ethanol

Advanced oxidative degradation of monoethanolamine in water using ultraviolet light and hydrogen peroxide

RSC Adv., 2024, 14,33223-33232
DOI: 10.1039/D4RA05590J, Paper
Open Access
  This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.
Atif Khan, Saima Yasin, Hamayoun Mahmood, Shabana Afzal, Tanveer Iqbal
Development of an eco-friendly and commercially feasible method for monoethanolamine (MEA) degradation in aqueous phase using ultraviolet/hydrogen peroxide (UV/H2O2) advanced oxidation process (AOP).
The content of this RSS Feed (c) The Royal Society of Chemistry




ethanol

Sugar sector demands hike in sale price and ethanol prices

The Minimum Sale Price (MSP) of sugar should be increased to ₹39.14 a kg for the sugar season 2024-2025 from ₹31 a kg that was fixed in 2019




ethanol

Gastroprotective effects of Pediococcus acidilactici GKA4 and Lactobacillus brevis GKL93 against ethanol-induced gastric ulcers via regulation of the immune response and gut microbiota in mice

Food Funct., 2024, Advance Article
DOI: 10.1039/D4FO04106B, Paper
Yun-En Huang, Sheng-Yi Chen, Tsung-Ju Li, You-Shan Tsai, Chin-Chu Chen, Gow-Chin Yen
Pediococcus acidilactici GKA4 and Lactobacillus brevis GKL93 exert gastroprotective effects against ethanol-induced gastric ulcers through multiple mechanisms.
To cite this article before page numbers are assigned, use the DOI form of citation above.
The content of this RSS Feed (c) The Royal Society of Chemistry




ethanol

Ethanol blending is proving messy

With a scramble for feedstock and the food-versus-fuel conflict, it needs impartial evaluation




ethanol

Enhanced catalytic performance of single-atom Cu on Mo2C toward CO2/CO hydrogenation to methanol: a first-principles study

Catal. Sci. Technol., 2024, Advance Article
DOI: 10.1039/D4CY00703D, Paper
Open Access
Anna Vidal-López, Estefanía Díaz López, Aleix Comas-Vives
First-principles calculations show the crucial role of the Cu/Mo2COx interface in enabling low-energy pathways for CO2/CO hydrogenation to methanol via successive heterolytic H2 cleavages.
To cite this article before page numbers are assigned, use the DOI form of citation above.
The content of this RSS Feed (c) The Royal Society of Chemistry




ethanol

Catalytic activity and stability of NiPt/C catalysts for the synthesis of iso-butanol from methanol/ethanol mixtures

Catal. Sci. Technol., 2024, Advance Article
DOI: 10.1039/D4CY01061B, Paper
Open Access
  This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.
Joachim Pasel, Johannes Häusler, Ralf Peters, Detlef Stolten
The uniqueness and innovation of the Ni99Pt1/C catalyst lies in the fact that a promising activity for iso-butanol synthesis was already observed at a low temperature of 165 °C in methanolic solution and at a very low precious metal mass fraction.
To cite this article before page numbers are assigned, use the DOI form of citation above.
The content of this RSS Feed (c) The Royal Society of Chemistry




ethanol

Heteroatom-assisted oxygen vacancies in cerium oxide catalysts for efficient synthesis of dimethyl carbonate from CO2 and methanol

Catal. Sci. Technol., 2024, 14,6513-6523
DOI: 10.1039/D4CY00702F, Paper
Niladri Maity, Samiyah A. Al-Jendan, Samir Barman, Nagendra Kulal, E. A. Jaseer
Heteroatom (N, S) assisted CeO2 nanorod materials exhibited enhanced catalytic efficiency in the synthesis of dimethyl carbonate from CO2 and methanol, attributed to their superior surface acidity, basicity, Ce3+ concentration, and oxygen vacancies.
The content of this RSS Feed (c) The Royal Society of Chemistry




ethanol

Electrode Informatics Accelerated Optimization for Catalyst Layer Key Parameters in Direct Methanol Fuel Cells

Nanoscale, 2024, Accepted Manuscript
DOI: 10.1039/D4NR03026E, Paper
Lishou Ban, Danyang Huang, Yanyi Liu, Pengcheng Liu, Xihui Bian, Kaili Wang, Yifan Liu, Xijun Liu, Jia He
As the core component of direct methanol fuel cell, the catalyst layer plays the key role of material, proton and electron transport channels. However, due to the complexity of its...
The content of this RSS Feed (c) The Royal Society of Chemistry




ethanol

Enerkem gets green light for Spanish waste-to-methanol plant




ethanol

Celanese divests ethanol technology to Chinese partner




ethanol

Single cobalt atom catalysis for the construction of quinazolines and quinazolinones via the aerobic dehydrocyclization of ethanol

Green Chem., 2024, Accepted Manuscript
DOI: 10.1039/D4GC04928D, Paper
Xueping Zhang, Kai Xu, Yi Zhuang, Shihao Yuan, Yamei Lin, Guo-Ping Lu
It is still a significant and challenging for the synthesis of N-heterocycles through the aerobic dehydrocyclization of ethanol since ethanol is the largest renewable small molecule feedstock but with high...
The content of this RSS Feed (c) The Royal Society of Chemistry




ethanol

The Escherichia coli cellulose synthase subunit G (BcsG) is a Zn2+-dependent phosphoethanolamine transferase [Glycobiology and Extracellular Matrices]

Bacterial biofilms are cellular communities that produce an adherent matrix. Exopolysaccharides are key structural components of this matrix and are required for the assembly and architecture of biofilms produced by a wide variety of microorganisms. The human bacterial pathogens Escherichia coli and Salmonella enterica produce a biofilm matrix composed primarily of the exopolysaccharide phosphoethanolamine (pEtN) cellulose. Once thought to be composed of only underivatized cellulose, the pEtN modification present in these matrices has been implicated in the overall architecture and integrity of the biofilm. However, an understanding of the mechanism underlying pEtN derivatization of the cellulose exopolysaccharide remains elusive. The bacterial cellulose synthase subunit G (BcsG) is a predicted inner membrane–localized metalloenzyme that has been proposed to catalyze the transfer of the pEtN group from membrane phospholipids to cellulose. Here we present evidence that the C-terminal domain of BcsG from E. coli (EcBcsGΔN) functions as a phosphoethanolamine transferase in vitro with substrate preference for cellulosic materials. Structural characterization of EcBcsGΔN revealed that it belongs to the alkaline phosphatase superfamily, contains a Zn2+ ion at its active center, and is structurally similar to characterized enzymes that confer colistin resistance in Gram-negative bacteria. Informed by our structural studies, we present a functional complementation experiment in E. coli AR3110, indicating that the activity of the BcsG C-terminal domain is essential for integrity of the pellicular biofilm. Furthermore, our results established a similar but distinct active-site architecture and catalytic mechanism shared between BcsG and the colistin resistance enzymes.




ethanol

Di­chlorido­{N,N,N'-trimethyl-N'-(1H-pyrazol-1-yl-κN2)meth­yl]ethane-1,2-di­amine-κ2N,N'}copper(II) methanol monosolvate

In the title compound, [CuCl2(C9H18N4)]·CH3OH, the central CuII ion is coordinated by three N atoms from the pyrazole derivative ligand and two chloride co-ligands. The coordination geometry around the CuII ion is distorted trigonal–bipyramidal. In the crystal, the mol­ecules are linked by C—H⋯O, C—H⋯Cl and O—H⋯Cl hydrogen bonds, forming a three-dimensional framework with the lattice solvent mol­ecule.




ethanol

Bis(μ2-benzoato-κ2O,O')bis­(benzoato-κO)bis(ethanol-κO)bis­(μ3-hydroxido)hexa­kis­(μ-pyrazol­ato-κ2N,N')hexa­copper(II) ethanol disolvate

Trinuclear copper–pyrazolate entities are present in various Cu-based enzymes and nanojar supra­molecular arrangements. The reaction of copper(II) chloride with pyrazole (pzH) and sodium benzoate (benzNa) assisted by microwave radiation afforded a neutral centrosymmetric hexa­nuclear copper(II) complex, [Cu6(C7H5O2)4(OH)2(C3H3N2)6(C2H5OH)2]·2C2H5OH. Half a mol­ecule is present in the asymmetric unit that comprises a [Cu3(μ3-OH)(pz)3]2+ core with the copper(II) atoms arranged in an irregular triangle. The three copper(II) atoms are bridged by an O atom of the central hydroxyl group and by three bridging pyrazolate ligands on each of the sides. The carboxyl­ate groups show a chelating mode to one and a bridging syn,syn mode to the other two CuII atoms. The coordination environment of one CuII atom is square-planar while it is distorted square-pyramidal for the other two. Two ethanol mol­ecules are present in the asymmetric unit, one binding to one of the CuII atoms, one as a solvent mol­ecule. In the crystal, stabilization arises from inter­molecular O—H⋯O hydrogen-bonding inter­actions.




ethanol

μ2-Methanol-κ2O:O-bis­[(1,10-phenanthroline-κ2N,N')bis­(2,3,4,5-tetra­fluoro­benzoato)-κO;κ2O,O'-copper(II)]

In the title compound, [Cu2(C7HF4O2)4(C12H8N2)2(CH3OH)], the mol­ecule lies on a twofold rotation axis in space group C2/c. The Cu2+ ion exhibits a distorted octa­hedral sphere with two N atoms from the phenanthroline ligand, three O atoms from the 2,3,4,5-tetra­fluoro­benzoate ligands and one O atom from a methanol mol­ecule. The distortion from an octa­hedral shape is a consequence of the Jahn–Teller effect of CuII and the small bite angle for the bidentate fluoro­benzoate ligand [54.50 (11)°]. The methanol mol­ecule bridges two symmetry-related CuII atoms to form the complete mol­ecule. In the bidentate fluoro­benzoate ligand, one F atom is disordered over two positions of equal occupancy. In the crystal structure, only weak inter­molecular inter­actions are observed.




ethanol

Tris(1H-benzimidazol-2-ylmeth­yl)amine methanol tris­olvate

The structure of the tertiary amine tris­(1H-benzimidazol-2-ylmeth­yl)amine (C24H21N7, abbreviated ntb) has been previously reported twice as solvates, namely the monohydrate and the aceto­nitrile–methanol–water (1/0.5/1.5) solvate, both with the tripodal conformation formed via multiple hydrogen bonds. Now, we report the tri­methanol adduct, ntb·3CH3OH, where the amine has the stair conformation featuring one benzimidazole group oriented in the opposite direction from the other two. The asymmetric unit contains one-half amine, completed through the mirror plane m in space group Pmn21 to form the ntb mol­ecule, with the H atom for each imidazole moiety equally disordered between both N sites available in the imidazole ring. The asymmetric unit also contains one and a half methanol mol­ecules, one being placed in general position with the hy­droxy H atom disordered over two sites with occupancy ratio 1:1, while the other lies on the m mirror plane, and has thus its hy­droxy H atom disordered by symmetry. As in the previously reported solvates, all imine and amine groups of the ntb mol­ecules and the methanol mol­ecules are involved in N—H⋯O and O—H⋯N hydrogen bonds. In the title compound, however, the involved H atom is systematically a disordered H atom provided by an imidazole group or a methanol mol­ecule.




ethanol

Bis(mefloquinium) butane­dioate ethanol monosolvate: crystal structure and Hirshfeld surface analysis

The asymmetric unit of the centrosymmetric title salt solvate, 2C17H17F6N2O+· C4H4O42−·CH3CH2OH, (systematic name: 2-{[2,8-bis­(tri­fluoro­meth­yl)quinolin-4-yl](hy­droxy)meth­yl}piperidin-1-ium butane­dioate ethanol monosolvate) comprises two independent cations, with almost superimposable conformations and each approximating the shape of the letter L, a butane­dioate dianion with an all-trans conformation and an ethanol solvent mol­ecule. In the crystal, supra­molecular chains along the a-axis direction are sustained by charge-assisted hy­droxy-O—H⋯O(carboxyl­ate) and ammonium-N—H⋯O(carboxyl­ate) hydrogen bonds. These are connected into a layer via C—F⋯π(pyrid­yl) contacts and π–π stacking inter­actions between quinolinyl-C6 and –NC5 rings of the independent cations of the asymmetric unit [inter-centroid separations = 3.6784 (17) and 3.6866 (17) Å]. Layers stack along the c-axis direction with no directional inter­actions between them. The analysis of the calculated Hirshfeld surface reveals the significance of the fluorine atoms in surface contacts. Thus, by far the greatest contribution to the surface contacts, i.e. 41.2%, are of the type F⋯H/H⋯F and many of these occur in the inter-layer region. However, these contacts occur at separations beyond the sum of the van der Waals radii for these atoms. It is noted that H⋯H contacts contribute 29.8% to the overall surface, with smaller contributions from O⋯H/H⋯O (14.0%) and F⋯F (5.7%) contacts.




ethanol

Crystal structure of (1S,2R)-2-[(3R,4S)-3-methyl-4-phenyl-1,2,3,4-tetra­hydro­isoquinolin-2-yl]-1,2-di­phenyl­ethanol

The synthesis and crystal structure of the title compound, C30H29NO, are described. This compound is a member of the chiral di­hydro­iso­quinoline-derived family, used as building blocks for functional materials and as source of chirality in asymmetric synthesis, and was isolated as one of two diastereomeric β-amino alcohols, the title mol­ecule being found to be the (S,R) diastereoisomer. In the crystal, mol­ecules are packed in a herringbone manner parallel to (103) and (10overline{3}) via weak C—H⋯O and C—H⋯π(ring) inter­actions. Hirshfeld surface analysis showed that the surface contacts are predominantly H⋯H inter­actions (ca 75%). The crystal studied was refined as a two-component inversion twin.




ethanol

Crystal structure of tris­[bis­(2,6-diiso­propyl­phen­yl) phosphato-κO]penta­kis­(methanol-κO)europium methanol monosolvate

The mononuclear title complex, [Eu(C24H34O4P)3(CH4O)5]·CH4O, (1), has been obtained as a minor product in the reaction between EuCl3(H2O)6 and lithium bis­(2,6-diiso­propyl­phen­yl) phosphate in a 1:3 molar ratio in a methanol medium. Its structure exhibits monoclinic (P21/c) symmetry at 120 K and is isostructural with the La, Ce and Nd analogs reported previously [Minyaev et al. (2018a). Acta Cryst. C74, 590–598]. In (1), all three bis­(2,6-diiso­propyl­phen­yl) phosphate ligands display the terminal κ1O-coordination mode. All of the hy­droxy H atoms are involved in O—H⋯O hydrogen bonding, exhibiting four intra­molecular and two inter­molecular hydrogen bonds. Photophysical studies have demonstrated luminescence of (1) with a low quantum yield.




ethanol

Crystal structure of the mixed methanol and ethanol solvate of bis­{3,4,5-trimeth­oxy-N'-[1-(pyridin-2-yl)ethyl­idene]benzohydrazidato}zinc(II)

The unit cell of the title compound, [Zn(C17H18N3O4)2]·CH4O·C2H6O, contains two complex mol­ecules related by an inversion centre, plus one methanol and one ethanol solvent molecule per complex molecule. In each complex, two deprotonated pyridine aroylhydrazone ligands {3,4,5-trimeth­oxy-N'-[1-(pyridin-2-yl)ethyl­idene]benzohydrazide} coordinate to the ZnII ion through the N atoms of the pyridine group and the ketamine, and, additionally, through the O atom of the enolate group. In the crystal, dimers are formed by π–π inter­actions between the planar ligand moieties, which are further connected by C⋯O and C⋯C inter­actions. The inter­molecular inter­actions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing that the most important contributions for the crystal packing are from H⋯H (44.8%), H⋯C/C⋯H (22.2%), H⋯O/O⋯H (18.7%) and C⋯C (3.9%) inter­actions.




ethanol

Crystal structure, synthesis and thermal properties of bis­(4-benzoyl­pyridine-κN)bis­(iso­thio­cyanato-κN)bis­(methanol-κN)iron(II)

In the crystal structure of the title compound, [Fe(NCS)2(C12H9NO)2(CH4O)2], the FeII cations are octa­hedrally coordinated by two N atoms of 4-benzoyl­pyridine ligands, two N atoms of two terminal iso­thio­cyanate anions and two methanol mol­ecules into discrete complexes that are located on centres of inversion. These complexes are linked via inter­molecular O—H⋯O hydrogen bonds between the methanol O—H H atoms and the carbonyl O atoms of the 4-benzoyl­pyridine ligands, forming layers parallel to (101). Powder X-ray diffraction proved that a pure sample was obtained but that this compound is unstable and transforms into an unknown crystalline phase within several weeks. However, the solvent mol­ecules can be removed by heating in a thermobalance, which for the aged sample as well as the title compound leads to the formation of a compound with the composition Fe(NCS)2(4-benzoyl­pyridine)2, which exhibits a powder pattern that is similar to that of Mn(NCS)2(4-benzoyl­pyridine)2.




ethanol

Crystal structure and Hirshfeld surface analysis of the methanol solvate of sclareol, a labdane-type diterpenoid

The title compound, C20H36O2·CH3OH [systematic name: (3S)-4-[(S)-3-hy­droxy-3-methyl­pent-4-en-1-yl]-3,4a,8,8-tetra­methyl­deca­hydro­naphthalen-3-ol methanol monosolvate], is a methanol solvate of sclareol, a diterpene oil isolated from the medicinally important medicinal herb Salvia sclarea, commonly known as clary sage. It crystallizes in space group P1 (No. 1) with Z' = 2. The sclareol mol­ecule comprises two trans-fused cyclo­hexane rings, each having an equatorially oriented hydroxyl group, and a 3-methyl­pent-1-en-3-ol side chain. In the crystal, Os—H⋯Os, Os—H⋯Om, Om—H⋯Os and Om—H⋯Om (s = sclareol, m = methanol) hydrogen bonds connect neighboring mol­ecules into infinite [010] chains. The title compound exhibits weak anti-leishmanial activity (IC50 = 66.4 ± 1.0 µM ml−1) against standard miltefosine (IC50 = 25.8 ± 0.2 µM ml−1).




ethanol

Methanol reveals comets forming in distant solar system

Astronomers announced today that they have found the organic molecule methyl alcohol, or methanol, in the TW Hydrae protoplanetary disk. This is the first such […]

The post Methanol reveals comets forming in distant solar system appeared first on Smithsonian Insider.




ethanol

LDL uptake-dependent phosphatidylethanolamine translocation to the cell surface promotes fusion of osteoclast-like cells [RESEARCH ARTICLE]

Victor J. F. Kitano, Yoko Ohyama, Chiyomi Hayashida, Junta Ito, Mari Okayasu, Takuya Sato, Toru Ogasawara, Maki Tsujita, Akemi Kakino, Jun Shimada, Tatsuya Sawamura, and Yoshiyuki Hakeda

Osteoporosis is associated with vessel diseases attributed to hyperlipidemia, and bone resorption by multinucleated osteoclasts is related to lipid metabolism. In this study, we generated low-density lipoprotein receptor (LDLR)/lectin-like oxidized LDL receptor-1 (LOX-1) double knockout (dKO) mice. We found that, like LDLR single KO (sKO), LDLR/LOX-1 dKO impaired cell-cell fusion of osteoclast-like cells (OCLs). LDLR/LOX-1 dKO and LDLR sKO preosteoclasts exhibited decreased uptake of LDL. The cell surface cholesterol levels of both LDLR/LOX-1 dKO and LDLR sKO osteoclasts were lower than the levels of wild-type OCLs. Additionally, the amount of phosphatidylethanolamine (PE) on the cell surface was attenuated in LDLR/LOX-1 dKO and LDLR sKO pre-OCLs, while the PE distribution in wild-type OCLs was concentrated on the filopodia in contact with neighboring cells. Abrogation of the ATP binding cassette G1 (ABCG1) transporter, which transfers PE to the cell surface, caused decreased PE translocation to the cell surface and subsequent cell-cell fusion. The findings of this study indicate the involvement of a novel cascade (LDLR~ABCG1~PE translocation to cell surface~cell-cell fusion) in multinucleation of OCLs.




ethanol

Febuxostat ethanol monosolvate

Febuxostat and ethanol mol­ecules are linked into an O—H⋯O and O—H⋯N bonded chain structure.




ethanol

Deciphering the hydrogen-bonding scheme in the crystal structure of tri­phenyl­methanol: a tribute to George Ferguson and co-workers

The crystal structure of tri­phenyl­methanol, C19H16O, has been redetermined using data collected at 295 and 153 K, and is compared to the model published by Ferguson et al. over 25 years ago [Ferguson et al. (1992). Acta Cryst. C48, 1272–1275] and that published by Serrano-González et al., using neutron and X-ray diffraction data [Serrano-González et al. (1999). J. Phys. Chem. B, 103, 6215–6223]. As predicted by these authors, the hy­droxy groups are involved in weak inter­molecular hydrogen bonds in the crystal, forming tetra­hedral tetra­­mers based on the two independent mol­ecules in the asymmetric unit, one of which is placed on the threefold symmetry axis of the Roverline{3} space group. However, the reliable determination of the hy­droxy H-atom positions is difficult to achieve, for two reasons. Firstly, a positional disorder affects the full asymmetric unit, which is split over two sets of positions, with occupancy factors of ca 0.74 and 0.26. Secondly, all hy­droxy H atoms are further disordered, either by symmetry, or through a positional disorder in the case of parts placed in general positions. We show that the correct description of the hydrogen-bonding scheme is possible only if diffraction data are collected at low temperature. The pro­chiral character of the hydrogen-bonded tetra­meric supra­molecular clusters leads to enanti­omorphic three-dimensional graphs in each tetra­mer. The crystal is thus a racemic mixture of supS and supR motifs, consistent with the centro­symmetric nature of the Roverline{3} space group.




ethanol

Unintended energy impact from bioethanol production

Increasing crop production to meet demand for biofuels potentially increases the use of nitrogen fertilisers, which can lead to nitrate pollution in surface and groundwater. A new study is the first to consider the unintended extra energy needed to treat water to remove nitrate contamination in drinking water supplies.




ethanol

Cellulosic ethanol fuel breakthrough: 85% cleaner and only $2 a gallon

Two companies, both with ties to Denmark, produce low-cost enzymes that can greatly reduce the cost of environmentally friendly biofuels made from agricultural




ethanol

The great ethanol debate heads to the courts

One side says the EPA is overstepping its bounds, while some say it didn't go far enough.




ethanol

New ethanol blend one step closer to getting in your tank

The EPA has moved one step closer to allowing a higher blend of alternative fuel in your cars, but the usual suspects aren't on board.




ethanol

Is the ethanol dream about to end?

In these budget-cutting times, biofuels may be on the chopping block. And with a presidential election looming, politics will play role.




ethanol

Republicans continue to do the ethanol dance

Ethanol is emerging as one of the biggest wedge issues for Republicans as they focus on the Iowa caucus.




ethanol

Ethanol to keep Huntsman out of Iowa

Ethanol subsidies are such a wedge issue in Iowa that one candidate says he will stay away.




ethanol

Ethanol unites extremes of the Senate

Political ideology doesn't matter in the Senate when it comes to ethanol subsidies. Unless your senator comes from a corn state, chances are he or she voted aga




ethanol

Washington Post editorial: End ethanol subsidies

The latest assault on ethanol subsidies comes from one of the nation's leading newspapers.




ethanol

U.S. ethanol production drops, snaps 4-week rise

The Energy Information Administration said on Wednesday that U.S. ethanol production was down about 1 percent.



  • Wilderness & Resources

ethanol

How ethanol is saving fuel at Daytona 500

When the 43 NASCAR drivers start their engines for Sunday's Daytona 500, they will be doing so for the second year with American ethanol-blended fuel in their g



  • Arts & Culture

ethanol

Ted Cruz's half-baked position on ethanol

In an attempt to appease Iowa corn farmers, the sometime-frontrunner mires himself in controversy.




ethanol

MHPS, MHIENG and MGC selected to conduct research on effective recycling of CO<sub>2</sub> to produce methanol<br>-- The collaborative research project commissioned by NEDO aiming at developing carbon capture and utilization (CCU) techno

Mitsubishi Hitachi Power Systems (MHPS), Mitsubishi Heavy Industries Engineering (MHIENG) and Mitsubishi Gas Chemical Company (MGC) were selected by the New Energy and Industrial Technology Development Organization (NEDO) to conduct joint research on the effective recycling of carbon dioxide (CO2) emitted from the refinery at Tomakomai City, Hokkaido Japan where the CO2 is captured and stored by the existing demonstration plant. Further utilizing of the demonstration plant currently employed for CO2 Capture and Storage (CCS), the three companies will collaborate on research activities for CO2 Capture and Utilization (CCU) in order to produce methanol from captured CO2. The research is expected to run until February 2021.




ethanol

Is corn ethanol worth the trouble?

It can be better for the climate than gasoline, but this colorless liquid isn't always as green as it seems.



  • Translating Uncle Sam

ethanol

Global Cannabinoids Receives over $15 Million in Hand Sanitizer Orders in the Past 7 Days as the Company Builds the Largest Ethanol to Sanitizer Supply Chain in the USA

Global Cannabinoids, and its newly formed entity, Global Sanitizers LLC, is pleased to announce that it has secured over $15 Million Dollars in hand sanitizer orders in the past week.




ethanol

Government hikes ethanol price by Rs 2.85/litre for 2018-19

Government hikes ethanol price by Rs 2.85/litre for 2018-19





ethanol

Method and systems for enhancing oil recovery from ethanol production byproducts

Methods and related systems efficiently and effectively recover a significant amount of valuable, useable oil from byproducts formed during a dry milling process used for producing ethanol. The method may include forming a concentrate from the byproduct and recovering oil from the concentrate. The step of forming the concentrate may comprise evaporating the byproduct using a multi-stage evaporator, as well as recovering the oil before the final stage of the evaporator. Further, the step of recovering oil from the concentrate may comprise using a centrifuge and, in particular, a disk stack centrifuge. Other aspects include related methods and subsystems for recovering oil.




ethanol

Process to make alpha olefins from ethanol

The present invention relates to a process to make alpha olefins comprising: dehydrating ethanol to recover an ethylene stream,introducing said ethylene stream into an oligomerization zone containing an oligomerization catalyst and into contact with said oligomerization catalyst,operating said oligomerization zone at conditions effective to produce an effluent consisting essentially of 1-butene, 1-hexene, optionally heavier alpha olefins and unconverted ethylene if any,introducing the above effluent into a fractionation zone to recover a stream consisting essentially of 1-butene, a stream consisting essentially of 1-hexene, optionally a stream consisting essentially of heavier alpha olefins and an optional ethylene stream. In an advantageous embodiment the 1-hexene or at least one heavier alpha olefins, if any, are isomerized to an internal olefin and subsequently transformed by metathesis with the aid of additional ethylene into different alpha-olefins with even or odd number of carbons. By way of example 1-hexene is isomerized into 2-hexene and by methathesis with ethylene converted to 1-pentene and propylene.In another embodiment the oligomerization zone is only a dimerization zone and butene is produced. 1-butene is isomerized to 2-butene and sent to a methathesis zone in the presence of ethylene to be converted to propylene. In said embodiment the dehydration catalyst is selected in the group consisting of a crystalline silicate having a ratio Si/Al of at least about 100, a dealuminated crystalline silicate, and a phosphorus modified zeolite.




ethanol

Fluid cocamide monoethanolamide concentrates and methods of preparation

The invention is drawn to fluid concentrate formulations of fatty acid monoethanolamides comprising (a) about 71-76% by weight of one or more C8-C22 fatty acid monoethanolamides, (b) about 15-17% by weight of water, and (c) about 10-12% by weight of one or more hydrotropes, based on the fluid formulation, wherein the fluid formulation is homogeneous, pumpable and color stable at a temperature of less than 55° C. A preferred embodiment is drawn to fluid concentrate formulations of cocamide monoethanolamide (CMEA) consisting of (a) about 71-76% by weight of CMEA, (b) about 15-17% by weight of water, and (c) about 10-12% by weight of glycerol, based on the fluid formulation. Methods of preparing the fluid concentrate formulations mulations are also disclosed. The fluid concentrate formulations of fatty acid monoethanolamides are useful in the preparation of cosmetic and pharmaceutical compositions.




ethanol

Process for the production of ethanol from an acetic acid feed and a recycled ethyl acetate feed

The present invention produces ethanol in a reactor that comprises a catalyst composition and a feed stream comprising acetic acid and a recycled liquid stream comprising ethyl acetate. The catalyst composition comprises a first catalyst comprising platinum, cobalt, and/or tin and a second catalyst comprising copper. The crude ethanol product may be separated and ethanol recovered.




ethanol

Process to reduce ethanol recycled to hydrogenation reactor

The present invention is directed to processes for recovering ethanol obtained from the hydrogenation of acetic acid. Acetic acid is hydrogenated in the presence of a catalyst in a hydrogenation reactor to form a crude ethanol product. The crude ethanol product is separated in one or more columns to recover ethanol. In some embodiments, less than 10 wt. % ethanol is recycled to the hydrogenation reactor.




ethanol

Process for making ethanol from acetic acid using acidic catalysts

A process for selective formation of ethanol from acetic acid by hydrogenating acetic acid in the presence of a catalyst comprises a first metal on an acidic support. The acidic support may comprise an acidic support material or may comprise an support having an acidic support modifier. The catalyst may be used alone to produced ethanol via hydrogenation or in combination with another catalyst. In addition, the crude ethanol product is separated to obtain ethanol.




ethanol

Phasing reactor product from hydrogenating acetic acid into ethyl acetate feed to produce ethanol

Disclosed herein are processes for alcohol production by reducing ethyl acetate produced by hydrogenating acetic acid in the presence of a suitable catalyst. The product of the acetic acid hydrogenation is fed directly to a decanter to separate the hydrogenation product into an aqueous phase comprising water and ethanol and an organic phase comprising ethyl acetate. The organic phase is reduced with hydrogen in the presence of a catalyst to obtain a crude reaction mixture comprising the alcohol, in particular ethanol, which may be separated from the crude reaction mixture. Thus, ethanol may be produced from acetic acid through an ethyl acetate intermediate without an esterification step. This may reduce the recycle of ethanol in the hydrogenolysis process and improve ethanol productivity.




ethanol

Hydrogenation of styrene oxide forming 2-phenyl ethanol

A process for preparation of 2-phenyl ethanol by catalytic hydrogenation of styrene oxide using a catalyst consisting of Pd (II) on basic inorganic support is investigated. The present invention comprises development of new Pd based catalysts. The present method yields 2-phenyl ethanol in 98% selectivity at total conversion of styrene oxide. The present process represents an environment friendly alternative to conventionally used methods in industry and eliminates the reduction step for catalyst preparation. In the present invention the active catalyst is generated in situ during the hydrogenation of styrene oxide. In addition, Pd (II) supported catalysts do not catch fire (non pyrophoric), can be stored under ambient conditions and produce very less or no dust which makes said catalysts suitable for industrial application.