover, future research could build on this study by investigating additional constructs, such as product category involvement, customization, and content type of the message (e.g., informative, entertaining).




edi

Using Social Media Applications for Accessing Health-related Information: Evidence from Jordan

Aim/Purpose: This study examined the use of Social Media Applications (SMAs) for accessing health-related information within a heterogeneous population in Jordan. The objective of this study was therefore threefold: (i) to investigate the usage of SMAs, including WhatsApp, Twitter, YouTube, Snapchat, Instagram, and Facebook, for accessing health-related information; (ii) to examine potential variations in the use of SMAs based on demographic and behavioral characteristics; and (iii) to identify the factors that can predict the use of SMAs. Background: There has been limited focus on investigating the behavior of laypeople in Jordan when it comes to seeking health information from SMAs. Methodology: A cross-sectional study was conducted among the general population in Jordan using an online questionnaire administered to 207 users. A purposive sampling technique was employed, wherein all the participants actively sought online health information. Descriptive statistics, t-tests, and regression analyses were utilized to analyze the collected data. Contribution: This study adds to the existing body of research on health information seeking from SMAs in developing countries, with a specific focus on Jordan. Moreover, laypeople, often disregarded by researchers and health information providers, are the most vulnerable individuals who warrant greater attention. Findings: The findings indicated that individuals often utilized YouTube as a platform to acquire health-related information, whereas their usage of Facebook for this purpose was less frequent. Participants rarely utilized Instagram and WhatsApp to obtain health information, while Twitter and Snapchat were very seldom used for this purpose. The variable of sex demonstrated a notable positive correlation with the utilization of YouTube and Twitter for the purpose of finding health-related information. Conversely, the variable of nationality exhibited a substantial positive correlation with the utilization of Facebook, Instagram, and Twitter. Consulting medical professionals regarding information obtained from the Internet was a strong indicator of using Instagram to search for health-related information. Recommendations for Practitioners: Based on the empirical results, this study provides feasible recommendations for the government, healthcare providers, and developers of SMAs. Recommendation for Researchers: Researchers should conduct separate investigations for each application specifically pertaining to the acquisition of health-related information. Additionally, it is advisable to investigate additional variables that may serve as predictors for the utilization of SMAs. Impact on Society: The objective of this study is to enhance the inclination of the general public in Jordan to utilize SMAs for health-related information while also maximizing the societal benefits of these applications. Future Research: Additional research is required to examine social media’s usability (regarding ease of use) and utility (comparing advantages to risks) in facilitating effective positive change and impact in healthcare.




edi

IRNN-SS: deep learning for optimised protein secondary structure prediction through PROMOTIF and DSSP annotation fusion

DSSP stands as a foundational tool in the domain of protein secondary structure prediction, yet it encounters notable challenges in accurately annotating irregular structures, such as β-turns and γ-turns, which constitute approximately 25%-30% and 10%-15% of protein turns, respectively. This limitation arises from DSSP's reliance on hydrogen-bond analysis, resulting in annotation gaps and reduced consensus on irregular structures. Alternatively, PROMOTIF excels at identifying these irregular structure annotations using phi-psi information. Despite their complementary strengths, previous methodologies utilised DSSP and PROMOTIF separately, leading to disparate prediction methods for protein secondary structures, hampering comprehensive structure analysis crucial for drug development. In this work, we bridge this gap using an annotation fusion approach, combining DSSP structures with beta, and gamma turns. We introduce IRNN-SS, a model employing deep inception and bidirectional gated recurrent neural networks, achieving 77.4% prediction accuracy on benchmark datasets, outpacing current models.




edi

Map reduce-based scalable Lempel-Ziv and application in route prediction

Prediction of route based on historical trip observation of users is widely employed in location-based services. This work concentrates on building a route prediction system using Lempel-Ziv technique applied to a historical corpus of user travel data. Huge continuous logs of historical GPS traces representing the user's location in past are decomposed into smaller logical units known as trips. User trips are converted into sequences of road network edges using a process known as map matching. Lempel-Ziv is applied on road network edges to build the prediction model that captures the user's travel pattern in the past. A two-phased model is proposed using a map reduce framework without losing accuracy and efficiency. Model is then used to predict the user's end-to-end route given a partial route travelled by the user at any point in time. The objective of the proposed work is to build a Route Prediction system in which model building and prediction both are horizontally scalable.




edi

Producing Reusable Web-Based Multimedia Presentations




edi

Tree View Editing Learning Object Metadata




edi

Interactive QuickTime: Developing and Evaluating Multimedia Learning Objects to Enhance Both Face-To-Face and Distance E-Learning Environments




edi

Viability of the "Technology Acceptance Model" in Multimedia Learning Environments: A Comparative Study




edi

Designing Online Information Aggregation and Prediction Markets for MBA Courses




edi

Characteristics of an Equitable Instructional Methodology for Courses in Interactive Media




edi

Media Type Influences Preschooler’s Literacy Development: E-book versus Printed Book Reading




edi

Faculty Usage of Social Media and Mobile Devices: Analysis of Advantages and Concerns




edi

Bridging the Gap between the Science Curriculum and Students’ Questions: Comparing Linear vs. Hypermedia Online Learning Environments




edi

An Examination of Undergraduate Student’s Perceptions and Predilections of the Use of YouTube in the Teaching and Learning Process




edi

Teacher-student Relationship and SNS-mediated Communication: Perceptions of both role-players

Teacher-student relationships are vital for academic and social development of students, for teachers’ professional and personal development, and for having a supportive learning environment. In the digital age, these relationships can extend beyond bricks and mortar and beyond school hours. Specifically, these relationships are extended today while teachers and students communicate via social networking sites (SNS). This paper characterizes differences between teachers (N=160) and students (N=587) who are willing to connect with their students/teachers via Facebook and those who do not wish to connect. The quantitative research reported here within is based on data collection of personal characteristics, attitudes towards Facebook, and perceptions of teacher-student relationship. Findings suggest differences in characteristics of the two groups (willing to connect vs. not willing to connect) within both populations (teachers and students). Also, in both populations, those who were willing to connect, compared to those who were not willing to connect, present more positive attitudes towards using Facebook for teaching/learning and are more opposed to a banning policy of student-teacher SNS-based communication. We also found that students who were willing to connect showed a greater degree of closeness with their teachers compared to those who were not willing to connect. This study may assist policymakers when setting up regulations regarding teacher-student communication via social networking sites.




edi

Communicating and Sharing in the Semantic Web: An Examination of Social Media Risks, Consequences, and Attitudinal Awareness

Empowered by and tethered to ubiquitous technologies, the current generation of youth yearns for opportunities to engage in self-expression and information sharing online with personal disclosure no longer governed by concepts of propriety and privacy. This raises issues about the unsafe online activities of teens and young adults. The following paper presents the findings of a study examining the social networking activities of undergraduate students and also highlights a program to increase awareness of the dangers and safe practices when using and communicating, via social media. According to the survey results, young adults practice risky social networking site (SNS) behaviors with most having experienced at least one negative consequence. Further, females were more likely than males to engage in oversharing as well as to have experienced negative consequences. Finally, results of a post-treatment survey found that a targeted program that includes flyers, posters, YouTube videos, handouts, and in-class information sessions conducted at a Mid-Atlantic Historically Black College or University (HBCU) increased student awareness of the dangers of social media as well as positively influenced students to practice more prudent online behaviors.




edi

The Influence of Social Media on Collaborative Learning in a Cohort Environment

This paper provides an overview of the impact that social media has on the development of collaborative learning within a cohort environment in a doctoral program. The researchers surveyed doctoral students in an education program to determine how social media use has influenced the doctoral students. The study looked at the following areas: a) the ability of social media use to develop a collaborative learning environment, b) access to social media content which supports learning, and c) whether social media use has contributed to the enhancement of the doctoral students’ academic achievement and learning progress. As social media use and on-line learning become more prevalent in education, it is important to continue to understand the impact that social media has on improving students’ ability to achieve their academic goals. This study provides insight on how doctoral students used social media and how social media use has influenced academic development in their cohort environment. In addition, this paper provides a discerning view into the role social media plays when developing a collaborative learning environment in a cohort.




edi

Undergraduate Haredi Students Studying Computer Science: Is Their Prior Education Merely a Barrier?

Aim/Purpose: Our research focuses on a unique group a students, who study CS: ultra-orthodox Jewish men. Their previous education is based mostly on studying Talmud and hence they lacked a conventional high-school education. Our research goal was to examine whether their prior education is merely a barrier to their CS studies or whether it can be recruited to leverage academic learning. Background: This work is in line with the growing interest in extending the diversity of students studying computer science (CS). Methodology: We employed a mixed-methods approach. We compared the scores in CS courses of two groups of students who started their studies in the same college in 2015: 58 ultraorthodox men and 139 men with a conventional background of Israeli K-12 schooling. We also traced the solution processes of ultraorthodox men in tasks involving Logic, in which their group scored significantly better than the other group. Contribution: The main contribution of this work lies in challenging the idea that the knowledge of unique cultures is merely a barrier and in illustrating the importance of further mapping such knowledge. Findings: The ultraorthodox group’s grades in the courses never fell below the grades of the other group for the duration of the five semesters. Due to their intensive Talmud studies (which embeds Logic), we hypothesized they would have leverage in subjects relating to Logic; however this hypothesis was refuted. Nevertheless, we found that the ultraorthodox students tended to recruit conceptual knowledge rather than merely recalling a procedure to solve the task, as novices often do. Recommendations for Practitioners: We concluded that these students’ unique knowledge should not be viewed merely as a barrier. Rather, it can and should be considered in terms of what and how it can anchor and leverage learning; this could facilitate the education of this unique population. Impact on Society: This conclusion has an important implication, given the growing interest in diversifying higher education and CS in particular, to include representatives of groups in society that come from different, unique cultures. Future Research: Students’ unique previous knowledge can and should be mapped, not only to foresee weaknesses that are an outcome of “fragile knowledge” , but also in terms of possible strengths, knowledge, values, and practices that can be used to anchor and expand the new knowledge.




edi

Medical Community of Inquiry: A Diagnostic Tool for Learning, Assessment, and Research

Aim/Purpose: These days educators are expected to integrate technological tools into classes. Although they acquire relevant skills, they are often reluctant to use these tools. Background: We incorporated online forums for generating a Community of Inquiry (CoI) in a faculty development program. Extending the Technology, Pedagogy, and Content Knowledge (TPACK) model with Assessment Knowledge and content analysis of forum discourse and reflection after each CoI, we offer the Diagnostic Tool for Learning, Assessment, and Research (DTLAR). Methodology: This study spanned over two cycles of a development program for medical faculty. Contribution: This study demonstrates how the DTLAR supports in-depth examination of the benefits and challenges of using CoIs for learning and teaching. Findings: Before the program, participants had little experience with, and were reluctant to use, CoIs in classes. At the program completion, many were willing to adopt CoIs and appreciated this method’s contribution. Both CoIs discourse and reflections included positive attitudes regarding cognitive and teacher awareness categories. However, negative attitudes regarding affective aspects and time-consuming aspects of CoIs were exposed. Participants who experienced facilitating a CoI gained additional insights into its usefulness. Recommendations for Practitioners : The DTLAR allows analyzing adaption of online forums for learning and teaching. Recommendation for Researchers: The DTLAR allows analyzing factors that affect the acceptance of online fo-rums for learning and teaching. Impact on Society : While the tool was implemented in the context of medical education, it can be readily applied in other adult learning programs. Future Research: The study includes several design aspects that probably affected the improve-ment and challenges we found. Future research is called for providing guidelines for identifying boundary conditions and potential for further improvement.




edi

Students’ Approaches to E-Learning: Analyzing Credit/Noncredit and High/Low Performers

Aim/Purpose: This study examines differences in credit and noncredit users’ learning and usage of the Plant Sciences E-Library (PASSEL, http://passel.unl.edu), a large international, open-source multidisciplinary learning object repository. Background: Advances in online education are helping educators to meet the needs of formal academic credit students, as well as informal noncredit learners. Since online learning attracts learners with a wide variety of backgrounds and intentions, it is important understand learner behavior so that instructional resources can be designed to meet the diversity of learner motivations and needs. Methodology: This research uses both descriptive statistics and cluster analysis. The descriptive statistics address the research question of how credit learners differ from noncredit learners in using an international e-library of learning objects. Cluster analysis identifies high and low credit/noncredit students based on their quiz scores and follow-up descriptive statistics to (a) differentiate their usage patterns and (b) help describe possible learning approaches (deep, surface, and strategic). Contribution: This research is unique in its use of objective, web-tracking data and its novel use of clustering and descriptive analytic approaches to compare credit and noncredit learners’ online behavior of the same educational materials. It is also one of the first to begin to identify learning approaches of the noncredit learner. Findings: Results showed that credit users scored higher on quizzes and spent more time on the online quizzes and lessons than did noncredit learners, suggesting their academic orientation. Similarly, high credit scorers spent more time on individual lessons and quizzes than did the low scorers. The most striking difference among noncredit learners was in session times, with the low scorers spending more time in a session, suggesting more browsing behavior. Results were used to develop learner profiles for the four groups (high/low quiz scorers x credit/noncredit). Recommendations for Practitioners: These results provide preliminary insight for instructors or instructional designers. For example, low scoring credit students are spending a reasonable amount of time on a lesson but still score low on the quiz. Results suggest that they may need more online scaffolding or auto-generated guidance, such as the availability of relevant animations or the need to review certain parts of a lesson based on questions missed. Recommendation for Researchers: The study showed the value of objective, web-tracking data and novel use of clustering and descriptive analytic approaches to compare different types of learners. One conclusion of the study was that this web-tracking data be combined with student self-report data to provide more validation of results. Another conclusion was that demographic data from noncredit learners could be instrumental in further refining learning approaches for noncredit learners. Impact on Society: Learning object repositories, online courses, blended courses, and MOOCs often provide learners the option of moving freely among educational content, choosing not only topics of interest but also formats of material they feel will advance their learning. Since online learning is becoming more prolific and attracts learners with a wide variety of backgrounds and intentions, these results show the importance of understanding learner behavior so that e-learning instructional resources can be designed to meet the diversity of learner motivations and needs. Future Research: Future research should combine web-tracking data with student self-report to provide more validation of results. In addition, collection of demographic data and disaggregation of noncredit student usage motivations would help further refining learning approaches for this growing population of online users.




edi

Positive vs. Negative Framing of Scientific Information on Facebook Using Peripheral Cues: An Eye-Tracking Study of the Credibility Assessment Process

Aim/Purpose: To examine how positive/negative message framing – based on peripheral cues (regarding popularity, source, visuals, and hyperlink) – affects perceptions of credibility of scientific information posted on social networking sites (in this case, Facebook), while exploring the mechanisms of viewing the different components. Background: Credibility assessment of information is a key skill in today's information society. However, it is a demanding cognitive task, which is impossible to perform for every piece of online information. Additionally, message framing — that is, the context and approach used to construct information— may impact perceptions of credibility. In practice, people rely on various cues and cognitive heuristics to determine whether they think a piece of content is true or not. In social networking sites, content is usually enriched by additional information (e.g., popularity), which may impact the users' perceived credibility of the content. Methodology: A quantitative controlled experiment was designed (N=19 undergraduate students), collecting fine grained data with an eye tracking camera, while analyzing it using transition graphs. Contribution: The findings on the mechanisms of that process, enabled by the use of eye tracking data, point to the different roles of specific peripheral cues, when the message is overall peripherally positive or negative. It also contributes to the theoretical literature on framing effects in science communication, as it highlights the peripheral cues that make a strong frame. Findings: The positively framed status was perceived, as expected from the Elaboration Likelihood Model, more credible than the negatively framed status, demonstrating the effects of the visual framing. Differences in participants' mechanisms of assessing credibility between the two scenarios were evident in the specific ways the participants examined the various status components. Recommendations for Practitioners: As part of digital literacy education, major focus should be given to the role of peripheral cues on credibility assessment in social networking sites. Educators should emphasize the mechanisms by which these cues interact with message framing, so Internet users would be encouraged to reflect upon their own credibility assessment skills, and eventually improve them. Recommendation for Researchers: The use of eye tracking data may help in collecting and analyzing fine grained data on credibility assessment processes, and on Internet behavior at large. The data shown here may shed new light on previously studied phenomena, enabling a more nuanced understanding of them. Impact on Society: In an era when Internet users are flooded with information that can be created by virtually anyone, credibility assessment skills have become ever more important, hence the prominence of this skill. Improving citizens' assessment of information credibility — to which we believe this study contributes — results on a greater impact on society. Future Research: The role of peripheral cues and of message framing should be studied in other contexts (not just scientific news) and in other platforms. Additional peripheral cues not tested here should be also taken into consideration (e.g., connections between the information consumer and the information sharer, or the type of the leading image).




edi

New Trends in Multimedia Standards: MPEG4 and JPEG2000




edi

Multimedia Content Analysis and Indexing for Filtering and Retrieval Applications




edi

Informing Clientele through Networked Multimedia Information Systems: Introduction to the Special Issues




edi

Data Quality in Linear Regression Models: Effect of Errors in Test Data and Errors in Training Data on Predictive Accuracy




edi

Advanced Signal Processing for Wireless Multimedia Communications




edi

Using a Virtual Room Platform To Build a Multimedia Distance Learning Environment For The Internet




edi

The Prediction of Perceived Level of Computer Knowledge: The Role of Participant Characteristics and Aversion toward Computers